



# On-Shell Methods for QCD Matrix Elements Simon Badger

23th June 2006

Work in collaboration with Nigel Glover and Valya Khoze.

# **Talk Outline**

- Off-Shell Methods.
- On-Shell Methods: Recursion Relations.
- On-Shell Methods: MHV Rules.
- Conclusions and Outlook.

# Off-Shell Methods: Feynman Diagrams

## • Advantages:

- Direct link to Lagrangian.
- Easy to adapt to amplitudes with mass/spin.
- Easy to automate.
- Off-shell recursion.

[MADEVENT, GRACE] [Berends, Giele]

#### • Disadvantages:

- Large number of diagrams.

| # Number of Particles | 4 | 5  | 6   | 7    | 8     | 9      | 10       |
|-----------------------|---|----|-----|------|-------|--------|----------|
| # Feynman Diagrams    | 4 | 25 | 120 | 2485 | 34300 | 559405 | 10525900 |

- High multiplicity final states will be significant at the LHC.
- Large cancellations between diagrams.
- Higher order corrections extremely difficult to evaluate.

# **On-Shell Recursion: Tree Level Relation**

New recursion relations for tree level gluon amplitudes.

[Britto, Cachazo, Feng hep-th/0412308]



All particles **on-shell**, all propagators  $\sim 1/P^2$ .

Proved using only simple complex analysis.

[Britto, Cachazo, Feng, Witten hep-th/0501052]

## **On-Shell Recursion: Proof**

Consider a generic scattering amplitude:

$$\mathcal{A}(p_1,\ldots,p_n) \to \mathcal{A}(p_1(z),p_2(z),p_3,\ldots,p_n) = \mathcal{A}(z)$$

where 
$$p_1(z) + p_2(z) = p_1 + p_2$$
 and  $p_1(z)^2 = p_2(z)^2 = 0$ .

$$0 = \frac{1}{2\pi i} \int_{\gamma} dz \frac{\mathcal{A}(z)}{z} = \mathcal{A}(0) + \sum_{i=3}^{n-1} \sum_{h=\pm} \mathcal{A}_{L}(z_{i}) \frac{1}{P_{1,i}^{2}} \mathcal{A}_{R}(z_{i})$$



Condition for complex momenta can be solved for massless particles:

$$\widehat{p}_1^{\mu}(z) = p_1^{\mu} + \frac{1}{2} \langle p_1 | \sigma^{\mu} | p_2 ]$$
  $\widehat{p}_2^{\mu}(z) = p_2^{\mu} - \frac{1}{2} \langle p_1 | \sigma^{\mu} | p_2 ]$ 

- Holds for more general shifts into complex momenta.
- Relies on vanishing of  $\mathcal{A}(z)$  at the  $z \to \infty$  boundary.

# **On-Shell Recursion: Applications**

Generates extremely compact expressions for many amplitudes:

- Works for amplitudes of gluons and quarks. [Luo, Wen hep-th/0501121, hep-th/0502009]
- Applies to massive propagating particles: [SB,Glover,Khoze,Svrček hep-th/0504159]
   [Forde,Kosower hep-ph/0507292]
  - Propagator simply changes from  $P_{1,i}^2 \rightarrow P_{1,i}^2 m_P^2$
  - Solutions to constraints for shifting one external massive particle.
- Multi-Vector Bosons Currents and Massive Fermions [SB,Glover,Khoze hep-th/0507173]

[Ozeren, Stirling hep-ph/0603071], [Rodrigo hep-ph/0508138], [Schwinn, Weinzierl hep-th/0601012]

### MHV Rules

Maximal Helicity Violating (MHV) amplitudes take a remarkably simple form:

$$\mathcal{A}_n^{(0)}(\ldots, i^-, \ldots, j^-, \ldots) = \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

Following from Witten's twistor string/ $\mathcal{N}=4$  duality, Cachazo, Svrček and Witten proposed a scalar perturbation theory with the MHV amplitudes as vertices. [Cachazo, Svrček, Witten hep-th/0403047]



Lines in red(black) indicate negative(positive) helicity gluons.

## **MHV** Rules

Rules generate simple n-point amplitudes for specific helicity configurations.



 Has been applied to tree level amplitudes with gluons, quarks, Higgs and Vector Bosons
 [Georgiou, Khoze hep-th/0404072], [Georgiou, Glover, Khoze hep-th/0407027]

[Dixon, Glover, Khoze hep-th/0411092], [SB, Glover, Khoze hep-th/0412275], [Bern, Forde, Kosower, Mastrolia hep-th/0412275]

 Proved by showing equivalence between MHV method and recursion relation with special shift to complex momenta:

Shift all negative helicity particles:  $|\widehat{m}_i| \to |\widehat{m}_i| + zr_i|\eta|$ This ensures no  $\overline{\text{MHV}}$  3-vertices appear.

[Risager hep-th/0508206]

## **Outlook**

 On-shell methods have provided efficient new ways to calculate tree level matrix elements.

• Methods extremely general and easy to apply to many different gauge theories at tree level.

Progress at NLO - Combining on-shell recursion and unitarity methods to find QCD matrix elements:

- +
- Gluon and Quark "finite" amplitudes. [Bern, Dixon, Kosower hep-ph/0501240+hep-ph/0505055]
- Gluon MHV amplitudes. [Bern, Dixon, Kosower hep-ph/0507005, Forde, Kosower hep-ph/0509358]
- MHV rules at 1-loop. [Bedford,Brandhuber,Spence,Travaglini hep-th/0412108]
- Finite parts for all 6 and 7 gluon matrix elements now available.

  [Berger, Bern, Dixon, Forde, Kosower hep-ph/0605195]