Towards a complete NNLO Prediction $for \ ar{B} o X_s \gamma$: m_c -dependent matrix elements

Radja Boughezal

ITP University of Zürich, Switzerland

Durham September 2008

Collaborators:
M. Czakon and T. Schutzmeier

 $ar{B}
ightarrow X_s \gamma$ most precise short-distance information currently available for $\Delta B = 1$ FCNC

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$

[HFAG2006]

 $ar{B} o X_s \gamma$ most precise short-distance information currently available for $\Delta B = 1$ FCNC

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$
 [HFAG2006]

• less sensitive to non-perturbative effects dominant ones: $\mathcal{O}(\Lambda^2/m_b^2)$, $\mathcal{O}(\Lambda^2/m_c^2)$, $\mathcal{O}(\alpha_s \Lambda/m_b)$

 $ar{B}
ightarrow X_s \gamma$ most precise short-distance information currently available for $\Delta B = 1$ FCNC

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$
 [HFAG2006]

• less sensitive to non-perturbative effects dominant ones: $\mathcal{O}(\Lambda^2/m_b^2)$, $\mathcal{O}(\Lambda^2/m_c^2)$, $\mathcal{O}(\alpha_s \Lambda/m_b)$

• loop induced in SM and highly sensitive to new physics which is not suppressed by factors of α as compared to SM contributions

Theoretical error vs. experimental one:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \, \mathrm{GeV}}^{\mathrm{th,NLO}} = (3.57 \pm 0.30) \times 10^{-4}$$
 [Misiak et al 2001,Buras et al 2002]

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \, \mathrm{GeV}}^{\mathrm{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$
 [HFAG 2006]

Super-B factory: 5% uncertainty possible (more statistics, lower E_{γ})

 $m_c/m_b = 0.29 \pm 0.04$ (pole)

Theoretical error vs. experimental one:

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \, \mathrm{GeV}}^{\mathrm{th, NLO}} = (3.57 \pm 0.30) \times 10^{-4}$$
 [Misiak et al 2001,Buras et al 2002]

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_\gamma > 1.6 \, \mathrm{GeV}}^{\mathrm{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$
 [HFAG 2006]

Super-B factory: 5% uncertainty possible (more statistics, lower E_{γ})

⇒ strong constraints on new physics require better theoretical precision

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$

[HFAG 2006]

Contributions to the theory prediction

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \,\text{GeV}} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu})_{\text{exp}} \left[\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})} \right]_{\text{LO EW}} f\left(\frac{\alpha_s(M_W)}{\alpha_s(m_b)} \right) \times \left\{ 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_{\text{em}}) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) + \mathcal{O}\left(\frac{\Lambda}{m_b}\alpha_s\right) \right\} \\ \sim 25\% \sim 7\% \sim 4\% \sim 1\% \sim 3\% < \infty 5\%$$

perturbative corrections

non-perturbative corrections

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$$

[HFAG 2006]

non-perturbative corrections

Contributions to the theory prediction

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \,\text{GeV}} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu})_{\text{exp}} \left[\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})} \right]_{\text{LO EW}} f\left(\frac{\alpha_s(M_W)}{\alpha_s(m_b)} \right) \times \left\{ 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_{\text{em}}) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) + \mathcal{O}\left(\frac{\Lambda}{m_b}\alpha_s\right) \right\} \\ \sim 25\% \sim 7\% \sim 4\% \sim 1\% \sim 3\% \sim 5\%$$

expected NNLO corrections to $\mathcal{B}~(\sim7\%)$ are of the same size as the experimental error

perturbative corrections

- Charm quark mass definition ambiguity
 - dependence of $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo}$ on m_c enters through the $\langle s \gamma | O_{1,2} | b \rangle$ which start contributing at $\mathcal{O}(\alpha_s)$
 - $m_c^{pole}/m_b^{pole} = 0.29 \pm 0.02$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.32 \pm 0.30) \times 10^{-4}$
 - $\overline{m}_c(m_b/2)/m_b^{pole} = 0.22 \pm 0.04$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.70 \pm 0.30) \times 10^{-4}$

- Charm quark mass definition ambiguity
 - dependence of $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo}$ on m_c enters through the $\langle s \gamma | O_{1,2} | b \rangle$ which start contributing at $\mathcal{O}(\alpha_s)$
 - $m_c^{pole}/m_b^{pole} = 0.29 \pm 0.02$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.32 \pm 0.30) \times 10^{-4}$
 - $\overline{m}_c(m_b/2)/m_b^{pole} = 0.22 \pm 0.04$ $\mathcal{B}(\bar{B} \to X_s \gamma)^{theo} = (3.70 \pm 0.30) \times 10^{-4}$

- lacksquare difference between using $\overline{m}_c(\mu)$ and m_c^{pole} is a NNLO effect in the branching ratio
 - ⇒ resolving the ambiguity requires going to the NNLO level

Theoretical framework

diagrams involve scales with large hierarchy

$$M_W, M_t \gg m_b \gg m_s \Longrightarrow {\rm large} \, \log \left(rac{M_W^2}{m_b^2}
ight)$$
 \longrightarrow resummation of $\alpha_s \, \log \left(rac{M_W^2}{m_b^2}
ight)$ is necessary using RG techniques

start by introducing an effective theory without the heavy fields

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD} \times \text{QED}}(u, d, s, c, b) + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i(\mu) O_i(\mu)$$

Theoretical framework

diagrams involve scales with large hierarchy

$$M_W, M_t \gg m_b \gg m_s \Longrightarrow {\rm large} \log \left({M_W^2 \over m_b^2} \right)$$
 \longrightarrow resummation of $\alpha_s \log \left({M_W^2 \over m_b^2} \right)$ is necessary using RG techniques

start by introducing an effective theory without the heavy fields

 $C_8(m_b) \simeq -0.15$

Theoretical framework

Calculation done in three steps:

- Matching find the Wilson coefficients $C_i(\mu)$ by comparing the full and the effective theory at the mass scale $\mu \approx M_W$ ⇒ no large logarithms and only vacuum diagrams
- ullet Mixing compute the anomalous dimensions of the operators and solve the renormalization group equations to go down with the Wilson coefficients to $\mu pprox m_b$

$$\frac{d}{d\mu} C_j(\mu) = C_i(\mu) \gamma_{ij}(\mu)$$

■ Matrix elements calculate the matrix elements of all the operators at $\mu \approx m_b \Rightarrow$ no large logarithms as no heavy masses are present

Current state of the art for NNLO corrections

1. Matching

- 2-loop matching for (O_1, \ldots, O_6)
- **9** 3-loop matching for O_7 and O_8

2. Mixing

- \blacksquare 3-loop: (O_1,\ldots,O_6) and (O_7,O_8) sectors

[Bobeth, Misiak, Urban 00]

[Misiak,Steinhauser 04]

[Gorbahn, Haisch 05]

[Gorbahn, Haisch, Misiak 05]

[Czakon, Haisch, Misiak 06]

Current state of the art for NNLO corrections

1. Matching

- **2**-loop matching for (O_1, \ldots, O_6)
- 3-loop matching for O₇ and O₈

2. Mixing

- \blacksquare 3-loop: (O_1,\ldots,O_6) and (O_7,O_8) sectors

3. Matrix elements

- O_1, O_2, O_7, O_8 large β_0
- O_7 , photon spectrum
- ullet $O_1,\,O_2$ leading term for $m_c\gg m_b$

```
[Bobeth, Misiak, Urban 00]

[Misiak, Steinhauser 04]

[Gorbahn, Haisch 05]

[Gorbahn, Haisch, Misiak 05]

[Czakon, Haisch, Misiak 06]

[Bieri, Greub, Steinhauser 03]

[Blokland, Czarnecki, Misiak, Slusarczyk, Tkachov 05]

[Asatrian, Hovhannisyan, Poghosyan, Ewerth, Greub, Hurth 06]

[Melnikov, Mitov 05] [Asatrian, Ewerth, Ferroglia, Gambino, Greub 06]

[Misiak, Steinhauser 06]
```

The NNLO estimated Branching Ratio

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{theo}} = (3.15 \pm 0.23) \times 10^{-4}$$

[Misiak et al 06] [Misiak, Steinhauser 06]

- Decomposition of Uncertainty
 - non-perturbative 5% $\mathcal{O}(lpha_s\Lambda/m_b)$
 - parametric 3% $\alpha_s(M_Z),\,\mathcal{B}^{exp}_{SL},\,m_c\dots$
 - m_c interpolation 3% ($O_{1,2}$ matrix elements)
 - higher order 3% $(\mu_b, \mu_c, \mu_0 \text{ dependence})$

The NNLO estimated Branching Ratio

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{theo}} = (3.15 \pm 0.23) \times 10^{-4}$$

[Misiak et al 06] [Misiak, Steinhauser 06]

Decomposition of Uncertainty

_	non-perturbative	5%	$\mathcal{O}(lpha_s \Lambda/m_b)$
---	------------------	----	-----------------------------------

- parametric 3% $\alpha_s(M_Z),\,\mathcal{B}_{SL}^{exp},\,m_c\dots$
- m_c interpolation 3% ($O_{1,2}$ matrix elements)
- higher order 3% $(\mu_b, \mu_c, \mu_0 \text{ dependence})$

source of the interpolation uncertainty is the missing $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$

More about the interpolation uncertainty

$$\mathcal{O}\left(\alpha_s^2\right)$$
 perturbative contribution to $\mathcal{B}(\bar{B} \to X_s \gamma)$:
$$P_2^{(2)} = \sum_{i,j=1}^8 C_i^{(0)} C_j^{(0)} \left(\mathbf{n_f} \, A_{ij} + B_{ij}\right)$$

using large β_0 approx.

$$P_2^{(2)} = \sum_{i,j=1}^{8} C_i^{(0)} C_j^{(0)} \left(\frac{-3}{2} \beta_0 A_{ij} + B'_{ij} \right) = P_2^{(2),\beta_0} + P_2^{(2),rem}$$

- $P_2^{(2),\beta_0}$ known for $\langle s\gamma|O_{1,2,7,8}|b\rangle$
- expansions in limits $m_c/m_b \to 0$ and $m_c \gg m_b$ match nicely for $\operatorname{Re}\langle s\gamma|O_2|b\rangle^{\beta_0}$
- good approximation already for n=0
- no large $c\bar{c}$ threshold effects at $m_c=m_b/2$
- calculate the leading term of large m_c expansion for $P_2^{(2),rem}$ and interpolate to physical m_c [Misiak & Steinhauser 06]
- making assumptions for $P_2^{(2),rem}$ at $m_c=0$ is the source of the interpolation uncertainty

Reducing the overall uncertainty of $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, \mathrm{GeV}}^{\mathrm{theo,NNLO}}$

- removing the interpolation uncertainty
 - \Longrightarrow need a complete calculation of $\langle s\gamma|O_{1,2}|b
 angle$ at $m_c
 eq 0$

→ working on the virtual part [R. B, Czakon, Schutzmeier]

Reducing the overall uncertainty of $\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \, \mathrm{GeV}}^{\mathrm{theo,NNLO}}$

- removing the interpolation uncertainty
 - \Longrightarrow need a complete calculation of $\langle s\gamma|O_{1,2}|b
 angle$ at $m_c
 eq 0$

→ working on the virtual part [R. B, Czakon, Schutzmeier]

- reducing the interpolation uncertainty
 - \Longrightarrow need a complete calculation of $\langle s\gamma|O_{1,2}|b
 angle$ at $m_c=0$

in progress [R. B, Czakon, Schutzmeier]

Removing the interpolation uncertainty: virtual part

- ullet approx. 400 3-loop on-shell vertex diagrams with two scales $m_b \ \& \ m_c$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $m{\mathcal{O}}\left(lpha_s^2 n_f\right)$ correction to $\langle s\gamma|O_{1,2}|b
 angle$: [R. B, Czakon, Schutzmeier 07]

Removing the interpolation uncertainty: virtual part

- **a** approx. 400 3-loop on-shell vertex diagrams with two scales $m_b \ \& \ m_c$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $m{\mathcal{O}}\left(\alpha_s^2 n_f\right)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$: [R. B, Czakon, Schutzmeier 07]

- masters were calculated with Mellin Barnes
 - first way: a numerical integration of the MB representations is performed for specific values of z using the MB package
 [MB + Gashar 05]

[MB: Czakon 05],

- second way:
 - perform an expansion in $z=m_c^2/m_b^2$ by closing contours
 - coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
 - sum these infinite series using XSummer [Moch & Uwer 05]

Removing the interpolation uncertainty: virtual part

- **a** approx. 400 3-loop on-shell vertex diagrams with two scales $m_b \ \& \ m_c$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $m{\mathcal{O}}\left(lpha_s^2n_f
 ight)$ correction to $\langle s\gamma|O_{1,2}|b
 angle$: [R. B, Czakon, Schutzmeier 07]

- masters were calculated with Mellin Barnes
 - first way: a numerical integration of the MB representations is performed for specific values of z using the MB package

[MB: Czakon 05],

- second way:
 - perform an expansion in $z=m_c^2/m_b^2$ by closing contours
 - coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
 - sum these infinite series using XSummer [Moch & Uwer 05]

- MB alone was not enough to calculate all the masters due to poor convergence
- use differential equations solved numerically
 - boundaries were obtained using diagrammatic large mass expansion for $m_c\gg m_b$
 - ---- more about this method later

$\langle s\gamma|O_2|b\rangle_{\mathcal{O}(\alpha_s^2n_f)}$

■ Results for the massive fermionic contributions: [R. B, Czakon, Schutzmeier 07]

massless approximation overestimates the massive b result and has the opposite sign!

▶ less pronounced differences for the c-quark
 → moderate negative corrections wrt. massless approximation

$\langle s\gamma|O_2|b\rangle_{\mathcal{O}(\alpha_s^2n_f)}$

■ Results for the massive fermionic contributions: [R. B, Czakon, Schutzmeier 07]

▶ less pronounced differences for the c-quark
 → moderate negative corrections wrt. massless approximation

numerical impact of the mass corrections on $\mathcal{B}(\bar{B}\to X_s\gamma)=+$ 1.1% for $\mu_b=2.5~\text{GeV}$

• calculating $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$ at $m_c=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma sg, \gamma sgg, \gamma sq\bar{q}$

• calculating $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$ at $m_c=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma sg, \gamma sgg, \gamma sq\bar{q}$

- 506 diagrams expressed through 42093 integrals
- around 300 master integrals have to be calculated
 BUT HOW ?

• calculating $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$ at $m_c=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma sg, \gamma sgg, \gamma sq\bar{q}$

- 506 diagrams expressed through 42093 integrals
- around 300 master integrals have to be calculated
 BUT HOW ?
 - sector decomposition: high precision results vs. running time . . .
 - differential equations for $p_b^2 \neq m_b^2$: needs boundaries . . .
 - Mellin Barnes: do we know how to use it for integrals with unitarity cuts? dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue

• calculating $\mathcal{O}\left(\alpha_s^2\right)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$ at $m_c=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma sg, \gamma sgg, \gamma sq\bar{q}$

- 506 diagrams expressed through 42093 integrals
- around 300 master integrals have to be calculated
 BUT HOW ?
 - sector decomposition: high precision results vs. running time . . .
 - differential equations for $p_b^2 \neq m_b^2$: needs boundaries . . .
 - Mellin Barnes: do we know how to use it for integrals with unitarity cuts? dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue

so what is the way out?

Combining methods

Merging methods is the way to go, but a long chain of steps:

evaluation of off-shell master integrals $V_i(z,\epsilon)$ with help of numerical differential equations (deqns) [Caffo, Czyz, Remiddi 2002]

$$\frac{d}{dz}V_i(z,\epsilon) = A_{ij}(z,\epsilon)V_j(z,\epsilon), \quad z = p_b^2/m_b^2$$

Idea:

- calculate integrals at some "simple" point (e.g. $p_b^2 \ll m_b^2$)
- Integrate system of deqns starting at this limit up to the on-shell condition z=1

Combining methods

Merging methods is the way to go, but a long chain of steps:

evaluation of off-shell master integrals $V_i(z,\epsilon)$ with help of numerical differential equations (deqns) [Caffo, Czyz, Remiddi 2002]

$$\frac{d}{dz}V_i(z,\epsilon) = A_{ij}(z,\epsilon)V_j(z,\epsilon), \quad z = p_b^2/m_b^2$$

Idea:

- calculate integrals at some "simple" point (e.g. $p_b^2 \ll m_b^2$)
- Integrate system of deqns starting at this limit up to the on-shell condition z=1

- ightarrow but:deqns singular in both endpoints! (and on naive contour $z \in \mathbb{R}$)
- ⇒ solution:combine expansions with numerical integration in complex plane

Combining methods

Merging methods is the way to go, but a long chain of steps:

• expand in ϵ and z in the limit $z \to 0$ with ansatz:

$$V_i(z,\epsilon) = \sum_{nmk} c_{inmk}^0 \epsilon^n z^m \log^k z$$

- lacksquare solve recursively for c^0_{inmk} up to high powers in z
- boundary conditions:
 - Mellin Barnes & diagrammatic large-mass expansions for $p_b^2 \ll m_b^2$ ⇒ high precision values for $z \approx 0$
- use these values as starting point for numerical integration (in complex plane) up to $z \approx 1$ (zvode)

- m P perform another power logarithmic expansion around z o 1 and solve coefficients c^1_{inmk} recursively
- lacktriangle use numerical integration to fix the remaining c_{inmk}^1

Preliminary results: sample masters with 2- and 3-particle cuts

- $z \rightarrow 0$: up to z^{18}
- $z \to 1$: up to $(1-z)^{12}$

 $z=p_{b}^{2}/m_{b}^{2}$

- Numerical integration: starts at $z_0 = 0.02$
- Matching: done at $z_1 = 0.9$

lacksquare Preliminary results at z=1: sample masters with 2- and 3-particle cuts

lacksquare Preliminary results at z=1: sample masters with 2- and 3-particle cuts

$$= \frac{3.10453 i}{\varepsilon} + \mathcal{O}(1)$$

$$= \frac{3.14159 i}{\varepsilon^3} + \frac{20.0142 i}{\varepsilon^2} + \frac{77.1378 i}{\varepsilon} + 209.713 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{12.5778 i}{\varepsilon^2} - \frac{35.6402 i}{\varepsilon} - 125.153 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{4.91208 i}{\varepsilon^2} - \frac{30.5699 i}{\varepsilon} - 40.7068 i + \mathcal{O}(\varepsilon)$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

Preliminary results at z=1: sample masters with 2- and 3-particle cuts

$$= \frac{3.10453 i}{\varepsilon} + \mathcal{O}(1)$$

$$= \frac{3.14159 i}{\varepsilon^3} + \frac{20.0142 i}{\varepsilon^2} + \frac{77.1378 i}{\varepsilon} + 209.713 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{12.5778 i}{\varepsilon^2} - \frac{35.6402 i}{\varepsilon} - 125.153 i + \mathcal{O}(\varepsilon)$$

$$= \frac{-2.0944 i}{\varepsilon^3} - \frac{4.91208 i}{\varepsilon^2} - \frac{30.5699 i}{\varepsilon} - 40.7068 i + \mathcal{O}(\varepsilon)$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

- what we have:
- masters with massless internal lines:
 all 2- and 3-particle cuts
 all 4-particle cuts but one
- masters with b-quark internal lines:2- and 3-particle cuts are almost there
- still to be calculated: masters with 4-particle cuts and internal b-lines

Summary

- Matching current and future experimental precision for $\bar{B} \to X_s \gamma$ decay necessitates NNLO corrections on the theory side crucial missing piece: $O(\alpha_s^2)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$
- Reducing the interpolation uncertainty: needs $O(\alpha_s^2)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$ at $m_c=0$ → 70% of the project is completed
- Removing the interpolation uncertainty: needs $O(\alpha_s^2)$ correction to $\langle s\gamma|O_{1,2}|b\rangle$ at physical m_c
 - ---- completed the fermionic contribution
 - → massless case: calculated in two ways and confirmed the findings of [Bieri, Greub, Steinhauser 03]
 - \rightarrow massive case: impact on the branching ratio +1.1% for $\mu_b=2.5 \text{GeV}$ [R. B, Czakon, Schutzmeier 07]
 - ---- bosonic contribution: work in progress