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1. Historical context.

One of the oldest questions in theoretical cos-
mology is whether an infinitely oscillatory uni-
verse which avoids an initial singularity can be
consistently constructed. As realized by Fried-
mann and especially by Tolman (also LeMaitre,
Einstein, De Sitter ....) one principal obstacle
is the second law of thermodynamics which dic-
tates that the entropy increases from cycle to
cycle. If the cycles thereby become longer, ex-
trapolation into the past will lead back to an
initial singularity again, thus removing the mo-
tivation to consider an oscillatory universe in the
first place. This led to the abandonment of the
oscillatory universe by the majority of workers.
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Nevertheless, an oscillatory universe is an at-
tractive alternative to the Big Bang. One new
ingredient in the cosmic make-up is the dark en-
ergy discovered only in 1998 and so it natural to
ask whether this can avoid the difficulties with
entropy which have dogged previous attempts.

Some work has been started to exploit the
dark energy in allowing cyclicity possibly with-
out apparently the need for inflation in Stein-
hardt et al Another new ingredient is the use
of branes and a fourth spatial dimension as in
Randall et al, Binetruy et al which have exam-
ined the consequences for cosmology. The Big
Rip and replacement of dark energy by modified
gravity have been explored in PHF and Taka-
hashi.
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If the dark energy has a super-negative equa-
tion of state, ωΛ = pΛ/ρΛ < −1, it leads to a
Big Rip (R. Caldwell) at a finite time where
there exist extraordinary conditions with re-
gard to density and causality as one approaches
the Big Rip. In the present article we explore
whether these exceptional physical conditions
can assist in providing an infinitely-cyclic cos-
mology.
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We shall consider the situation where if, as
we approach the Big Rip, the expansion stops
due to the brane contribution just short of the
Big Rip and there is a turnaround at t = tT
when the scale factor is deflated to a very
tiny fraction (f ) of itself and only one causal
patch is retained, while the other 1/f3 patches
contract independently into separate universes.
The turnaround takes place an extremely short
time before the Big Rip would have occurred,
at a time when the universe is fractionated into
many independent causal patches, see e.g. PHF
and Takahashi (2004).
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We discuss the contraction phase which oc-
curs with a very much smaller universe than in
the expansion phase and with almost vanishing
entropy because it is assumed empty of dust,
matter and black holes all of which were jetti-
soned at turnaround. A bounce at t = τ takes
place a short time before a would-be Big Bang.
Then, immediately after the bounce, entropy is
injected by inflation (Guth) where the scale fac-
tor is enhanced by large factor and hence so
is entropy. Inflation can thus be a part of the
present scenario which is one distinction from
the work of Steinhardt et al.

7



For cyclicity of the entropy, S(t) = S(t+τ ) to
be consistent with thermodynamics it is neces-
sary that the deflationary decrease by f3 com-
pensate the entire entropy increase acquired
during contraction and expansion including the
huge increase during inflation.

A possible shortcoming of the proposal could
have been the persistence of spacetime singu-
larities in cyclic cosmologies (Borde, Guth and
Vilenkin, 2003) but to our understanding for the
truly cyclic universe which we here outline this
problem is avoided, provided a simple constraint
on the time average of the Hubble parameter is
respected.
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This work is presented because our discussion
seems to give a plausible realization of the in-
finitely oscillatory universe originally saught by
cosmologists on the 1920s and 1930s ignorant of
dark energy

(see, however, the discussion after Eq.(172.6)
of R.C. Tolman in Relativity, Thermodynam-
ics and Cosmology. Oxford University Press
(1934))

and one whose minor shortcomings can hope-
fully be evolved by others into a convincing sce-
nario.
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2. Expansion phase.

Let the period of the Universe be designated
by τ and the bounce take place at t = 0 and
turnaround at t = tT . Thus the expansion
phase is for times 0 < t < tT and the contrac-
tion phase corresponds to times tT < t < τ .
We employ the following Friedmann equation
for the expansion period 0 < t < tT :
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where the scale factor is normalized to a(t0) = 1
at the present time t = t0 ≃ 14Gy.
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To explain the notation, (ρi)0 denotes the
value of the density ρi at time t = t0. The
first two terms are the dark energy and total
matter (dark plus luminous) satisfying

ΩΛ =
8πG(ρΛ)0

3H2
0

= 0.72 (2)

and

Ωm =
8πG(ρm)0

3H2
0

= 0.28 (3)

where H0 = ȧ(t0)/a(t0). The third term in
the Friedmann equation is the radiation density
which is now Ωr = 1.3 × 10−4.
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The final term ∼ ρtotal(t)
2 is derivable from

a brane set-up; we use a negative sign aris-
ing from negative brane tension (a negative
sign can arise also from a second timelike di-
mension but that gives difficulties with closed
timelike paths). ρtotal = Σi=Λ,m,rρi. As the
turnaround is approached, the only significant
terms in Eq.(1) are the first (where ωΛ < −1)
and the last.
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As the bounce is approached, the only impor-
tant terms in Eq.(1) are the third and the last.
(We shall later argue that the second term must
be absent during contraction.) In particular, the
final term of Eq. (1), ∼ ρtotal(t)

2, arising from
the brane set up is insignificant for almost the
entire cycle but becomes dominant as one ap-
proaches t → tT for the turnaround and again
for t → τ approaching the bounce.
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3. Turnaround.

Let us assume for algebraic simplicity ωΛ =
−4/3 = constant. This value is already al-
most excluded by WMAP3 but to begin we
are aiming only at consistency of infinite cyclic-
ity. More realistic values may be discussed else-
where. The approach to the Big Rip will follow
that discussed in PHF+TT q.v.. With the value
ωΛ = −4/3 we learn therefrom that the time
to the Big Rip is (trip − t0) = 11Gy(−ωΛ −
1)−1 = 33Gy which is, within 10−27 second,
when turnaround occurs at t = tT . So if we
adopt t0 = 14Gy then tT = t0 + (trip − t0) =
(14 + 33)Gy = 47Gy.
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From the analysis in PHF+TT the time when
a system becomes gravitationally unbound cor-
responds approximately to the time when the
growing dark energy density matches the mean
density of the bound system. For a “typi-
cal” object like the Earth (or a hydrogen atom
where the mean density happens to be about
the density of water ρH2O = 1g/cm3 since

10−24g/(10−8cm)3 = 1g/cm3) water’s density
ρH2O is an unlikely but practical unit for cosmic
density in the oscillatory universe.
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With this in mind, for the simple case of
ω = −4/3 we see from the Friedmann equa-
tion that the dark energy density grows pro-
portional to the scale factor ρΛ(t) ∝ a(t) and
so given that the dark energy at present is
ρΛ ∼ 10−29g/cm3 it follows that ρΛ(tH2O) =

ρH2O when a(tH2O) ∼ 1029. We can estimate
the time tH2O by taking on the RHS of the

Friedmann equation only dark energy
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ȧ
a





2
=

H2
0ΩΛa−β with β = 3(1+ω). When we special-

ize to ω = −4/3 as illustration and require as
before ρΛ(tH2O) = ρH2O then a(tH2O) = 1029

and it follows that

a(tH2O)

(a(t0) = 1)
=















(trip − t0)

(trip − tH2O)















2

(4)

so that (trip − tH2O) = 33Gy × 10−14.5 ≃
103.5s ∼ 1 hour. [The value is sensitive to ω]
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For ω = −4/3, it will be useful to consider a
more general critical density ρc = ηρH2O, since
there is nothing special about ρH2O and to com-
pute the time (trip − tη) such that ρΛ(tη) =
ρc = ηρH2O. We then find, using a(tη) =

1029η, that (trip−tη) = (trip−t0)10−14.5η−1 ≃
η−1hours is the required result.
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To discuss the turnaround analytically we
keep only the first and last terms, the only sig-
nificant ones, on the RHS of the Friedmann
equation which becomes for the special case
ω = 4/3
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ȧ

a











2
= α1a − α2a

2 (5)

in which

α1 =
8πG

3
(ρΛ)0 α2 =

8πG

3

(ρΛ)20
ρc

(6)

Writing a = z2 and z = (α1/α2)
1/2sinθ gives

dt =
2
√

α2

α1

dθ

sin2θ
=

2
√

α2

α1
d(−cotθ) (7)

19



Integration then gives for the scale factor
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where C = −(3/2πGρc)
1/2. At turnaround

t = tT , a(tT ) = [ρC/(ρλ)0] = (a(t))max. At
the present time t = t0, a(t0) = 1 and sin2θ0 =
[(ρΛ)0/ρC ] ≪ 1, increasing during subsequent
expansion to θT = π/4.
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A key ingredient in our cyclic model is that
at turnaround t = tT ( mod τ ) our universe
deflates dramatically with efffective scale factor
a(tT ) shrinking before contraction to â(tT ) =
fa(tT ) where f < 10−28. This jettisoning of
almost all, a fraction (1 − f ), of the accumu-
lated entropy may be permitted by the excep-
tional causal structure of the universe. We shall
see later that the parameter η at turnaround
could be η ∼ 1031 or even larger which im-
plies the dark energy density at turnaround
of ρΛ(tT ) > 1031ρH2O (Planckian density of

ρΛ ∼ 10104ρH2O can be avoided). By the time
the dark energy density reaches such values, ac-
cording to the Big Rip analysis of PHF+TT
even the smallest known bound systems of par-
ticles have become unbound and the constiu-
tents causally disconnected. Possibly smaller
unknown bound systems have equally become
unbound and acausal.
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According to this, at t = tT the universe has
already fragmented into an astronomical num-
ber (1/f3) of causal patches, each of which inde-
pendently contracts as a separate universe lead-
ing to an infinite multiverse. The entropy at
t = tT is thus divided between these new con-
tracting universes and our universe retains only
the infinitesimal fraction f3. Since our eternal
universe has cycled an infinite number of times,
the number of parallel universes is infinite.
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4. Contraction phase.

The contraction phase for our universe occurs
for the period tT < t < τ ( mod τ ). The
scale factor for the contraction phase will be de-
noted by â(t) while we use always the same lin-
ear time t subject to the periodicity t + τ ≡ t.
At the turnaround we retain a fraction f3 of
the entropy with â(tT ) = fa(tT ) and for the
contraction phase the Friedmann equation is:
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where we defined
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In contrast to expansion we have set ρ̂m = 0
because our hypothesis is that the causal patch
retained contains only dark energy and radia-
tion but no matter (no black holes). This is
necessary because during a contracting phase
dust or matter would clump, more readily than
during expansion, and interfere with cyclicity.

Perhaps more importantly, presence of dust
or matter would require that our universe go
in reverse through several phase transitions (re-
combination, QCD and electroweak to name a
few) which would violate the second law of ther-
modynamics and be statistically impossible.
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We thus require that

our universe comes back empty!

(like a milk bottle in the old days)
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The contraction of our universe will proceed
from one of the 1/f3 causal patches following
the truncated Friedmann equation until the ra-
diation term balances the brane tension term at
the bounce.
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5. Bounce

As an estimated time t = τ for the bounce, the
contraction scale is given, using ρc = ηρH2O,
from Eq. (1), and using the certainty that
(ρa)0 < (ρr)0 as
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(11)

Now the bounce at t = τ must be before the
electroweak transition at tEW = 10−10s when
a(tEW ) = 10−15 and after the Planck time
where a(tPlanck) ∼ 10−31 (Recall a ∝ T−1).

We may take as illustrative cases:

• TB = 1017GeV, a(tB) = 10−30, η = 1087

• TB = 1010GeV, a(tB) = 10−23, η = 1059

• TB = 103GeV, a(tB) = 10−16, η = 1031
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Immediately after the bounce there is conven-
tional inflation with enhancement E = a(τ +
δ)/â(τ ) and successful inflation requires E >
1028. Consistency requires therefore f < E−1

to allow for the entropy accrued during normal
expansion after inflation and contraction. The
fraction of entropy jettisoned from our universe
at deflation at the turnaround is thus extremely
close to one, being less than one and more than
(1 − 10−28)3.
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6. Entropy.

Consider first the present epoch t = t0. The
contributions of the radiation to the entropy
density s follows the relation

s =
2π2

45
g∗T 3 (12)

First consider only photons with g∗ = 2. The
present CMB temperature is T = 2.73K ≡
0.235meV ∼ 1.191(mm)−1. Substitution in
Eq.(12) gives a present radiation entropy den-
sity sγ(t0) = 1.48(mm)−3. Using a volume

estimate V = (4π/3)R3 with R = 10Gly ≃
1029mm gives a total radiation entropy Sγ ∼
6.3 × 1087. Including neutrinos increase g∗ in
Eq.(12) from g∗ = 2 to g∗ = 3.36 = 2 +

6 × (7/8) × (4/11)4/3. This increases Sγ =

6.3 × 1087 to Sγ+ν ∼ ×1088.
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The total entropy is interpretable as exp(1088)
degrees of freedom, or in information theory to
a number I of qubits where 2I = eS so that I =
S/(ln2 = 0.693) ∼ 1088. This is well below the
holographic bound which is dictated by the area
in terms of Planck units 10−64mm2 which gives
Sholog(t0) = 4π(1029mm)2/(10−32mm)2 ∼
10123 about 1035 times bigger. Some of this
difference may come from supermassive black
holes.
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The entropy contribution from the baryons is
smaller than Sγ by some ten orders of magni-
tude, so like that of the dark matter, is negligi-
ble. What is the entropy of the dark energy? If
it is perfectly homogeneous and non-interacting
it has zero for both temperature and entropy.
Another viewpoint, at least for a pure cosmo-
logical constant, is that one number Λ cannot
contain entropy. Finally, the 4th term in Eq.(1)
corresponding to the brane term is neglible, as
we have already estimated.
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The conclusion is that Stotal(t0) ∼ 1088. Now
consider the entropy at turnaround t = tT (
mod τ ). We have estimated that a(tT ) =
1029η. The temperature Tγ of the radiation

scales as Tγ ∝ a(t)−1 so using the entropy den-

sity of Eq.(12) a comoving 3-volume ∝ a(t)3

will contain the same total radiation entropy
Sγ(tT ) = Sγ(t0) as at present; this is simply
the usual adiabatic expansion.
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The expansion from t = 0 ( mod τ ) to tT (
mod τ ) is, of course, not purely adiabatic be-
cause irreversible processes take place. The first
is inflation which increases entropy by > 1084.
There are phase transitions such as the elec-
troweak transition at tew ∼ 100ps, the QCD
phase transition at tQCD ∼ 100µs, and recom-

bination at trec ∼ 1013s. Further irreversible
processes occur during during stellar evolution.
Although the expansion of the radiation, the
dominant contributor to the entropy, is adia-
batic, the entropy of the matter inevitably in-
creases with time in accord with the second law
of thermodynamics.
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In our model, the entropy of the matter in-
creases between t = 0 ( mod τ ) and tT = 47Gy.
Setting the entropy of the dark energy to zero
and the radiation as adiabatic, the matter part
represented by ρm will cause the entropy to rise
from S(t = 0) to S(tT ) = S(t = 0)+∆S where
∆S causes the contradiction plaguing the oscil-
latory universe in the 1920s and 1930s. The key
point is that in order for entropy to be cyclic,
the entropy which was enhanced by a huge fac-
tor E3 > 1084 at inflation must be reduced
even more dramatically at some point during
the cycle so that S(t) = S(t + τ ) becomes pos-
sible. Since it increases during both expansion
and contraction, the only logical possibility is
a dramatic decrease at turnaround as accom-
plished by our hypothesis of one causal patch
retention .
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The second law or thermodynamics contin-
ues to obtain for other causally disconnected re-
gions, each with practically vanishing entropy at
turnaround, but these are permanently removed
from our universe contracting instead into sep-
arate universes.

36



Next, we look at entropy for contraction tT <
t < τ ( mod τ ). According to statistical me-
chanics one expects the entropy to increase here
also, although because it is much smaller the
increase must be correspondingly much smaller
than during expansion and as we are assuming
the universe during contraction is empty of dust
until the bounce its entropy is, in any case, van-
ishingly small for the contraction era.
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Finally, there is the issue of entropy at bounce
t = τ (mod τ ). Immediately after the bounce
inflation increases entropy by > 1084 so cyclic-
ity S(t) = S(t+ τ ) is possible providing the en-
tropy loss at turnaround compensates the gain
during inflation as well as the other entropy ac-
quisitions. We find the counterpoise of inflation
at the bounce and deflation at turnaround an
appealing aspect.

It is worth a mention that there exists an argu-
ment from the conventional Friedmann equation
(see Misner, Thorne and Wheeler book) that
when the RHS terms all have equation of state
ω ≥ −1 then ä < 0 which disallows a bounce
after which the universe starts expanding again.
In the present model the brane term contributes
with opposite sign, and double the magnitude,
of the radiation term and ä > 0.
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7. Vanishing entropy of contracting universe.

The contracting universe of the cyclic model
contains dark energy with zero entropy and pos-
sibly a small amount of radiation which could
possess entropy. The deflation at turnaround re-
duces entropy from a gigantic value O(> 1088)
to an extremely low value O(101). An unrealis-
tic value for the dark energy equation of state
ω = p/ρ = −4/3 has been employed for alge-
braic simplicity as it makes ρΛ ∝ a, and no at-
tempt yet made at a realistic description of our
universe. We shall now study the entropy of the
contracting universe in this speculative scenario
more quantitatively and now will use arbitrary
ω = −1 − φ with φ > 0 so that ρΛ ∝ a3φ.
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The quantity φ is the most important parame-
ter for observational discrimination between this
cyclic model and a cosmological constant 1 The
next test of φ 6= 0 will likely come from the
Planck Surveyor satellite. One wonders, there-
fore, how different from zero φ is? There is no
lower bound on φ to make the model work ex-
cept that it must be non zero. We already know
φ < 0.1 from the WMAP3 data. If φ is truly
infinitesimal, the test must await improved tech-
nology. To restore optimism we shall describe
an anthropic fine tuning argument that shows
that extremely small φ is unlikely.

1and from the Steinhardt-Turok cyclic model.
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The universe comes back empty of matter in-
cluding black holes. The presence of matter dur-
ing contraction causes apparently insuperable
problems because accelerated structure forma-
tion will precipitate a premature bounce. Black
holes, if present, will expand and proliferate
with the same consequence. But the presence of
radiation must also be carefully studied because
although at turnaround the photon energy is in-
finitesimal (Eγ < 10−200eV ), the blue shifting
during contraction leads before the bounce to
production of e+e− pairs, undesirable because
generically they will create problems with con-
tinued contraction. As we shall show there are
fortunately no photons in the contracting phase
of the cycle, only the truly innocuous dark en-
ergy.
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The cyclic model contains one free parame-
ter, the common density ρC at which the uni-
verse both turns around and bounces. Since
the bounce is independent of ω we begin with
it and take as bounce temperatures TB = 10p

GeV with, to be above the weak and below
the Planck scales, 3 ≤ p ≤ 17. This gives
ρC = ηρH2O where η = 10(19+4p) and ρH20 =

1g/cm3 is the density of water, an easily imag-
inable unit somewhere between the unimagin-
ably small present mean cosmic density and
the unimaginably large critical density ρC at
turnaround and bounce.
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Going now to the turnaround at time t = tT
the scale factor a(tT ) is given by (since a(t0) =
1 and putting ρ0 = 10−29ρH2O) a(tT )3φ =

1029η = 1048+4p

The present radiation temperature is (Tγ)0 =

2 × 10−4 eV, and so the radiation temperature
at turnaround is

(Tγ)T = 2 × 10−4


10(48+4p)




−1/3φ
eV (13)

which is infinitesimal: putting φ = 0.1, Eq.(13)
gives 10−200 eV for p=3 and 10−390 eV for
p=17; with φ = 0.01, the photon energy is
10−2000 eV for p=3 and 10−3900 eV for p=17.
In all cases, the photon wavelength is an astro-
nomical number of orders of magnitude longer
than the present Hubble length.
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To evaluate the contraction entropy we need
to estimate many such photons are in one causal
patch at turnaround. The deflationary fac-
tor multiplying entropy at turnaround must be
much less than the inverse of the inflationary in-
crease (> 1084) of the early universe. We take
the huge number of causal patches to be 1090α
where α ≫ 1 is a parameter to allow an arbi-
trarily larger number, and α = 1 will give an
overestimate of contraction entropy.
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At turnaround the scale factor is

a(tT ) =


10(48+4p)




1
3φ (14)

so taking the present volume as 1084cm3 and
the present radiation density as ρr(t0) =
10−33g/cm3 = 1eV/cm3 gives for the radia-
tion energy in one causal patch

(Er)patch =
1

(100α)3



10(48+4p)




− 1
3φ eV (15)

Comparison with Eq.(13) then gives for the
number of photons per causal patch

nγ =
1

200α3 ≪ 1 (16)

which is small even for the unrealistic case α = 1
and essentially zero for α ≫ 1. Thus, the en-
tropy of the contracting universe (cu) vanishes
Scu = 0 for any value of equation of state of the
dark energy ω = p/ρ = −1 − φ since Eq.(16)
has no φ dependence.
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Anthropic fine tuning argument about φ

The time until turnaround is given by

(tT − t0) ≃
t0
φ

(17)

so if we take, for simplicity, the origin of life to
have occurred at t0 after the most recent bounce
we see from Eq. (17) that given small φ ≪ 1
then φ measures the fraction of the expansion
phase taken to originate life. An anthropic ar-
gument is: it is unreasonable for the fraction φ,
assuming it is non zero, to be extremely close to
zero.

The special case φ = 0 is the standard cos-
mological model with a cosmological constant
where there is no turnaround and the future
lifetime is infinite so the origin of life necessar-
ily takes place after a vanishing fraction of the
expansion lifetime. Although such an infinite
expansion seems to us unaesthetic, not all col-
leagues share our concern.
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As soon as one commits to φ 6= 0, however, the
anthropic type argument emerges and it is un-
likely that φ <<< 1. For example, if φ = 10−3

the length of the expansion phase is 104 Gy
whereas life orinated after only about 10 Gy
which is only 0.1% of the expansion time. If
life plays a central role in our universe, as in
our understanding is the spirit of the anthropic
principle, such a tiny value of φ is strongly dis-
favored; one expects at least φ > 0.01 so the
fraction before the origin of life is > 1.0% of the
total expansion time.

This encouraging argument makes it more op-
timistic that the next generation of observations
such as the Planck Surveyor will succeed in de-
tecting a φ 6= 0.
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8. Infinite past.

Theorists are comfortable with an infinite fu-
ture as occurs in the standard model with a cos-
mological constant. In that case the universe ex-
pands exponentially forever, and other galaxies
recede from ours to become invisible. Entropy
gradually increases.

There seems to be less widespread acceptance
of an infinite past. One reason is the old worry
about entropy that it must increase and so at a
finite time in the past would fall to zero. This
is avoided in here. Another possible concern is
provided by arguments about null geodesics into
the past and whether the spacetime manifold
can be past complete.
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It is true that the infinite past is less famil-
iar than the infinite future, and surely an in-
finite past requires a cyclic model. At each
turnaround a small fraction (f ) of universes will
fail to cycle and we confirm that there is a high
likelihood that after infinite cycles we live in a
successful universe. There is no reason that an
infinite past is less viable than an infinite fu-
ture, although as we shall show it does require
somewhat unfamiliar concepts such as the in-
evitability of infinite cyclicity and that the total
number of universes has been infinite since time
t → −∞, suitably defined, and remains always
infinite, being multiplied by a (large) finite fac-
tor at the turnaround of each of the infinite cy-
cles.
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Past null geodesics

There is a general argument about past com-
pleteness of the spacetime manifold which we
address first.

We begin with the BGV no-go theorem which
we shall adapt for application to this more gen-
eral case, as the original no-go theorem applies
to past inflation. We shall show how this no-
go theorem is by-passed, as the assumptions no
longer apply.

The metric is of the form

ds2 = dt2 − a(t)2dx2 (18)

In this metric for a null geodesic the affine
parameter λ follows the relation

dλ ∝ a(t)dt (19)
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We normalize the affine parameter to the
present time t = t0 by choosing with a0 = a(t0)

dλ =











a(t)

a0











dt (20)

so that dλ/dt = 1 when t = t0.

We multiply Eq.(19) by the Hubble parameter
H = ȧ/a where a dot denotes derivative with
respect to t but now we integrate from an initial
time tn = t0 − nτ up to t = t0 to obtain with
an = a(t0 − nτ ), λn = λ(t0 − nτ )

∫ λ0
λn

H(λ)dλ =
1

a0

∫ a0
an

da = nC (21)

where in the cyclic model we have denoted the
finite integral

1

na0

∫ a0
an

da = C (22)

by the constant C.
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The left hand side of Eq.(21) can be written as
the average of the Hubble parameter

Hav ≡ 1

(λ0 − λn)

∫ t0
tn H(λ)dλ (23)

over n cycles. In particular, it is important that
Hav in Eq.(23) is independent of the integer n
because of cyclicity.
Given Eq.(23), we find from Eq.(21) that

Hav = limn→∞










nC

(λ0 − λn)











(24)

so that for n → ∞, we find a backwards null
geodesic (λ0−λn) ∝ n of infinite length and the
BGV argument does not apply. Such a geodesic
is exemplified by a photon propagating always
at the origin x = 0 of the spatial coordinates.
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Whether or not the past incompleteness ar-
guments apply to the competing cyclic model
of Steinhardt and Turok we take no position.
BGV argue that they do, but the authors dis-
agree, so that jury is still out. But we do assert
that they do not apply to the present model, as
can be seen directly from our Eq. (24), where
(λ0−λn) necessarily becomes an infinite length
past null geodesic for n → ∞, given the finite-
ness of both Hav and C.
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Successful and failed universes 2

Now we turn to another issue. At each
turnaround, a very large number N of new uni-
verses is spawned. Let the number of universes
at time t = t0 − nτ be Σn. Then the total
number now is Σ0 = NnΣn.

This is not quite right because although al-
most every causal patch contains no photons
and no matter, a tiny fraction f << 1 will con-
tain one or more photons and hence because
of pair production will fail to cycle and bounce
prematurely. Similarly any other matter such
as a quark or lepton in the causal patch will
cause failure. This number is very small, gener-
ally f < 1/N but we need to examine the failed
universes to assess the probability that we may
live in a successful rather than a failed universe
now, after an infinite n → ∞ of cycles.

2Suggested and solved by Dan Reichart.
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Let us ignore any new universes spawned by
failed universes. The number of successful uni-
verses is given after n cycles by

Σ
(successful)
0 = limn→∞[Σn(N − fN )n]

= limn→∞Σn[(1 − f )N ]n(25)

The number of failed universes, on the other
hand, is

Σ
(failed)
0 = limn→∞

Σn[fN + fN(1 − f)fN + fN [(1 − f)N ]2 + ..... + fN [(1 − f)N ](n−1)]

= limn→∞
ΣnfN [(1 − f)N ](n−1)[1 − {1/(1 − f)N}]−1

= limn→∞
ΣnfN [(1 − f)N ]n[(1 − f)N − 1] (26)

The probability for a successful universe at
present is given by the ratio of Eq.(25) with the
sum of Eq.(25) and Eq.(26) which gives

P (successful) =
[(1 − f )N − 1]

(N − 1)
(27)
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For N ≫ 1 and f ≪ 1, this is approximately
P successful = (1 − f ) similarly to each single
turnaround, as expected.

This is non-trivial when both subsets are infi-
nite and if it had been that failed universes dom-
inate instead, the model would have been un-
tenable because our universe would be infinitely
unlikely. Fortunately, this is not the case.
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Total number of universes

Last but certainly not least, we study the total
number of universes versus time in the past.

Suppose that Σn < ∞ for some finite n. Then

going back another n
′
cycles we have Σ

n+n
′ =

ΣnN−n
′
. N satisfies N > 1 (actually N >>

1) so for some n
′
the integral part of Σ

n+n
′ =

1 and cyclicity fails. Therefore no finite Σn is
permitted for any finite n. In particular, the
present number of universes must be Σ0 = ∞,
as expected after an infinite number of cycles.
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More subtle is the value of

Σ∞ = limn→∞(Σ0N
−n)

= Σ0[limn→∞(N−n)] (28)

which is indeterminate as the product of infin-
ity (Σ0) times zero. This requires some recourse
to cardinality and the transfinite numbers of
set theory, depending on the level of rigor de-
manded.
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In set theory the lowest transfinite is ℵ0 (Aleph-
zero) and the simplest assumption is that the
number of universes is always ℵ0, the cardinality
of the primes, the integers or the rational num-
bers. When ℵ0 is multiplied by a finite number
N , it remains ℵ0. This holds for any finite n
in Eq.(28) and so extends back an arbitrarily
long time in the past. For the infinite past, one
cannot really say anything from Eq.(28).
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The process is not time-reversal invariant and
the global entropy of all universes increases with
time consistent with the second law of thermo-
dynamics. Considering only our universe, how-
ever, the entropy as well as the density and tem-
perature are cyclic and never infinite. This is as
near to infinite cyclicity as seems possible con-
sistent with statistical laws. The old problem
confronting Tolman is avoided by removing en-
tropy to an unobservable exterior region; one
may say in hindsight that the problem lay in
considering only one universe.
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Summary.

The standard cosmology based on a Big Bang
augmented by an inflationary era is impressively
consistent with the detailed data from WMAP3
when dark energy, most conservatively a cos-
mological constant, is included. Our objections
to this standard model are more aesthetic than
motivated directly by observations. The first
objection is the nature of the initial singularity
and the initial conditions. A second objection,
not of concern to all colleagues, is that the pre-
dicted fate of the universe is an infinitely long
expansion.

61



We have outlined here a cyclic cosmology rest-
ing on phantom dark energy where these ob-
jections are ameliorated: the classical density
and temperature never become infinite and fu-
ture expansion is truncated. Also, our proposal
of deflation naturally leads to a multiverse pic-
ture, somewhat reminiscent of that predicted in
eternal inflation, though here the proliferation
of universes must be infinite and originates at
the opposite end of a cyclic cosmology, at its
maximum rather than at its minimum size.

We have shown that the entropy of the con-
tracting universe is not only very small but actu-
ally vanishing so the entropy problem is solved
more completely than originally envisioned. It
offers an explanation of why the entropy pre in-
flation is zero.
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We have argued that an infinite past time is
consistent and that the present cyclic model is
an exemplar. The presence of patches which
fail to cycle is not a problem as after an infinite
number of cycles the probability of being in a
successful universe as we find ourselves is prac-
tically one. Also, it is mandatory that the total
number of universes is infinite, equal to the con-
stant ℵ0, for times arbitrarily far into the past.
This idea is unfamiliar but appears to us to be
an inevitable concomitant of an infinite past.

We present this cyclic universe proposal
mainly in the hope that it will stimulate an
improved and more consistent formulation by
others.

Thank you for your attention
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