Status update

Frank Siegert

Institute for Particle Physics Phenomenology Durham University

January 15, 2009

www.ippp.dur.ac.uk

Ingredients for NLO calculations

Matrix element handler extended to keep track of different contributions to NLO matrix elements:

- Automated real emission matrix elements: AMEGIC/COMIX ✓
- Automated dipole subtraction terms: Eur.Phys.J.C53:501-523,2008
- Virtual contributions:
 - Process classes adapted to handle all divergence structures ($\sim 1, \sim \frac{1}{c}, \ldots$)

~

- Squared, spin-summed available in literature for many processes
- But ultimately: Want the full ME to allow for spin correlations with decays

Loop matrix elements

• Feynman rules \Rightarrow tensor integrals like

$$B^{\mu\nu}(p_1^2;m_0,m_1) = \int \mathrm{d}^4\ell \frac{\ell^{\mu}\ell^{\nu}}{[\ell^2 - m_0^2][(\ell + p_1)^2 - m_1^2]}$$

• Reduction to scalar integrals (master integrals) which are known analytically, a la Passarino-Veltman

Tensor integral reduction

- Option 1: Doing the reduction by hand
 - ${\scriptstyle \bullet}\,$ Not feasible for anything \geq rank 3 triangles
- Option 2: Analytical GOLEM (Thomas Binoth, unpublished)
 - ${\scriptstyle \bullet}\,$ Helicity projection \Rightarrow tensor reduction for each helicity combination
 - Maple/Mathematica/Form/... to half-automatedly simplify remaining terms
 - \bullet Feasible for all $2 \rightarrow 2$ and $2 \rightarrow 3$ processes
- Option 3: Numerical GOLEM (JHEP 0510:015,2005, arXiv:0810.0992)
 - Programmatic calculation of form factors for tensor integrals (Golem95 library)
 - Helicity projection not necessary, no worries about consistent polarisation states
 - More complex expressions, certainly slower than analytically simplified method

Status

- Some squared-summed MEs available for (internal) testing
- Some simple processes reduced by hand
- Interface to Golem95 library for more complicated processes, e.g. as a test case 4 photons
- Building up library of processes, on track for usage in CKKW@NLO
- Strategy not decided yet for $2 \rightarrow 3, 4, \ldots$

- Released version: Only fixed decay chains in hard process
- Request from experiments: Inclusive decays.

Building blocks

- $\bullet\,$ Decay cascade handling unified with existing one from ${\rm Hadrons}$
- Spin correlation implementation more elegant and also unified
- $\bullet~$ Building blocks for vertex calculators from COMIX \Rightarrow automated matrix elements

Status

- Automatic creation of decay-tables from particles/vertices given by the selected model
- Automatic decay-width calculation
- Calculators for all kinds of vertices in the standard model available
- Next steps: SUSY calculators
- Will be made available in the 1.2.x series

LO Perturbative improvements (Version 1.2)

 \rightarrow See Stefan's talk.

$\mathbf{S}\mathbf{HERPA} \leftrightarrow \boldsymbol{\mathsf{LHCb}} \text{ interface}$

- Implemented in cooperation with Tobias Brambach & Julian Wishahi (LHCb, TU Dortmund)
- Tricky because event generation factorised into production of hadrons and their decay:
 - where to include finite width effects?
 - spin correlations are lost
- Common interface structures very much designed for EvtGen?

Released version

- Minor version update SHERPA 1.1.3
- Proper physics manual (arXiv:0811.4622 [hep-ph], soon in JHEP)

Initial Goal

Easy and automated way to validate a new version of Rivet

Features

- Event generator setups and framework, such that comparisons in the following use cases are possible:
 - Two versions of Rivet (Rivet validation)
 - Two versions of the same generator (validation)
 - Two different generators (physics)

Status

- Basics are ready
- Simple webpages with comparisons in the three use cases above can be produced
- Not very many generators/analyses setups provided yet, extending them
- Probably also useful as basis for Professor tuning runs, work in progress