Neutrino Masses in the MSSM

Steven Rimmer Supervisor: Dr. Athanasios Dedes

Institute of Particle Physics Phenomenology,
University of Durham

A supersymmetric standard model

Find the most general Lagrangian which is

- invariant under Lorentz, $SU(3)_C \times SU(2)_L \times U(1)_Y$ and supersymmetry transformations; renormalizable
- minimal in particle content

Neither lepton number (L) nor baryon number (B) are conserved Two options:

- constrain lagrangian parameters
- impose a further discrete symmetry when constructing the lagrangian

Superpotential

The most general superpotential is given by

$$\mathcal{W} = Y_E L H_1 E + Y_D H_1 Q D^c + Y_U Q H_2 U^c - \mu H_1 H_2$$

Superpotential

The most general superpotential is given by

$$\mathcal{W} = Y_E L H_1 E + Y_D H_1 Q D^c + Y_U Q H_2 U^c - \mu H_1 H_2$$

$$+\frac{1}{2}\lambda LLE^c + \lambda'LQD^c - \kappa LH_2$$

Superpotential

The most general superpotential is given by

$$\mathcal{W} = Y_E L H_1 E + Y_D H_1 Q D^c + Y_U Q H_2 U^c - \mu H_1 H_2$$
$$+ \frac{1}{2} \lambda L L E^c + \lambda' L Q D^c - \kappa L H_2$$

$$+\frac{1}{2}\lambda''U^cD^cD^c$$

Ibanez & Ross (1991) show that there are two preferred discrete symmetries, R-parity and a Z_3 allowing $\not \! L$.

R-parity

Under R-parity

- Standard model particles (including scalar Higgs bosons) are even
- corresonding superpartners are odd

If R-parity is imposed when constructing the Lagrangian

- ullet Terms in the Lagrangian which violate either L or B are excluded
- The lightest supersymmetric particle (LSP) is stable
- Sneutrino fields do not acquire a non-zero vacuum expectation values; R-parity is not violated spontaneously

R-parity conserving minimal supersymmetric standard model (Rpc-MSSM)

Neutral scalar particle content

- neutral, complex scalar components of two higgs chiral supermultiplets, h_2^0 and h_1^0
- ullet neutral, complex scalar components of lepton supermultiplets, $ilde{
 u}_{Li}$

If R_P conservation is imposed on the Lagrangian there are no bilinear terms which cause mixing between fields with different R_P .

No mixing between Higgs bosons and sneutrinos.

The neutral scalars decouple into CP-even and CP-odd real scalar eigenstates. The Higgs bosons

$$\{h_2^0, h_1^0\} \longrightarrow \{h^0, H^0, A^0, G^0\}$$

and the sneutrinos

$$\tilde{\nu}_{Li} \longrightarrow \{\tilde{\nu}_{+i}, \tilde{\nu}_{-i}\}$$

The scalar potential can be minismised to obtain values for the vacuum expectation values (vevs) of h_2^0 and h_1^0 .

L violating minimal supersymmetric standard model (\mu-MSSM)

Without imposing the conservation of L on the Lagrangian, bilinear terms exist between (and hence, mixing occurs between)

- charged gauginos, charged higgsinos and charged leptons
- neutral gauginos, neutral higgsinos and neutrinos
- Higgs bosons, sneutrinos

• . .

giving rise to some attractive features.

Neutrino Masses

The mixing between neutrinos and neutral gauginos/higgsinos produces one tree-level, 'see-saw' suppressed, neutrino mass.

$$\left(egin{array}{ccc} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & m_{
u}^{ ext{tree}} \end{array}
ight)$$

where

$$m_{\nu}^{\rm tree} = \left| \frac{v_d^2 \left(M_1 g_2^2 + M_2 g^2 \right)}{4 {\rm Det}[M_{\chi^0}]} \right| \left(|\kappa_1|^2 + |\kappa_2|^2 + |\kappa_3|^2 \right)$$

The neutral scalar bosons all mix

$$\{h_2^0, h_1^0, \tilde{\nu}_{Li}\} \longrightarrow \{h^0, H^0, A^0, G^0, \tilde{\nu}_{+i}, \tilde{\nu}_{-i}\}$$

In general

- 10×10 mixing matrix of real, scalar fields.
- Solve minimisation conditions to find 5 complex vevs.
- Not clear which phases can be rotated away and which are physical; explicit CP-violation?
- Not clear if vevs are real; spontaneous CP-violation?

Vanishing sneutrino vev basis

Notice that if R_P is not imposed, h_1^0 and $\tilde{\nu}_{Li}$ carry the same quantum numbers, even before symmetry breaking.

Define
$$\tilde{\nu}_{L\alpha} = (h_1^0, \tilde{\nu}_{Li})$$
 $\mu_{\alpha} = (\mu, \kappa_i)$

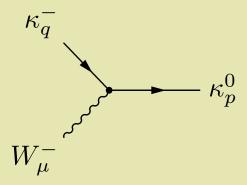
Solving the minimisation conditions defines a direction in this $(h_1^0, \tilde{\nu}_{Li})$ space.

In the interaction basis, we are free to define any direction in $(h_1^0, \tilde{\nu}_{Li})$ to be the Higgs.

Had the basis been rotated such that the Higgs points in this direction, a basis would have been chosen such that the sneutrino vevs are zero.

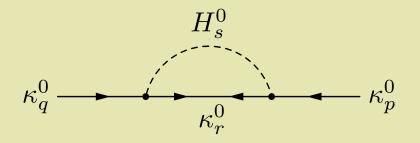
- We have studied the scalar and fermion sector without making any assumptions concerning the CP or family structure of the theory, finding a basis suitable for calculation.
- A method for initialising parameters has been found, such that the correct values are generated for lepton/quark masses and CKM/PMNS matrices.
- FORTRAN code has been developed to produce the tree-level mass spectrum, mixing matrices and Feynman rules.
- The renormalisation of the theory has been studied, one-loop corrections to the neutralino-neutrino masses have been derived and implemented within the code.

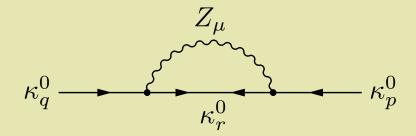
Vertex



$$\left\{ \frac{ie}{\sqrt{2}s_W} Z_{N(4+\alpha)p}^* Z_{-(2+\alpha)q}^* + \frac{ie}{s_W} Z_{N2p}^* Z_{-1q}^* \right\} \gamma^{\mu} P_L$$

Loop Diagrams





Other loops:
Neutralino/CP-odd Higgs
Chargino/charged Higgs
Quark/squark

Chargino/W-boson

Summary

- ullet Our aim is to study the phenomenology of the most general ${\not \! L}$ -MSSM
- The full set of Feynman rules have been derived
- The one-loop corrections to the neutrino masses have been calculated
- This is interesting to compare limits on λ/λ' with Tevatron/B-factory analyses
- Can now go on to study other processes connected with neutrino masses; neutrinoless double beta decay, lepton flavour violating events such as τ decays, ...

Neutrino-neutralino mass matrix

Neutrino-neutralino mass matrix

$$\mathcal{M}_{\mathcal{N}} = \begin{pmatrix} M_1 & 0 & gv_u/\sqrt{2} & -gv_d/\sqrt{2} & -gv_j/\sqrt{2} \\ 0 & M_2 & -g_2v_u/\sqrt{2} & g_2v_d/\sqrt{2} & g_2v_j/\sqrt{2} \\ gv_u/\sqrt{2} & -g_2v_u/\sqrt{2} & 0 & \mu & \kappa_j \\ -gv_d/\sqrt{2} & g_2v_d/\sqrt{2} & \mu & 0 & 0_j \\ -gv_i/\sqrt{2} & g_2v_i/\sqrt{2} & \kappa_i & 0_i & 0_{ij} \end{pmatrix}$$

$$\langle h_2^0 \rangle = v_u \quad \langle h_1^0 \rangle = v_d \quad \langle \tilde{\nu}_{Li} \rangle = v_i$$

$$\mathcal{M}_{\mathcal{N}} = \begin{pmatrix} M_1 & 0 & gv_u/\sqrt{2} & -gv_d/\sqrt{2} & -gv_j/\sqrt{2} \\ 0 & M_2 & -g_2v_u/\sqrt{2} & g_2v_d/\sqrt{2} & g_2v_j/\sqrt{2} \\ gv_u/\sqrt{2} & -g_2v_u/\sqrt{2} & 0 & \mu & \kappa_j \\ -gv_d/\sqrt{2} & g_2v_d/\sqrt{2} & \mu & 0 & 0_j \\ -gv_i/\sqrt{2} & g_2v_i/\sqrt{2} & \kappa_i & 0_i & 0_{ij} \end{pmatrix}$$

$$\mathcal{M}_{\mathcal{N}} = \begin{pmatrix} M_1 & 0 & gv_u/\sqrt{2} & -gv_d/\sqrt{2} & -gv_j/\sqrt{2} \\ 0 & M_2 & -g_2v_u/\sqrt{2} & g_2v_d/\sqrt{2} & g_2v_j/\sqrt{2} \\ gv_u/\sqrt{2} & -g_2v_u/\sqrt{2} & 0 & \mu & \kappa_j \\ -gv_d/\sqrt{2} & g_2v_d/\sqrt{2} & \mu & 0 & 0_j \\ \hline -gv_i/\sqrt{2} & g_2v_i/\sqrt{2} & \kappa_i & 0_i & 0_{ij} \end{pmatrix}$$

$$\mathcal{M}_{\mathcal{N}} = \begin{pmatrix} M_{\tilde{\chi}4\times4} & m_{4\times3} \\ m_{3\times4}^T & 0_{3\times3} \end{pmatrix}$$

Suggestive of the seesaw mechanism 4 eigenvalues $\sim M_{\tilde{\chi}}$ 3 eigenvalues $\sim \frac{mm^T}{M_{\tilde{\chi}}}$

$$\mathcal{M}_{\mathcal{N}} = \begin{pmatrix} M_1 & 0 & gv_u/\sqrt{2} & -gv_d/\sqrt{2} & -gv_j/\sqrt{2} \\ 0 & M_2 & -g_2v_u/\sqrt{2} & g_2v_d/\sqrt{2} & g_2v_j/\sqrt{2} \\ gv_u/\sqrt{2} & -g_2v_u/\sqrt{2} & 0 & \mu & \kappa_j \\ -gv_d/\sqrt{2} & g_2v_d/\sqrt{2} & \mu & 0 & 0_j \\ \hline -gv_i/\sqrt{2} & g_2v_i/\sqrt{2} & \kappa_i & 0_i & 0_{ij} \end{pmatrix}$$

$$\mathcal{M}_{\mathcal{N}} = \begin{pmatrix} N_{4\times3} & n_{4\times4} \\ n'_{3\times3} & 0_{3\times4} \end{pmatrix}$$

The mass 2 given by eigenvalues of $\mathcal{M}_{\mathcal{N}}^{\dagger}\mathcal{M}_{\mathcal{N}}$

$$n = \begin{pmatrix} -gv_d/\sqrt{2} & -gv_1/\sqrt{2} & -gv_2/\sqrt{2} & -gv_3/\sqrt{2} \\ g_2v_d/\sqrt{2} & g_2v_1/\sqrt{2} & g_2v_2/\sqrt{2} & g_2v_3/\sqrt{2} \\ \mu & \kappa_1 & \kappa_2 & \kappa_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

n has 3 linearly dependant rows, giving two zero eigenvalues with corresponding eigenvectors $\vec{e}_{1,2}$

$$\mathcal{M}_{\mathcal{N}}\vec{q_i} = \begin{pmatrix} N_{4\times3} & n_{4\times4} \\ n'_{3\times3} & 0_{3\times4} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \vec{e_i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \lambda_i \vec{e_i} \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $\vec{q}_{1,2}$ are zero eigenvectors of the full matrix.

The neutral scalar bosons all mix

$$\{h_2^0, h_1^0, \tilde{\nu}_{Li}\} \longrightarrow \{h^0, H^0, A^0, G^0, \tilde{\nu}_{+i}, \tilde{\nu}_{-i}\}$$

In general

- 10×10 mixing matrix of real, scalar fields.
- Solve minimisation conditions to find 5 complex vevs.
- Not clear which phases can be rotated away and which are physical; explicit CP-violation?
- Not clear if vevs are real; spontaneous CP-violation?

Vanishing sneutrino vev basis

Notice that if R_P is not imposed, h_1^0 and $\tilde{\nu}_{Li}$ carry the same quantum numbers, even before symmetry breaking.

Define
$$\tilde{\nu}_{L\alpha} = (h_1^0, \tilde{\nu}_{Li})$$
 $\mu_{\alpha} = (\mu, \kappa_i)$

Solving the minimisation conditions defines a direction in this $(h_1^0, \tilde{\nu}_{Li})$ space. In the interaction basis, we are free to define any direction in $(h_1^0, \tilde{\nu}_{Li})$ to be the Higgs.

Had the basis been rotated such that the Higgs points in this direction, a basis would have been chosen such that the sneutrino vevs are zero.

Finding the vanishing sneutrino vev basis

The neutral scalar potential takes the form

$$V_{\text{neutral}} = \left(\mathcal{M}_{\tilde{\mathcal{L}}}^2\right)_{\alpha\beta}\tilde{\nu}_{L\alpha}^*\tilde{\nu}_{L\beta} + m_2^2h_2^{0*}h_2^0 - (b_\alpha\tilde{\nu}_{L\alpha}h_2^0 + \text{H.c}) + \frac{1}{8}(g^2 + g_2^2)[h_2^{0*}h_2^0 - \tilde{\nu}_{L\alpha}^*\tilde{\nu}_{L\alpha}]^2$$

where

$$\left(\mathcal{M}_{\tilde{\mathcal{L}}}^2\right)_{\alpha\beta} \equiv \left(m_{\tilde{\mathcal{L}}}^2\right)_{\alpha\beta} + \mu_{\alpha}^* \mu_{\beta}, \qquad m_2^2 \equiv m_{H_2}^2 + \mu_{\alpha}^* \mu_{\alpha}$$

Finding the vanishing sneutrino vev basis

The neutral scalar potential takes the form

$$V_{\text{neutral}} = \left(\mathcal{M}_{\tilde{\mathcal{L}}}^2\right)_{\alpha\beta}\tilde{\nu}_{L\alpha}^*\tilde{\nu}_{L\beta} + m_2^2h_2^{0*}h_2^0 - (b_\alpha\tilde{\nu}_{L\alpha}h_2^0 + \text{H.c}) + \frac{1}{8}(g^2 + g_2^2)[h_2^{0*}h_2^0 - \tilde{\nu}_{L\alpha}^*\tilde{\nu}_{L\alpha}]^2$$

Redefine the sneutrino fields

$$\tilde{\nu}_{L\alpha} = U_{\alpha\beta} \tilde{\nu}_{L\beta}'$$
, $\mathbf{U} = \mathbf{V} \operatorname{diag}(e^{i\phi_{\alpha}}) \mathbf{Z}$, \mathbf{V} unitary, \mathbf{Z} orthogonal.

$$\begin{split} V_{\text{neutral}} &= \left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{\alpha\beta} \tilde{\nu}_{L\alpha}^{'*} \tilde{\nu}_{L\beta}^{'} + m_2^2 \, h_2^{0*} \, h_2^0 \\ &- \left[(b'Z)_{\alpha} \tilde{\nu}_{L\alpha}^{'} h_2^0 + \text{H.c} \right] + \frac{1}{8} (g^2 + g_2^2) \left(h_2^{0*} h_2^0 - \tilde{\nu}_{L\alpha}^{'*} \tilde{\nu}_{L\alpha}^{'} \right)^2 \end{split}$$

Minimisation conditions

$$\left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{\alpha\beta} v_{\beta} - (b'Z)_{\alpha} v_u - \frac{1}{8} (g^2 + g_2^2) (v_u^2 - v_{\gamma} v_{\gamma}) v_{\alpha} = 0$$

Minimisation conditions

$$\left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{\alpha\beta} v_{\beta} - (b'Z)_{\alpha} v_u - \frac{1}{8} (g^2 + g_2^2) (v_u^2 - v_{\gamma} v_{\gamma}) v_{\alpha} = 0$$

$$\left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{00} v_0 + \left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{0j} v_j - (b'Z)_0 v_u - \frac{1}{8} (g^2 + g_2^2) (v_u^2 - v_\gamma v_\gamma) v_0 = 0$$

Minimisation conditions

$$\left[Z^T \left(\hat{\mathcal{M}}'_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{\alpha\beta} v_{\beta} - (b'Z)_{\alpha} v_u - \frac{1}{8} (g^2 + g_2^2) (v_u^2 - v_{\gamma} v_{\gamma}) v_{\alpha} = 0$$

$$\left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{00} v_0 + \left[Z^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) Z \right]_{0j} v_j - (b'Z)_0 v_u - \frac{1}{8} (g^2 + g_2^2) (v_u^2 - v_\gamma v_\gamma) v_0 = 0$$

$$\left[\mathbf{Z}^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) \mathbf{Z} \right]_{i0} v_0 + \left[\mathbf{Z}^T \left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^2 \right) \mathbf{Z} \right]_{ij} v_j - (\mathbf{b'Z})_i v_u - \frac{1}{8} (g^2 + g_2^2) (v_u^2 - v_\gamma v_\gamma) v_i = 0$$

$$Z_{\alpha 0} = \frac{b_{\alpha}' \tan \beta}{\left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^{2}\right)_{\alpha \alpha} - \frac{1}{2} M_{Z}^{2} \frac{\tan^{2} \beta - 1}{\tan^{2} \beta + 1}}.$$

However, Z is an orthogonal matrix and orthogonality must be imposed

$$\sum_{\alpha=0}^{3} Z_{\alpha 0} Z_{\alpha 0} = 1$$

giving multiple solutions for $\tan \beta = \frac{v_u}{v_0}$

Each $\tan \beta$ corresponds to a different extrema.

By considering all solutions for $\tan \beta$ can find the solution which corresponds to the deepest minima.

This is the correct vanishing sneutrino vev basis.

The first column of Z is now fully defined (3 parameters)

Have the freedom to define 3×3 orthogonal sub-matrix of Z such that

$$\left[\mathbf{Z}^{T}\left(\hat{\mathcal{M}'}_{\tilde{\mathcal{L}}}^{2}\right)\mathbf{Z}
ight]_{ii}$$

Scalar potential in vanishing sneutrino vev basis

$$\begin{split} V_{\text{neutral}} &= (M_{\widetilde{\mathbf{L}}}^2)_{\alpha\beta} \, \tilde{\nu}_{L\alpha}^* \, \tilde{\nu}_{L\beta} + m_2^2 \, h_2^{0*} \, h_2^0 \\ &- \left[B_{\alpha} \, \tilde{\nu}_{L\alpha} \, h_2^0 \, + \, \text{H.c} \right] + \frac{1}{8} (g^2 + g_2^2) \, \left(h_2^{0*} h_2^0 - \tilde{\nu}_{L\alpha}^* \tilde{\nu}_{L\alpha} \right)^2 \end{split}$$

where

$$(M_{\widetilde{\mathbf{L}}}^2)_{\alpha\beta} \equiv \left[Z^T \left(\hat{\mathcal{M}}'_{\widetilde{\mathcal{L}}}^2 \right) Z \right]_{\alpha\beta} \quad \text{and} \quad B_{\alpha} \equiv (b'Z)_{\alpha}$$

Have now moved to a basis where

- sneutrino vevs are zero
- ullet sneutrino masses diagonal, $(\hat{\mathcal{M}}_{ ilde{
 u}}^2)_i$
- all the parameters of the scalar potential real; can split into CP-even and CP-odd eigenstates

Parametrizing the neutral scalar mass matrices

$$M_A^2 = \frac{2 B_0}{\sin 2\beta} \quad \text{and} \quad \tan \beta$$

where ${\cal M}_A^2$ is the mass of the lightest CP-odd Higgs boson in the Rpc limit.

The Lagrangian contains the terms

$$\mathcal{L} \supset -\left(\begin{array}{cc} x_2 & r_\gamma \end{array} \right) \mathcal{M}_{\mathrm{EVEN}}^2 \left(\begin{array}{c} x_2 \\ r_\delta \end{array} \right) - \left(\begin{array}{cc} y_2 & t_\gamma \end{array} \right) \mathcal{M}_{\mathrm{ODD}}^2 \left(\begin{array}{c} y_2 \\ t_\delta \end{array} \right)$$

where

$$h_2^0 = x_2 + iy_2 \qquad \tilde{\nu}_{L\alpha} = r_\alpha + it_\alpha$$

CP-even Higgs boson mass matrix

$$\mathcal{M}_{\mathrm{EVEN}}^2 =$$

$$\begin{pmatrix}
\cos^{2}\beta M_{A}^{2} + \sin^{2}\beta M_{Z}^{2} & -\frac{1}{2}\sin 2\beta (M_{A}^{2} + M_{Z}^{2}) & -B_{j} \\
-\frac{1}{2}\sin 2\beta (M_{A}^{2} + M_{Z}^{2}) & \sin^{2}\beta M_{A}^{2} + \cos^{2}\beta M_{Z}^{2} & B_{j}\tan \beta \\
-B_{i} & B_{i}\tan \beta & \left((\hat{\mathcal{M}}_{\tilde{\nu}}^{2})_{i} + \frac{1}{2}\cos 2\beta M_{Z}^{2}\right)\delta_{ij}
\end{pmatrix}$$

CP-even Higgs boson mass matrix

$$\mathcal{M}_{\mathrm{EVEN}}^2 =$$

$$\begin{pmatrix}
\cos^{2}\beta M_{A}^{2} + \sin^{2}\beta M_{Z}^{2} & -\frac{1}{2}\sin 2\beta (M_{A}^{2} + M_{Z}^{2}) & -B_{j} \\
-\frac{1}{2}\sin 2\beta (M_{A}^{2} + M_{Z}^{2}) & \sin^{2}\beta M_{A}^{2} + \cos^{2}\beta M_{Z}^{2} & B_{j}\tan\beta \\
-B_{i} & B_{i}\tan\beta & \left((\hat{\mathcal{M}}_{\tilde{\nu}}^{2})_{i} + \frac{1}{2}\cos 2\beta M_{Z}^{2}\right)\delta_{ij}
\end{pmatrix}$$

Noticing that the top-left 2×2 sub-matrix is identical to the Rpc case, for which the Higgs masses are given by

$$M_{h,H}^2 = \frac{1}{2} \left(M_Z^2 + M_A^2 \pm \sqrt{(M_Z^2 + M_A^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right)$$

Applying Courant-Fischer theorem, it can be seen that in Rpv case one eigenvalue which is smaller that M_Z^2 exists

CP-odd Higgs boson mass matrix

The CP-odd mass matrix reads

$$\mathcal{M}_{\text{ODD}}^{2} = \begin{pmatrix} \cos^{2}\beta M_{A}^{2} + \xi \sin^{2}\beta M_{Z}^{2} & \frac{1}{2}\sin 2\beta (M_{A}^{2} - \xi M_{Z}^{2}) & B_{j} \\ \frac{1}{2}\sin 2\beta (M_{A}^{2} - \xi M_{Z}^{2}) & \sin^{2}\beta M_{A}^{2} + \xi \cos^{2}\beta M_{Z}^{2} & B_{j}\tan\beta \\ B_{i} & B_{i}\tan\beta & (\hat{\mathcal{M}}_{\tilde{\nu}}^{2})_{i}\delta_{ij} \end{pmatrix}$$

 ξ is the gauge fixing parameter. we can project out without approximation the gauge dependent part, the would-be Goldstone mode, of the CP-odd scalar matrix as

CP-odd Higgs boson mass matrix

The CP-odd mass matrix reads

$$\mathcal{M}_{\text{ODD}}^{2} = \begin{pmatrix} \cos^{2}\beta M_{A}^{2} + \xi \sin^{2}\beta M_{Z}^{2} & \frac{1}{2}\sin 2\beta (M_{A}^{2} - \xi M_{Z}^{2}) & B_{j} \\ \frac{1}{2}\sin 2\beta (M_{A}^{2} - \xi M_{Z}^{2}) & \sin^{2}\beta M_{A}^{2} + \xi \cos^{2}\beta M_{Z}^{2} & B_{j}\tan\beta \\ B_{i} & B_{i}\tan\beta & (\hat{\mathcal{M}}_{\tilde{\nu}}^{2})_{i}\delta_{ij} \end{pmatrix}$$

 ξ is the gauge fixing parameter. we can project out without approximation the gauge dependent part, the would-be Goldstone mode, of the CP-odd scalar matrix as

$$\mathcal{V}^{\mathrm{T}}\mathcal{M}_{\mathrm{ODD}}^{2}\mathcal{V} = \begin{pmatrix} \xi M_{Z}^{2} & 0 & 0 \\ 0 & M_{A}^{2} & \frac{B_{j}}{\cos \beta} \\ 0 & \frac{B_{i}}{\cos \beta} & (\hat{\mathcal{M}}_{\tilde{\nu}}^{2})_{i}\delta_{ij} \end{pmatrix}$$