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Chiral Perturbation Theory
Motivation

LQCD =
nf∑

q=1

[iq̄L�DqL + iq̄R�DqR − mq(q̄RqL + q̄LqR)]

(nf =number of flavours)
If mq = 0 then SU(nf )L × SU(nf )R (chiral symmetry)⇒ parity doublets in the
spectrum.
They do not exist! ⇒ SU(nf )L × SU(nf )R → SU(nf )V Spontaneous
Symmetry Breaking

nf = 3→ 8 Goldstone bosons

nf = 2→ 3 Goldstone bosons

mq 6= 0 (but small)⇒ chiral symmetry is also explicitly broken

Goldstone bosons are not massless

Energy gap in the spectrum
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Chiral Perturbation Theory
Construction as Effective Field Theory

Degrees of freedom Goldstone Bosons (lightest mesons in the QCD
spectrum)

Power counting Dimensional counting in momenta and masses (p2)

Expected breakdown scale Resonances (Mρ)
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Construction of Lagrangians

nf = 3
U(Φ) = exp(i

√
2Φ/F0) parametrizes Goldstone Bosons:

Φ =


π0
√

2
+ η8√

6
π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K̄0 −2η8√
6



LO Lagrangian: L2 =
F0

2

4
(〈DµU†DµU〉+ 〈χ†U + χU†〉), χ = 2B0M

DµU = ∂µU − irµU + iUlµ, rµ(lµ) = vµ + (−)aµ = external currents

F0,B0 = Low Energy Constants
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Low Energy Constants

2 flavour 3 flavour
p2 F,B 2 F0,B0 2
p4 lri , h

r
i 7+3 Lr

i ,H
r
i 10+2

p6 cr
i 52+4 Cr

i 90+4

Determination of LECs is important:
to have precise predictions of ChPT
to check its convergence
to study the underlying QCD

PROBLEMS:
1 large number of phenomenological constants
2 strong correlations among them
3 many of the observables calculated in ChPT have not been measured yet.

(But dispersion relations and lattice results can be used)
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Knowledge of LECs so far

Li: existing fit NNLO (Amoros, Bijnens, Talavera, Nucl. Phys. B 602 (2001) 87

[hep-ph/0101127])

Ci: some knowledge obtained through Resonance Estimates

But now we have a lot of processes and observables calculated in ChPT at
NNLO which could be used all together to perform a global fit
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Processes in ChPT

In literature you can find many processes calculated to NNLO in ChPT ( see

Bijnens, hep-ph/0604043 Prog. Part. Nucl. Phys. 58 (2007) 521 for a review and references)

1 nf = 2
mπ and decay constant fπ
ππ scattering
Pion form factors
. . .

2 nf = 3
mπ , mK , mη and decay constants Fπ , FK

ππ scattering
πK scattering
Pion and Kaon scalar/vector form factors
Vector, Scalar, Axial-Vector two-point functions
Kl4
Kl3
. . .
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Why are we looking for relations between observables?

Chiral Perturbation Theory→ every observable can be written as a sum of
terms of increasing importance in the Chiral expansion.

O = O(2) + O(4) + O(6)

The p6 part can be split in as

O(6) = OCi(tree level) + OLi(one loop) + OF0(two loops)

If we have a relation such that the first contribution cancels out we can

stop worrying about Cis and perform the fit of the Lis at NNLO

check how large is the loop contribution and test ChPT convergence
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Processes and Quantities considered so far

ππ scattering

πK scattering

Kl4(K → ππeν)

The scalar form factors Fπ/K
S (t)

Meson masses
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ππ scattering

A(πaπb → πcπd) = δa,bδc,dA(s, t, u) + δcdδbdA(t, u, s) + δadδbcA(u, t, s)

The isospin amplitudes T I(s, t) (I = 0, 1, 2) are written in terms of the function
A(s, t, u) via

T0(s, t) = 3A(s, t, u) + A(t, u, s) + A(u, s, t)
T1(s, t) = A(s, t, u)− A(u, s, t)
T2(s, t) = A(t, u, s) + A(u, s, t)

where t = − 1
2 (s− 4m2

π)(1− cos θ), u = − 1
2 (s− 4m2

π)(1 + cos θ)

and then expanded in partial waves:

T I(s, t) = 32π
+∞∑
`=0

(2`+ 1)P`(cos θ)tI
`(s)

Near threshold→ tI
`(s) = q2`(aI

` + bI
`q

2 +O(q4))

q2 =
1
4

(s− 4m2
π) aI

`, b
I
` · · · = scattering lengths, . . .

We studied only those observables where a dependence on the Cis shows up
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ππ scattering relations

As a consequence of the expression of A(s, t, u) as

A(s, t, u) = b1 + b2s + b3s2 + b4(t − u)2 + b5s3 + b6s(t − u)2

+non polynomial part

there are 5 relations among the scattering lengths:[
3b1

1 + 25a2
2

]
Ci

= 10
[
a0

2

]
Ci[

5b2
0 − 2b0

0

]
Ci

+ 9
[
2b1

1 − 3a1
1

]
Ci

= 3
[
5a2

0 − 2a0
0

]
Ci[

−5b2
2 + 2b0

2

]
Ci

= 21
[
a1

3

]
Ci

20
[
b2

2 − b0
2 − a2

2 + a0
2

]
Ci

=
[
3a1

1 + b2
0

]
Ci

−10
[
b2

0 − 18b0
2 + 18a0

2

]
Ci

=
[
2b0

0 + 18a1
1

]
Ci

;

aI
`(b

I
`) expressed in unit of m2`

π (m2`+2
π )

These relations hold for nf = 2, 3, both at NLO and NNLO: not only the p6 LECs
cancel out, but also the tree level part involving the p4 LECs does. Still there is Lis or
lis dependence through the non polynomial part.
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πK scattering

T I(s, t, u) = scattering amplitude in isospin channel I = 1
2 ,

3
2

As for the ππ scattering, it’s possible to define scattering lengths aI
`, bI

`:

T I(s, t, u) = 16π
+∞∑
`=0

(2`+ 1)P`(cos θ)tI
`(s)

Near threshold→ tI
` =

1
2
√

sq2`
πK(aI

` + bI
`q

2
πK +O(q4

πK))

q2
πK =

s
4

(
1− (mK + mπ)2

s

)(
1− (mK − mπ)2

s

)
t = −2q2

πK(1− cos θ), u = −s− t + 2m2
K + 2m2

π

Again we studied only those scattering lengths where a dependence on the Cis
shows up
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πK scattering relations

The isospin amplitudes T I(s, t, u) are written in terms of the crossing symmetric
amplitudes T±(s, t, u) which can be expanded around t=0, s=u (ν = s−u

4mπ
)

(subthreshold expansion):

T+(s, t, u) =
∞∑

i,j=0

c+
ij tiν2j T−(s, t, u) =

∞∑
i,j=0

c−ij tiν2j+1

In
[
c−01

]
Ci

and
[
c−20

]
Ci

the same combination −C1 + 2C3 + 2C4 appears⇒2 relations
between the scattering lengths:

Pre
lim

ina
ry

♠ m3
πm3

K(mπ + mK)2
»

b
1
2
1 − b

3
2
1

–
Ci

− 1
3

m2
πm2

K(m2
π + m2

K)

»
b

1
2
0 − b

3
2
0

–
Ci

=

− 1
12

[2(m4
π + m4

K) + (mπ + mK)64]

»
a

1
2
0 − a

3
2
0

–
Ci

+
1
2

mπmK [(mπ + mK)4 − mπmK(m2
π + m2

K + 8mπmK)]

»
a

1
2
1 − a

3
2
1

–
Ci

♠ . . . and 1 more relation

These relations hold only in the p6 case. They also get a dependence on the Lis from
the NLO contribution.
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ππ scattering and πK scattering
Pre

lim
ina

ry
Considering the scattering lengths for ππ and πK scattering together five
more relations appear:

♠ 0 =

"
−b

1
2
1 − 5a

3
2
2

#
Ci

(mπ + mK)
2
+

1

(18mπmK)
(m2

π + 14mπmK + m2
K)

"
b

3
2
0

#
Ci

+
(mK + mπ)3

2m2
π

 h
5a2

2

i
Ci

+
1

9m2
π

h
b0

0 − 4b2
0 + 9a1

1

i
Ci

+
1

6m4
π

h
5a2

0 − 2a0
0

i
Ci

!

+
1

6(mπmK)2
(2m4

π + m3
πmK − 14m2

πm2
K + mπm3

K + 2m4
K)

"
a

1
2
1 − a

3
2
1

#
Ci

+
1

36(mK mπ)3
(3m4

π − 5m3
πmK − 4m2

πm2
K − 5mπm3

K + 3m4
K)

"
a

3
2
0

#
Ci

−
1

36(mK mπ)3
(3m4

π − 8m3
πmK − 10m2

πm2
K − 8mπm3

K + 3m4
K)

"
a

1
2
0

#
Ci

+
1

9mπmK
(m2

π − 4mπmK + m2
K)

"
b

1
2
0

#
Ci

♠ . . . plus 4 more relations

These are due to the polynomial expression of the amplitudes, thus they
hold both for p4 and for p6.
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Kl4

In the transition amplitude 4 form factors appear: F,G,H,R (R in Ke4 is
suppressed→only in Kµ4)
Using partial wave expansion + neglecting d wave terms:

Fs = fs + f ′s q2 + f ′′s q4 + f ′e se/4m2
π + . . . (S wave)

Fp = fp + f ′pq2 + . . . (P wave)

Gp = gp + g′pq2 + . . . (P wave)

Hp = hp + h′pq2 + . . . (P wave)

sπ(se) =invariant mass of dipion (dilepton) q2 = (sπ/(4m2
π)− 1)

Relation between ππ, πK scattering lengths and f ′′s

3
»
−a

1
2
1 + a

3
2
1

–
Ci

+

»
−b

1
2
0 + b

3
2
0

–
Ci

+
m2
π + m2

K + mπmK

2(mπmK)2

»
a

1
2
0 − a

3
2
0

–
Ci

= −(mπ + mK)

„
−2

3
mπ
ˆ
f ′′s
˜

Ci
− 5

mK

mπ

h
a2

2

i
Ci

+
mK

3m3
π

h
b0

0 − 2b2
0 + 3a1

1

i
Ci

+
5
18

mK

m5
π

h
5a2

0 − 2a0
0

i
Ci

«

Pr
eli

m
in

ar
y
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Fπ/K
Sj and masses

The scalar form factors for the pions and the kaons are defined as

FM1M2
ij (t) = 〈M2(p)|q̄iqj|M1(q)〉

t = p− q, i, j = flavour indices Mi = meson state
Indipendent quantities→ FπS ,F

π
Ss,F

K
S ,F

K
Ss,F

πK
S

There are two relations between FS(t = 0) and the ChPT expansion of the
masses M2

π, M2
K :

2B0
[
M2
π

]
Ci

=
1
3
{

(2m2
K − m2

π) [FπSs(0)]Ci
+ m2

π [FπS (0)]Ci

}
2B0

[
M2

K
]

Ci
=

1
3

{
(2m2

K − m2
π)
[
FK

Ss(0)
]

Ci
+ m2

π

[
FK

S (0)
]

Ci

}
They are due to the Feynman-Hellmann Theorem (see next)
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Feynman-Hellmann Theorem in ChPT

In LQCD appear muūu + mdd̄d + mss̄s.

〈π|muūu + mdd̄d + mss̄s|π〉 = m2
π

The Feynman-Hellmann Theorem implies

FπSu(t = 0) = 〈π|ūu|π〉 =
∂m2

π

∂mu

FπSd(t = 0) = 〈π|d̄d|π〉 =
∂m2

π

∂md

FπSs(t = 0) = 〈π|̄ss|π〉 =
∂m2

π

∂ms

On the other hand ChPT leads to[
M2
π

]
Ci

=
∑

i

Ci(mq)3 = f (mu,md,ms) : homogeneous of 3rd order

→ M2
π can be written in terms of its derivatives: f (x) = 1

3

∑n
i=1

∂f
∂xi

xi x ∈ Rn
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Summary and Future Steps

Many observables at NNLO but depending on many correlated LECs!

On the other hand we found relations among observables not depending
of the NNLO constants→ starting point to perform a fit of the NLO
constants

Future steps:

evaluate the relations at the loop level

consider also other observables (e.g. FV ,Fπ,FK) to look for more
relations

perform a fit of the Lis with a better treatment of the Cis→let’s start
fitting the relations which cancel p6 contributions first using exp data
available, then dispersive analysis and lattice results

main sources of uncertainties: numerics + not complete exp knowledge

(not so near future: add isospin breaking corrections)
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