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A supersymmetric standard model

Find the most general Lagrangian which is

e invariant under Lorentz, SU(3)c x SU(2)r x U(1)y
and supersymmetry transformations; renormalizable

e minimal in particle content

Neither lepton number (L) nor baryon number (B) are conserved
Two options:

e constrain lagrangian parameters

e impose a further discrete symmetry when constructing the lagrangian




Superpotential

The most general superpotential is given by
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Ibanez & Ross (1991) show that there are two preferred discrete symmetries,
R-parity and a Z3 allowing L.

L. E. Ibanez and G. G. Ross, Nucl. Phys. B 368, 3 (1992)



R-parity

Under R-parity

e Standard model particles (including scalar Higgs bosons) are even
e corresonding superpartners are odd

If R-parity is imposed when constructing the Lagrangian

e Terms in the Lagrangian which violate either L or B are excluded
e The lightest supersymmetric particle (LSP) is stable

e Sneutrino fields do not acquire a non-zero vacuum expectation values; R-parity
is not violated spontaneously




R-parity conserving minimal supersymmetric standard model
(Rpc-MSSM)
Neutral scalar particle content

e neutral, complex scalar components of two higgs chiral supermultiplets, h9 and
hi

e neutral, complex scalar components of lepton supermultiplets, v, .

If Rp conservation is imposed on the Lagrangian there are no bilinear terms which
cause mixing between fields with different Rp.

No mixing between Higgs bosons and sneutrinos.




The neutral scalars decouple into CP-even and CP-odd real scalar eigenstates
The Higgs bosons

{8, h3} — {h°, H®, 4°,G")

and the sneutrinos

Vi — {5+¢,V_¢}

The scalar potential can be minismised to obtain values for the vacuum
expectation values (vevs) of hY and hY.




L violating minimal supersymmetric standard model

(L-MSSM)

Without imposing the conservation of L on the Lagrangian, bilinear terms exist
between (and hence, mixing occurs between)

e charged gauginos, charged higgsinos and charged leptons
e neutral gauginos, neutral higgsinos and neutrinos

e Higgs bosons, sneutrinos

giving rise to some attractive features.

B. C. Allanach, A. Dedes and H. K. Dreiner, Phys. Rev. D 69, 115002 (2004)



Neutrino Masses

The mixing between neutrinos and neutral gauginos/higgsinos produces one
tree-level, ‘see-saw’ suppressed, neutrino mass.
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The neutral scalar bosons all mix

{hg7 h(1)7 ﬁLZ} - {h07 HO7 A07 GO7 ﬁ—l—ia v_ Z}

In general

e 10 x 10 mixing matrix of real, scalar fields.
e Solve minimisation conditions to find 5 complex vevs.

e Not clear which phases can be rotated away and which are physical; explicit
CP-violation?

e Not clear if vevs are real; spontaneous CP-violation?




Vanishing sneutrino vev basis

Notice that if Rp is not imposed, h{ and U;, carry the same quantum numbers,
even before symmetry breaking.

Define 0, , = (hY,7;,) o = (1, Ki)
Solving the minimisation conditions defines a direction in this (hY, ;) space.

In the interaction basis, we are free to define any direction in (h{, ;) to be the
Higgs.

Had the basis been rotated such that the Higgs points in this direction, a basis
would have been chosen such that the sneutrino vevs are zero.

A. Dedes, SR, J. Rosiek and M. Schmidt-Sommerfeld, Phys. Lett. B 627 (2005) 161



We have studied the scalar and fermion sector without making any assumptions
concerning the CP or family structure of the theory, finding a basis suitable for
calculation.

A method for initialising parameters has been found, such that the correct values
are generated for lepton/quark masses and CKM /PMNS matrices.

FORTRAN code has been developed to produce the tree-level mass spectrum,
mixing matrices and Feynman rules.

The renormalisation of the theory has been studied, one-loop corrections to the
neutralino-neutrino masses have been derived and implemented within the code.

A. Dedes, SR, J. Rosiek and M. Schmidt-Sommerfeld, Phys. Lett. B 627 (2005) 161
A. Dedes, SR and J. Rosiek, in preparation



Vertex
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Loop Diagrams
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Summary

Our aim is to study the phenomenology of the most general £-MSSM

The full set of Feynman rules have been derived

The one-loop corrections to the neutrino masses have been calculated

This is interesting to compare limits on A/\" with Tevatron/B-factory analyses

Can now go on to study other processes connected with neutrino masses;
neutrinoless double beta decay, lepton flavour violating events such as 7 decays,

A. Dedes, SR and J. Rosiek, in preparation
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Neutrino-neutralino mass matrix
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Neutrino-neutralino mass matrix
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A. S. Joshipura and M. Nowakowski, Phys. Rev. D 51, 2421 (1995)
M. Nowakowski and A. Pilaftsis, Nucl. Phys. B 461, 19 (1996)
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Suggestive of the seesaw mechanism
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The mass? given by eigenvalues of /\/lj\//\/l/\/
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q1,2 are zero eigenvectors of the full matrix.




The neutral scalar bosons all mix

{ho,hY, o,y — {h°, H°, A°,G°, 0y 4, 0 ;}

In general

e 10 x 10 mixing matrix of real, scalar fields.
e Solve minimisation conditions to find 5 complex vevs.

e Not clear which phases can be rotated away and which are physical; explicit
CP-violation?

e Not clear if vevs are real; spontaneous CP-violation?




Vanishing sneutrino vev basis

Notice that if Rp is not imposed, h{ and U;, carry the same quantum numbers,
even before symmetry breaking.

Define 7y, = (h{, ;) pa = (1, Ki)

Solving the minimisation conditions defines a direction in this (hY, ;) space.

In the interaction basis, we are free to define any direction in (h{, ;) to be the
Higgs.

Had the basis been rotated such that the Higgs points in this direction, a basis
would have been chosen such that the sneutrino vevs are zero.

M. Bisset, O. C. W. Kong, C. Macesanu and L. H. Orr, Phys. Lett. B 430, 274 (1998)
Y. Grossman and H. E. Haber, Phys. Rev. D 59, 093008 (1999)



Finding the vanishing sneutrino vev basis

The neutral scalar potential takes the form
- 1 . sk ~
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A. Dedes, SR, J. Rosiek and M. Schmidt-Sommerfeld, hep-ph/05062009.



Finding the vanishing sneutrino vev basis

The neutral scalar potential takes the form
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Redefine the sneutrino fields

Pro = Uapirg, U = Vdiag(e'*)Z, V unitary, Z orthogonal.
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Minimisation conditions
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Minimisation conditions
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However, Z is an orthogonal matrix and orthoginality must be imposed

3
Z ZaOZaO =1
a=0

giving multiple solutions for tan 8 =

Each tan 3 corresponds to a dlfferent extrema.

By considering all solutions for tan 3 can find the solution which corresponds to
the deepest minima.

This is the correct vanishing sneutrino vev basis.

The first column of Z is now fully defined (3 parameters)




Have the freedom to define 3 x 3 orthogonal sub-matrix of Z such that
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Scalar potential in vanishing sneutrino vev basis
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where

(M2)op = [ZT (M%) Z] and By, = (VZ),
a3
Have now moved to a basis where

e sneutrino vevs are zero

e sneutrino masses diagonal, (M

DN

)i

e all the parameters of the scalar potential real; can split into CP-even and
CP-odd eigenstates




Parametrizing the neutral scalar mass matrices

2B
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where M7 is the mass of the lightest CP-odd Higgs boson in the Rpc limit.

The Lagrangian contains the terms
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CP-even Higgs boson mass matrix
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CP-even Higgs boson mass matrix

M%VEN -
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Noticing that the top-left 2 X 2 sub-matrix is identical to the Rpc case, for which
the Higgs masses are given by

1
Mg gy = 5 (M% + M35 + \/(M% + M3)2 — 4M3 M2 cos? 26)

Applying Courant-Fischer theorem, it can be seen that in Rpv case one eigenvalue
which is smaller that M2 exists




CP-odd Higgs boson mass matrix

The CP-odd mass matrix reads

M4 =
ODD —
cos® BM3 + Esin® BMZ  2sin2B(M3% — EMZ) B,
%sin QB(Mj — fM%) sin? ﬂMf‘ + £ cos? ﬁM% Bjtan 3
B; B;tan 8 (/\?l%)zcsw

¢ Is the gauge fixing parameter. we can project out without approximation the
gauge dependent part, the would-be Goldstone mode, of the CP-odd scalar matrix
as
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