Flavour physics with lattice QCD

EUROFLAVOUR 2008 IPPP Durham

Andreas Jüttner

September 2008

Overview over recent developments and results from lattice QCD

this talk: review last 12 months in lattice QCD

- discuss problems and possible solutions, mostly concerned with control of systematic effects
- selection of interesting recent developments in lattice QCD
- for comprehensive discussions of flavour physics related lattice results: Plenary talks at Lattice 2008: E. Gamiz, L. Lellouch and e.g. Della Morte, A.J. at Lattice 2007

Recent excitement

- 5 years ago the leptonic decay constant f_{Ds} was considered a bench mark test for lattice QCD
- recent results for f_{Ds} from lattice QCD and experiment

Recent excitement

- 5 years ago the leptonic decay constant f_{Ds} was considered a bench mark test for lattice QCD
- recent results for f_{Ds} from lattice QCD and experiment

Recent excitement

- 5 years ago the leptonic decay constant f_{Ds} was considered a bench mark test for lattice QCD
- recent results for f_{Ds} from lattice QCD and experiment

in the wake of these results:

paper by Dobrescu, Kronfeld, PRD 100, 241802 (2008):

"Accumulating evidence for Nonstandard Leptonic Decays of D_s Mesons"

Contributions to flavour phyiscs from lattice QCD

<u>CKM matrix elements</u> recent work on the lattice

$$\begin{array}{c|c} V_{ud} & V_{us} & V_{ub} \\ \hline V_{cd} & V_{cs} & V_{cb} \\ \hline V_{td} & V_{ts} & V_{tb} \end{array} \right)$$

best either from leptonic or semi-leptonic decays e.g. $K \to \pi l \nu$, $D \to K(\pi) l \nu$, $B \to \pi l \nu$, $B \to D^* l \nu$

or from leptonic decays K, $D_{(s)}$, $B_{(s)}$

- meson mixing computation of bag parameters
- quark masses M_{u,d}, M_s, M_c, M_b various methods

Example: CKM elements from lattice QCD

typical processes e.g.:

K_{l2}-decay

 $\langle 0|A_{\mu}(0)|K(p_{K})\rangle$

$$egin{aligned} &\langle \pi(p_\pi) | V_\mu(0) | \mathcal{K}(p_\mathcal{K})
angle \ & q_\mu = (p_\mathcal{K} - p_\pi)_\mu \end{aligned}$$

- in practice:
 - measure decay rates $\Gamma(i \rightarrow j)$
 - compute process in SM (FF, RC, SU(2))

•
$$\Gamma(i \rightarrow j) = const. \times G_F^2 |V_{ij}|^2 \times FF \times RC$$

• Correlation functions in terms of Euclidean path integral

 $\langle O[\bar{\psi},\psi,A] \rangle_{QCD} = \frac{1}{Z} \int D\bar{\psi} D\psi DA O(\bar{\psi},\psi,A) e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$

- $\bullet\,$ discretisation \rightarrow space time lattice
- path integral now finite-(high)-dimensional calculate by Monte Carlo method (statistical sampling)
- from first principles: tune bare parameters (coupling and quark masses) and compute properties of bound states

• Correlation functions in terms of Euclidean path integral

 $\langle O[\bar{\psi},\psi,A] \rangle_{\text{QCD}} = \frac{1}{Z} \int D\bar{\psi} D\psi DA O(\bar{\psi},\psi,A) e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$

discretisation → space time lattice → regulator π/a not unique, e.g. QCD:

<u>Glue:</u> Wilson, IWASAKI, DBW2,... Fermions: Wilson, DWF, overlap, staggered,...

 path integral now finite-(high)-dimensional calculate by Monte Carlo method (statistical sampling)

• from first principles:

tune bare parameters (coupling and quark masses) and compute properties of bound states

• Correlation functions in terms of Euclidean path integral

 $\langle O[\bar{\psi},\psi,A] \rangle_{QCD} = \frac{1}{Z} \int D\bar{\psi} D\psi DA O(\bar{\psi},\psi,A) e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$

- \bullet discretisation \rightarrow space time lattice
- path integral now finite-(high)-dimensional calculate by Monte Carlo method (statistical sampling)
- from first principles: tune bare parameters (coupling and quark masses) and compute properties of bound states

• Correlation functions in terms of Euclidean path integral

 $\langle O[\bar{\psi},\psi,A] \rangle_{\text{QCD}} = \frac{1}{Z} \int D\bar{\psi} D\psi DA O(\bar{\psi},\psi,A) e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$

- discretisation → space time lattice
- path integral now finite-(high)-dimensional calculate by Monte Carlo method (statistical sampling)
- from first principles:

tune bare parameters (coupling and quark masses)

• lattice spacing:
$$a^{-1} = \frac{f_{\pi}^{exj}}{af_{\pi}}$$

• quark masses:
$$\frac{am_H}{am_V} = \frac{m_H^{exp}}{m_V^{exp}} (H = \pi, K, D, ...)$$

and compute properties of bound states

- spectrum
- matrix elements (decay constants, form factors, scattering phase shifts)
- quark masses
- renormalised coupling
- ...

statistical

- light quark mass (in particular *u*, *d*, *s* is usually ok)
- discretisation errors (cut-off effects)
- heavy quark masses (related to discretisation errors)
- renormalisation: perturbative or non-perturbative (the latter allows far better control of the systematics) → *Michael Donnelan's talk*
- finite volume errors

statistical

- light quark mass (in particular u, d, s is usually ok)
 - state of the art is $m_{\pi} \approx 200 300 \text{MeV}$
 - physical point through extrapolation in the light quark mass using chiral perturbation theory

BMW collaboration 2008

- interesting/fruitful interplay between χ PT and lattice has just started
- discretisation errors (cut-off effects)
- heavy quark masses (related to discretisation errors)
- renormalisation: perturbative or non-perturbative (the latter allows far better control of the systematics) → Michael Donnelan's talk
- finite volume errors

- statistical
- light quark mass (in particular *u*, *d*, *s* is usually ok)
- discretisation errors (cut-off effects)
 - a ≈ 0.1 fm → 1/a ≈ 2GeV naive estimate of cut-off effects
 - O(a)-improvement, χ symmetry
 - continuum extrapolation

$$\begin{split} O(a\Lambda_{\rm QCD}) &\approx 13\% \\ O(a^2\Lambda_{\rm QCD}^2) &\approx 1.5\% \end{split}$$

- heavy quark masses (related to discretisation errors)
- renormalisation: perturbative or non-perturbative (the latter allows far better control of the systematics) → *Michael Donnelan's talk*
- finite volume errors

- statistical
- light quark mass (in particular u, d, s is usually ok)
- discretisation errors (cut-off effects)
- heavy quark masses (related to discretisation errors) typical lattice parameters: L ≈ 3fm, a⁻¹ ≈ 2 − 3GeV

effective theory treatment of *b*-quark necessary:

- NRQCD
- Fermilab approach
- HQET
- step scaling
- combinations thereof
- renormalisation: perturbative or non-perturbative (the latter allows far better control of the systematics) → Michael Donnelan's talk

finite volume errors

- statistical
- light quark mass (in particular *u*, *d*, *s* is usually ok)
- discretisation errors (cut-off effects)
- heavy quark masses (related to discretisation errors)
- renormalisation: perturbative or non-perturbative (the latter allows far better control of the systematics) → Michael Donnelan's talk

finite volume errors

- statistical
- light quark mass (in particular u, d, s is usually ok)
- discretisation errors (cut-off effects)
- heavy quark masses (related to discretisation errors)
- renormalisation: perturbative or non-perturbative (the latter allows far better control of the systematics) → *Michael Donnelan's talk*
- finite volume errors
 - correct using chiral perturbation theory or
 - ocmpare two simulations:

Status of simulations

Recent dynamical lattice simulations

collaboration	N _f	action	<i>a</i> /fm	Lm_{π}	$m_{\pi}/{ m MeV}$
QCDSF+UKQCD	2	clover (NP)	≳ 0.06	≳ 4.2	$\gtrsim 300$
ETM	2	max. tmQCD	$\gtrsim 0.09$	$\gtrsim 3.2$	$\gtrsim 270$
CLS	2	clover (NP)	$\gtrsim 0.04$	$\gtrsim 3.2$	$\gtrsim 260$
JLQCD	2	Neuberger	0.12	$\gtrsim 2.7$	$\gtrsim 280$
MILC	2+1	staggered	$\gtrsim 0.06$	$\gtrsim 4$	$\gtrsim 240$
RBC+UKQCD	2+1	DWF	$\gtrsim 0.08$	$\gtrsim 4.6$	$\gtrsim 330$
BMW	2+1	Stout-link Wilson	$\gtrsim 0.07$	$\gtrsim 4.0$	$\gtrsim 200$
PACS-CS	2+1	clover (NP)	0.09	$\gtrsim 2.3$	$\gtrsim 160$

large number of groups involved in phenomenology from lattice QCD

- results from a variety of formulations with increasingly good quality
- groups are really independent (in most cases)

Recent developments (only a selection, sorry)

- chiral extrapolations of lattice data at NLO how to treat the strange quark
- momentum resolution better control over form factors how to avoid/constrain phenomenological ansätze for the q² dependence
- tackling the heavy quark on the lattice some new ideas how to reduce/control discretisation effects in the full theory

Chiral perturbation theory

• masses of pions on the lattice currently $m_{\pi} \gtrsim 200 \text{MeV}$

• extrapolate to physical point guided by chiral perturbation theory f_{π} , f_{K} , B_{K} , ...

	SU(3)	SU(2)
dof	π, Κ, η	π
LEC's	$f(m_{c,b,t}, \Lambda_{\rm QCD})$	$f(m_{s}, m_{c,b,t}, \Lambda_{\rm QCD})$

cf. Lellouch Lattice 2008

• Example: SU(3) NLO χ PT for pion decay constant:

$$f_{\pi} = f_0 \left\{ 1 + \frac{24}{f_0^2} L_4 \bar{\chi} + \frac{8}{f_0^2} L_5 \chi_{ud} - \frac{1}{16\pi^2 f_0^2} \left(2\chi_{ud} \log \frac{\chi_{ud}}{\Lambda_{\chi}^2} + \frac{\chi_{ud} + \chi_s}{2} \log \frac{\chi_{ud} + \chi_s}{2\Lambda_{\chi}^2} \right) \right\}$$

$$(\chi_i = 2B_0 m_i, \ \bar{\chi} = (2\chi_{ud} + \chi_s)/3)$$

Chiral perturbation theory

Study of m_{π} , f_{π} , m_{K} , f_{K} by RBC+UKQCD arXiv:0804.0473

• data set: 16^3 and 24^3 , $a \approx 0.11$, $m_{\pi} \approx 330$, 415, 555 670MeV $am_{s} \approx am_{h}$ "strange a bit too heavy",

- $m_l \rightarrow m_{u,d}$ using NLO chiral peturbation theory (partial quenching *Sharpe & Shoresh PRD62 094503 2000*: lightest pion $am_{\pi}240$ MeV)
- questions:
 - how reliable?
 - $SU(3)_L \times SU(3)_R$ or $SU(2)_L \times SU(2)_R$
 - values of the LEC's (→ Gilberto Colangelo)

Chiral perturbation theory fits - results

Pions:

- NLO SU(3) and SU(2) χPT fit the data well for m_{PS} < 400MeV
- large (50% of LO) corrections in SU(3), less for SU(2)
- would need more data for NNLO more fit parameters (some collaborations are doing this)

Chiral perturbation theory fits - results

Pions:

- NLO SU(3) and SU(2) χPT fit the data well for m_{PS} < 400MeV
- large (50% of LO) corrections in SU(3), less for SU(2)
- would need more data for NNLO more fit parameters (some collaborations are doing this)

Kaons:

- NLO SU(3) does not fit data
- $K_{\chi}PT$ Roessl NPB555 507 1999: $SU(2)_L \times SU(2)_R$ for u, d + matter fields for kaons,

 m_{K}, f_{K}, B_{K} RBC+UKQCD arXiv:0804.0473 $f_{+}^{K\pi}$ Flynn, Sachrajda arXiv:0809.1229

adopted by other collaborations (PACS-CS, ETMC, BMW)

Chiral perturbation theory fits - results

Pions:

- NLO SU(3) and SU(2) χPT fit the data well for m_{PS} < 400MeV
- large (50% of LO) corrections in SU(3), less for SU(2)
- would need more data for NNLO more fit parameters (some collaborations are doing this)

Kaons:

- NLO SU(3) does not fit data
- $K_{\chi}PT$ Roessl NPB555 507 1999: $SU(2)_L \times SU(2)_R$ for u, d + matter fields for kaons,

 m_K , f_K , B_K RBC+UKQCD arXiv:0804.0473

 $f_{+}^{K\pi}$ Flynn, Sachrajda arXiv:0809.1229

adopted by other collaborations (PACS-CS, ETMC, BMW)

Outlook:

- It is not entirely clear which is the <u>right</u> way to go further tests necessary
- estimate systematics by comparing SU(3) and SU(2) and polynomial fits
- possibly include NNLO terms

another field where χPT has helped : observables with \vec{p} dependence ...

Partially twisted boundary conditions

Partially twisted boundary conditions

de Divitiis et al. PLB 595 (2004) 408, Bedaque PLB 593 (2004) 82, Sachrajda and Villadoro PLB 609 (2005) 73, UKQCD PLB 632 (2006) 313

Partially twisted boundary conditions

- applications:
 - pion structure (PDA's \rightarrow Michael Donnellan)
 - nucleon form factors
 - electromagnetic $\pi \to \pi$
 - semi-leptonic $K \rightarrow \pi I \nu$
 - semi-leptonic $B \to D^{(*)} I v$
 - ...
- "partially": change boundary conditions of valence quarks only (\rightarrow checked in χ PT that this is a FVE $\propto e^{-m_{\pi}L}$ for processes with zero/one initial and/or final state Sachrajda and Villadoro PLB 609 (2005) 73)

Example: pion form factor $f_{\pi\pi}(q^2)$ and charge radius $\langle r_{\pi}^2 \rangle$

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

Example: pion form factor $f_{\pi\pi}(q^2)$ and charge radius $\langle r_{\pi}^2 \rangle$

• for
$$\langle \pi(p_f) | V_{\mu} | \pi(p_i) \rangle$$

 $q^2 = (p_i - p_f)^2 = \left\{ [E_i(\vec{p}_i) - E_f(\vec{p}_f)]^2 - \left[(\vec{p}_{\text{FT},i} + \vec{\theta}_i/L) - (\vec{p}_{\text{FT},f} + \vec{\theta}_f/L) \right]^2 \right\}$

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

RBC-UKQCD collab. only $m_{\pi} = 330$ MeV to be continued see also ETMC (prelim.)

Example: pion form factor $f_{\pi\pi}(q^2)$ and charge radius $\langle r_{\pi}^2 \rangle$

• for
$$\langle \pi(p_f) | V_{\mu} | \pi(p_i) \rangle$$

 $q^2 = (p_i - p_f)^2 = \left\{ [E_i(\vec{p}_i) - E_f(\vec{p}_f)]^2 - \left[(\vec{p}_{\text{FT},i} + \vec{\theta}_i/L) - (\vec{p}_{\text{FT},f} + \vec{\theta}_f/L) \right]^2 \right\}$

RBC-UKQCD collab. only $m_{\pi} = 330$ MeV to be continued see also ETMC (prelim.)

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

Example: pion form factor $f_{\pi\pi}(q^2)$ and charge radius $\langle r_{\pi}^2 \rangle$

• for $\langle \pi(p_f) | V_{\mu} | \pi(p_i) \rangle$

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

• applications for flavour physics, e.g. $K \to \pi I v$ and $B \to D^{(*)} I v$

K_{I3} -decay - 3 steps on the lattice

$$\langle \pi(p_{\pi})|V_{\mu}(0)|K(p_{K})
angle = f_{+}^{K\pi}(q^{2})(p_{K}+p_{\pi})_{\mu} + f_{-}^{K\pi}(q^{2})(p_{K}-p_{\pi})_{\mu}, \quad q_{\mu} = (p_{K}-p_{\pi})_{\mu}$$

Becirevic et al. Nucl. Phys. B, 2005:

1) compute $f_0^{K\pi}(q^2)$ meson momenta in a finite box:

$$\vec{p} = \vec{n} \frac{2\pi}{L}, \ n_i \in \pm \{0, 1, 2, \dots\}$$

2) interpolate to $q^2 = 0$

phenomenological ansatz (e.g. pole)

K_{/3}-decay - 3 steps on the lattice

$$\langle \pi(p_{\pi})|V_{\mu}(0)|K(p_{K})
angle = f_{+}^{K\pi}(q^{2})(p_{K}+p_{\pi})_{\mu} + f_{-}^{K\pi}(q^{2})(p_{K}-p_{\pi})_{\mu}, \quad q_{\mu} = (p_{K}-p_{\pi})_{\mu}$$

Becirevic et al. Nucl. Phys. B, 2005:

1) compute $f_0^{K\pi}(q^2)$ meson momenta in a finite box:

$$\vec{p} = \vec{n} \frac{2\pi}{L}, \ n_i \in \pm \{0, 1, 2, \dots\}$$

2) interpolate to $q^2 = 0$

phenomenological ansatz (e.g. pole)

K_{/3}-decay - 3 steps on the lattice

$$\langle \pi(p_{\pi})|V_{\mu}(0)|K(p_{K})
angle = f_{+}^{K\pi}(q^{2})(p_{K}+p_{\pi})_{\mu} + f_{-}^{K\pi}(q^{2})(p_{K}-p_{\pi})_{\mu}, \quad q_{\mu} = (p_{K}-p_{\pi})_{\mu}$$

Becirevic et al. Nucl. Phys. B, 2005:

1) compute $f_0^{K\pi}(q^2)$ meson momenta in a finite box:

$$\vec{p} = \vec{n} \frac{2\pi}{L}, \ n_i \in \pm \{0, 1, 2, \dots\}$$

2) interpolate to $q^2 = 0$

phenomenological ansatz (e.g. pole)

Partially twisted boundary conditions allow to completely remove systematic due to point 2) (shown in *UKQCD JHEP 05(2007)016, UKQCD JHEP 0807(2008)112*) new: now applied to $K \rightarrow \pi$ on large scale (RBC+UKQCD upcoming): \rightarrow cheaper and systematic removed

together with other new ideas now also applied to heavy-light mesons ...

New ideas for heavy-light mesons

let's start with the ALPHA-approach, e.g. heavy-light decay constant:

- extra- or interpolate, e.g. heavylight decay constant:
 - lattice QCD around $M_q \approx M_{\rm charm}$
 - Iattice HQET
 - interpolate to M_b guided by HQET: $\Phi(M_h) = \Phi^{(0)} + \frac{1}{M_h} \Phi^{(1)} + O(\frac{1}{M_h^2})$
 - depending on the observable more or less strong *M_h*-dependence
 - in large volume too far away from m_{B(s)}

example heavy-light decay constant *ALPHA JHEP 0802:078, 2008*

New ideas for heavy-light mesons

let's start with the ALPHA-approach, e.g. heavy-light decay constant:

- extra- or interpolate, e.g. heavylight decay constant:
 - lattice QCD around $M_q \approx M_{\rm charm}$
 - Iattice HQET
 - interpolate to M_b guided by HQET: $\Phi(M_h) = \Phi^{(0)} + \frac{1}{M_h} \Phi^{(1)} + O(\frac{1}{M_h^2})$
 - depending on the observable more or less strong *M_h*-dependence
 - in large volume too far away from m_{B(s)}
- observation: factorise

example heavy-light decay constant *ALPHA JHEP 0802:078, 2008*

$$O(m_b, m_l, L_{\infty}) = O(m_b, m_l; L_0) \times [\text{finite volume effects}](m_b, m_l; L_0)$$

small volume $L_0 \approx 0.5 \text{fm}$

finite volume corrections

- 1) small volume $\rightarrow \frac{1}{a} \ll m_b$ possible, even continuum limit
- 2) correct for finite volume corrections \rightarrow step scaling method

New ideas for heavy-light mesons

step-scaling:

ALPHA-collaboration, Guagnelli et al. PLB 546 237 (2002), de Divitiis, Petronzio, Tantalo JHEP 10(2007)062, arXiv:0807.2944

 $O(m_b, m_l) = O(m_b, m_l; L_0) \times [\text{finite volume effects}](m_b, m_l; L_0)$ $= \underbrace{O(m_b, m_l; L_0)}_{\text{cl. of LQCD}} \times \underbrace{\underbrace{O(m_b, m_l; 2L_0)}_{\text{in cl. of (m_b, m_l; L_0)}} \underbrace{O(m_b, m_l; 2L_0)}_{\text{in cl. of (m_b, m_l; L_0)}} \underbrace{O(m_b, m_l; 2L_0)}_{\text{in cl. of (m_b, m_l; L_0)}}$

 of course sL₀ must be large, old problem ¹/_a ≈ M_b appears again, but: instead of extrapolating:

$$O(m_b, m_l; L) = O^0(m_l; L) \left[1 + \frac{O^1(m_l, L)}{m_b} \right]$$

extrapolate step scaling function with supressed $1/m_b$ -corrections:

$$\sigma(m_b, m_l; L) = \frac{O^0(m_l; 2L)}{O^0(m_l; L)} \left[1 + \frac{O^1(m_l; 2L) - O^1(m_l; L)}{m_b} \right]$$

in practice 2 steps are sufficient

$B \rightarrow D^{(*)} l v$ in the fully relativistic theory

application:

• determining $|V_{cb}|$ in semi-leptonic decays

$$\frac{d\Gamma(B \to D l \nu)}{d\omega} = (\text{kin. fact}) |V_{cb}|^2 (\omega^2 - 1)^{\frac{3}{2}} (G^{B \to D}(\omega))^2$$

where

$$\mathbf{G}^{B\to D}(\omega) = h_{+}^{B\to D}(\omega) - \frac{M_{D} - M_{B}}{M_{D} + M_{B}} h_{-}^{B\to D(\omega)}$$

(plot by N. Tantalo at CKM 2008)

- recent work on the lattice: *C. Bernard et al. arXiv:0808.2519, Okamoto et al. Nucl.Phys.Proc.Suppl.140(2005)* used effective theory-descriptions of the heavy quark + computation for $\omega = 1$, only
- experiment bad at 0 recoil (kinematic supression)
- can do better ...

$B \rightarrow D^{(*)} l \nu$ in the fully relativistic theory - step scaling method

programme by *de Divitiis, Petronzio, Tantalo, JHEP 10(2007)062, arXiv:0807.2944* (still quenched):

- 1) use twisted bc's to simulate $\omega > 1$
- 2) compute $\sigma(m_h, m_l; L_0)$ and $\sigma(m_h, m_l; L_1 = 2L_0)$ in the continuum limit of lattice QCD here $L_0 \approx 0.4$ fm; $L_2 \approx 1.4$ fm

 one may have m_h < m_b, thus extrapolate to m_b in the continuum: in practice flat extrapolation of σ to m_b, e.g. for the B → D^(*) lν form factor *de Divitiis*, *Petronzio*, *Tantalo arXiv:0807.2944*: extrapolation indeed flat, e.g. σ(m_h, m_l; L₀):

$B \rightarrow D^{(*)} l \nu$ in the fully relativistic theory - step scaling method

programme by *de Divitiis, Petronzio, Tantalo, JHEP 10(2007)062, arXiv:0807.2944* (still quenched):

- 1) use twisted bc's to simulate $\omega > 1$
- 2) compute $\sigma(m_h, m_l; L_0)$ and $\sigma(m_h, m_l; L_1 = 2L_0)$ in the continuum limit of lattice QCD here $L_0 \approx 0.4$ fm; $L_2 \approx 1.4$ fm
- 3) one may have $m_h < m_b$, thus extrapolate to m_b in the continuum:

in practice flat extrapolation of σ to m_b , e.g. for the $B \rightarrow D^{(*)} l\nu$ form factor *de Divitiis*, *Petronzio*, *Tantalo arXiv:0807.2944*:

although still quenched, compares well with experiment

combination of step scaling in QCD in HQET

- until now: extrapolation of step scaling functions
- *Guazzini, Sommer, Tantalo, JHEP 01(2008)076*: do step scaling in HQET \rightarrow constrain $\sigma(m_h, m_l; L)$ at $m_h \rightarrow \infty$ example for decay constant

- small m_h-dependence; no curvature visible
- for some observables including static limit improves result
- no conceptional problems expected with dynamical fermions

Summary, comments

- simulations of lattice QCD are not far from the physical point
- interesting interplay between lattice QCD and effective theories (HQET and χPT)
- continuous development of techniques improves understanding and control of systematic effects this takes time but is clearly worth the effort
- for summary of latest results: Plenary talks at Lattice 2008: E. Gamiz, L. Lellouch and e.g. Della Morte, A.J. at Lattice 2007