Flavour Physics at e+e- colliders ### Including a brief look back Adrian Bevan: a.j.bevan@qmul.ac.uk B'ham PPAP meeting 2012 ### Overview BE - Past: - BaBar: Still publishing well: UK involvement more or less down to review level work and finalising the physics of the B factories book. - At least 50 interesting papers left to write on the data. - Fitting given that SLAC is now 50 years young. - Running: - BES III / KLOE - Under construction: - Belle II / SuperB - Other: - Novosibirsk Super τ-charm ### What BaBar did for us - Found: - CPV in B decays - Direct CPV in B decays - A bunch of new particles - Charm mixing - T-violation #### Produced: - Over 500 papers in PRL and PRD - a large number of high quality theses: CERN formally thanked SLAC a few years ago for their PhD students contributions to the LHC. - Confirmed the SM: CKM matrix and the KM mechanism. - Killed the 2HDM type II (to name but one model), found evidence for NP ... and much more! - Still to come: - Physics of the B Factories book [thanks to funding from Canada, France, and the US] - Many more papers... ### What BaBar did for us - Found: - CPV in B decays - Direct CPV in B decays - A bunch of new particles - Charm mixing - T-violation - Produced: - Over 500 papers in PRL and PRD - a large number of high quality theses: CERN formally thanked SLAC a few years ago for #### The B factories - BaBar had more talks this year (about 150 in 2012) than last year - Performed the most precise tests of the Unitarity Triangle - Verified CKM matrix and KM mechanism as the leading order description of quark flavour changing & CPV in B_u and B_d decay. - Not yet to be surpassed in these areas. ### Institute of High Energy Physics Chinese Academy of Sciences 1000 fb⁻¹ At charm threshold SuperB: ### BES III now producing precision charm results: - Some measurements will play an important role in controlling systematic uncertainties for LHCb: charm mixing and γ (and later on for Belle II as well). - Charmonium result programme continues to be strong. #### **BESIII Preliminary** $$N(D^+ \to \mu^+ \nu) = 377.3 \pm 20.6$$ $\mathcal{B}(D^+ \to \mu^+ \nu) = (0.0374 \pm 0.0021 \pm 0.0006)\%$ $f_{D^+} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$ #### **BESIII Preliminary** ``` \mathcal{B}\left(D^{0} \to K^{+}ev\right) = \left(3.542 \pm 0.030 \pm 0.067\right)\% \mathcal{B}\left(D^{0} \to \pi^{+}ev\right) = \left(0.288 \pm 0.008 \pm 0.005\right)\% \frac{\Delta\Gamma}{\Delta q^{2}} \text{ distributions } \to \text{ FF fits, parameters} ``` - Very relevant for the UK flavour programme, though no direct interest in participating at this time. - Expect a lot of interesting results over the coming years. ### Belle II / SuperB overview ### Physics case: - globally acknowledged as sound for a number of years - 4S: (50-75/ab) - Rare decay searches to constrain NP models - Precision SM tests: CKM, T-violation etc. - τ physics [*CPV, LFV, g-2, EDM, ...*] - 5S: (few /ab) - Rare decays (states with neutrals and neutrinos) - and some data at the other Y resonances. #### – Unique to SuperB: - ψ(3770) (1/ab) - Rare charm decays, Precision measurements, TDCPV, etc. - Polarisation - − $\sin^2\theta_W$ at a Q² that is theoretically clean (i.e. for the one measurement that is off: e^+e^- → bb). UK detector/ physics interest from: UK machine interest from: # Belle II / SuperB overview - Japan and Italy Want Jonetc. Japan and some ' II- - Unique to SuperB: - ψ(3770) (1/ab) - Rare charm decays, Precision measurements, TDCPV, etc. - Polarisation - $-\sin^2\theta_{\rm W}$ at a Q² that is theoretically clean (i.e. for the one measurement that is off: $e^+e^- \rightarrow bb$). UK detector/ physics interest from: **UK** machine interest from: # Belle II / SuperB overview - Japan and Italy Want UK involvement Japan and Italy Want Lon etc. and some of an and some of an analysis analysis and an analysi & UK scientists want to be involved – $\sin^2\theta_w$ at a Q² that is theoretically clean (i.e. for the one measurement that is off: $e^+e^- \rightarrow bb$). UK detector/ physics interest from: **UK** machine interest from: # International Collaboration Ground breaking ceremony, November 2011 MoU with German funding agencies - Director general: Roberto Petronzio - Sub-level of area directors and responsible in place. - 18 engineers have been recruited at the lab. - Several agreements already in place: - MOU with Novosibirsk: a strong group of machine physicists from Novosibirsk (60-80 people) to start immediately to work to Lattice engineering. - INFN's involvement has been approved by the board. - Recent meeting between Cabibbo, LNF and JAI regarding planning. - JAI to contribute to the final focus, among other things. #### Governance of the CABIBBO Lab - Project was approved in December 2010. - The leading national flagship project. - 250M€ on the table, knowing the full amount was more like 550-650M€ - This is new money to be injected into our field. - In 2011 - the site was chosen: Tor Vergata (May/June) - the collaboration was formed at QMUL (Sept) - In 2012: - BINP officially signs MOU to work with Cabibbo lab. - TDR coming together: meeting next week (Pisa) - Fioni review: (to check the budget is sensible) - Costing finalized for Fioni committee - Project schedule to follow soon. Symmetric beam # Other future possibilities Proposal to build a super τ-charm factory at Novosibirsk is still on the table. energies: no TDCPV miggler damping potential 100 m Exist Injection facility VEPP-5 (will be used for VEPP-4M and VEPP-2000) wiggler exciting R=90 m damping wiggler 2 GeV linac converter exciting 200 m damping polarized e source 500 Me√ e+ Tunnel for the linac and the technical straight section of the factory is ready Project not yet approved, but nonetheless has an interesting potential. - The UK is a world leader in CMOS sensor development for various applications. - Generic R&D sought after by ALICE, SuperB, ILC communities, KE opportunities, yet still no long term funding in the STFC model. Low noise devices: reference pixels ~12e noise (RMS) Low mass: epi layer is only 12um, ideal base for vertex detectors. Versatile technology spanning several experiments in different areas of the STFC programme - 180nm INMAPS CMOS technology pioneered by RAL. - For use in vertexing, calorimetery, imaging, ... - Working in collaboration with CERN, DESY and INFN. - STFC and Science board should find a sensible way to maintain development of technologies like this! #### Future prospects "Minimalistic" list of the key (low-energy) quark flavor-violating observables: • $$\gamma$$ from tree (B \rightarrow DK, ...) **S-LHCb** S-Bfactory • $$B_{s,d} \rightarrow l^+l^-$$ S-LHCb + ATLAS & CMS • CPV in $$B_s$$ mix. $[\phi_s]$ S-LHCb + ATLAS & CMS • B $$\rightarrow$$ K^(*) l^+l^- , $\nu\nu$ S-LHCb / S-Bfactory • B $$\rightarrow \tau \nu$$, $\mu \nu$ (+D) S-B factory • K $$\rightarrow \pi \nu \nu$$ Kaon beams [NA62, KOTO, ORKA] #### Future prospects "Minimalistic" list of the key (low-energy) quark flavor-violating observables: My interpretation: γ fro Complementarity between hadron, & SuperB e+e- and kaon experiments. CP\ To cover all eventualities, we need all areas supported. Kaon beams [NA62, KOTO, ORKA] K → πνν CPV in charm S-LHCb / S-Bfactory #### Additional material Top-10 list of key flavor-changing measurements [a (motivated) personal choice] •B($$\mu \rightarrow e\gamma$$) $$SES < 10^{-13}$$ •B($$\mu N \rightarrow eN$$) $$SES < 10^{-16}$$ $$V \bullet B(\tau \to \mu \gamma)$$ $$SES < 10^{-9}$$ $$\bullet B(B_s \to \mu^+ \mu^-)$$ $$\sigma_{rel} < 5\%$$ $$\sigma < 0.01$$ • $$B(K^+ \rightarrow \pi^+ \nu \nu)$$ or $B(K_L \rightarrow \pi^0 \nu \nu)$ $\sigma_{rel} < 5\%$ $$\checkmark \bullet B(B^+ \rightarrow l^+\nu)$$ $$\sigma_{rel} < 5\%$$ $$\checkmark \bullet a_{CP}(D \to \pi\pi\gamma)$$ $$\sigma$$ \leq 0.005 $$\sim$$ $|V_{ub}|$ $$\sigma_{rel} < 5\%$$ $$\checkmark$$ γ_{CKM} $$\sigma \le 1^{\circ}$$ N.B.: the observables are not listed in order of importance ### Summary - Strong global e⁺e⁻ flavour community exists beyond BaBar and Belle data taking. - UK has a strong history with this area through BaBar and CLEO involvement. - Physics goals are different to those previous experiments: 100 times the data, broader programme. - The community was asked more than a decade ago to make a choice: - BaBar or LHCb you can't have both. ## Summary - Strong global e⁺e⁻ flavour community exists beyond BaBar and Belle data taking. - UK has a strong history with this area through BaBar and CLEO involvement. - Physics goals are different to those previous experiments: 100 times the data, broader programme. - The community was asked more than a decade ago to make a choice: - BaBar or LHCb you can't have both. - In the recent past we have been asked a modern variant of this question. ### Summary - Strong global e⁺e⁻ flavour community exists beyond BaBar and Belle data taking. - UK has a strong history with this area through BaBar and CLEO involvement. - Physics goals are different to those previous experiments: 100 times the data, broader programme. - The community was asked more than a decade ago to make a choice: - BaBar or LHCb you can't have both. - In the recent past we have been asked a modern variant of this question. - The question is stupid and misses the point - We **need** both an involvement in an e+e- flavour experiment and LHCb upgrade: they are complimentary! If we are *told* otherwise, then the UK is not serious about a future role in leading exploration of flavour physics See the following preprints for a more comprehensive overview: Physics contribution to the ESG meeting form SuperB: http://indico.cern.ch/contributionDisplay.py?contribId=68&confId=175067 arXiv:1109.5028 [Impact of SuperB] arXiv:1008.1541 [SuperB Physics progress report] arXiv:1002.5012 [Belle II Physics Programme] + a collection of older documents. SuperB is finalising its detector TDR (meeting starts tomorrow in Pisa to consolidate this). This table concentrates on observables that SFFs can measure, with a few of the prime examples from hadron experiments to highlight that there are many things that need to be measured well. ### Golden Measurements: General Experiment: No Result Moderately precise Precise Very precise Theory: Moderately clean Clean, needs Lattice Clean This table concentrates on observables that SFFs can measure, with a few of the prime examples from hadron experiments to highlight that there are many things that need to be measured well. ### Golden Measurements: CKM Comparison of relative benefits of SuperB (75ab⁻¹) vs. existing measurements and LHCb (5fb⁻¹) and the LHCb upgrade (50fb⁻¹). # **LINACs and Transfer Lines** ### THE FLAVOUR PROBLEMS #### FERMION MASSES What is the rationale hiding behind the spectrum of fermion masses and mixing angles (our "Balmer lines" problem) # LACK OF A FLAVOUR "THEORY" (new flavour – horizontal symmetry, radiatively induced lighter fermion masses, dynamical or geometrical determination of the Yukawa couplings, ...?) #### **FCNC** Flavour changing neutral current (FCNC) processes are suppressed. In the SM two nice mechanisms are at work: the GIM mechanism and the structure of the CKM mixing matrix. How to cope with such delicate suppression if the there is new physics at the electroweak scale? UT_{fit} From the UTA (excluding its exp. constraint) | | Prediction | Measurement | Pull | |--|------------|-------------|--------------| | sin2β | 0.81±0.05 | 0.680±0.023 | 2.4 ← | | γ | 68°±3° | 76°±11° | <1 | | α | 88°±4° | 91°±6° | <1 | | V _{cb} · 10 ³ | 42.3±0.9 | 41.0±1.0 | <1 | | $ V_{ub} \cdot 10^3$ | 3.62±0.14 | 3.82±0.56 | <1 | | $\epsilon_K \cdot 10^3$ | 1.96±0.20 | 2.23±0.01 | 1.4 ← | | BR(B $\rightarrow \tau v$)· 10 ⁴ | 0.82±0.08 | 1.67±0.30 | -2.7 ← | **TARANTINO 2012** Which are the sources of flavor symmetry breaking accessible at low energies? $$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM+v}} + \frac{c_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)}$$ | Operator | Bounds on Λ in TeV $(c_{\rm NP}=1)$ | | Bounds on $c_{\rm NP}$ ($\Lambda=1~{ m TeV}$) | | Observables | |-----------------------------------|---|---------------------|---|-----------------------|-----------------------------------| | | Re | Im | Re | Im | | | $(\bar{s}_L \gamma^\mu d_L)^2$ | 9.8×10^{2} | 1.6×10^{4} | 9.0×10^{-7} | 3.4×10^{-9} | Δm_K ; ϵ_K | | $(\bar{s}_R d_L)(\bar{s}_L d_R)$ | 1.8×10^{4} | 3.2×10^{5} | 6.9×10^{-9} | 2.6×10^{-11} | Δm_K ; ϵ_K | | $(\bar{c}_L \gamma^{\mu} u_L)^2$ | 1.2×10^{3} | 2.9×10^{3} | 5.6×10^{-7} | 1.0×10^{-7} | Δm_D ; $ q/p $, ϕ_D | | $(\bar{c}_R u_L)(\bar{c}_L u_R)$ | 6.2×10^{3} | 1.5×10^{4} | 5.7×10^{-8} | 1.1×10^{-8} | Δm_D ; $ q/p , \phi_D$ | | $(\bar{b}_L \gamma^{\mu} d_L)^2$ | 6.6×10^{2} | 9.3×10^{2} | 2.3×10^{-6} | 1.1×10^{-6} | Δm_{B_d} ; $S_{\psi K_S}$ | | $(\bar{b}_R d_L)(\bar{b}_L d_R)$ | 2.5×10^{3} | 3.6×10^{3} | 3.9×10^{-7} | 1.9×10^{-7} | Δm_{B_d} ; $S_{\psi K_S}$ | | $(b_L \gamma^{\mu} s_L)^2$ | 1.4×10^{2} | 2.5×10^{2} | 5.0×10^{-5} | 1.7×10^{-5} | $\Delta m_{B_s}; S_{\psi\phi}$ | | $(\bar{b}_R s_L)(\bar{b}_L s_R)$ | 4.8×10^{2} | 8.3×10^{2} | 8.8×10^{-6} | 2.9×10^{-6} | $\Delta m_{B_s}; S_{\psi\phi}$ | | | | | | | | New flavor-breaking sources at the TeV scale (if any) are highly tuned ### arXiv:1205.5442 (BaBar) $B \rightarrow D^*\tau v$ - Measure a ratio of modes to reduce theoretical dependence of constraint. - 2D fit, using E_{extra} in an MVA that has a loose cut on it to minimise systematic impact on result. ### T Violation BaBar showed results at FPCP - 14 σ significance for this result: SuperB should confirm this measurement with high precision. - Part of our symmetry testing programme. ### DIRECT CPV IN $D^0 \rightarrow \pi^+\pi^-, K^+K^-$ 2011: LHCb, 620 pb⁻¹ first evidence (3.5 σ) of CPV in charm $$\Delta A_{\rm CP} = A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) = (-0.82 \pm 0.21 \pm 0.11)\%$$ **2012**: fom CDF, 9.6 fb⁻¹, + LHCb + BELLE $$\Delta A_{CP} \equiv A_{CP} \left(K^+ K^- \right) - A_{CP} \left(\pi^+ \pi^- \right) = \left(-0.74 \pm 0.15 \right) \%$$ This result demands an enhancement of the suppressed CKM amplitudes of the SM of a factor approx. 5 – 10 Isidori, Kamenik, Ligeti, Perez 2011 But the charm quark is **TOO HEAVY** to apply the ChPT, while, at the same time, it is TOO LIGHT to trust the Heavy Quark Effective approach: HENCE IT IS NOT **IMPOSSIBLE** THAT THE **SM** IS ONCE AGAIN FINDING A WAYOUT TO SURVIVE! Golden, Grinstein 1989; Brod, Kagan, Zupan 2011 ON THE OTHER IT REMAINS POSSIBLE THAT NEW PHYSICS IS SHOWING UP... Giudice, Isidori, Paradisi 2012; Barbieri, Buttazzo, Sala e Straub 2012 #### POSSIBLE SURPRISES FROM THE KAON TOO → NA62 ? - Ikaros Bigi has told us many times that we need to test CP violation in the up-quark sector. - LHCb have paved the way with a deviation from expectation ($D^0 \rightarrow KK/\pi\pi$). - − Belle also see a CP effect ($D^+ \rightarrow K_S pi^+$). - These are direct CPV measurements. "Binary test of the SM" - The experimental community is slowly coming round to the fact that hadronic uncertainties are important. - We need to: - Do time-dependent measurements (indirect CPV is clean[ish]) - Measure sets of channels to constrain hadronic uncertainties. - e.g. a long list of things to do here: $D^0 \rightarrow \pi^+ \pi^0$, ... # Charm Mixing Update • Now assume $1ab^{-1}$ at $\psi(3770)$. - Updated plots now available in the TDR. - K_shh Dalitz plot contribution helps shrink overall syst. error #### * The key role of LFV and EDMs The recent MEG bound, $BR(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$, and its final sensitivity (~10⁻¹³), can be taken as reference values to estimate potentially interesting levels for future LFV searches in different channels: #### * The key role of LFV and EDMs The recent MEG bound, $BR(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$, and its final sensitivity (~10⁻¹³), can be taken as reference values to estimate potentially interesting levels for future LFV searches in different channels: #### * The key role of LFV and EDMs ...and there is no doubt that if MEG will see a positive signal, then all other LFV searches would be extremely important to understand the nature of the effect. # Tau physics from a hadron machine • LHCb showed some nice preliminary results on $\tau \to 3\mu$ $$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 6.3 \times 10^{-8} \text{ at } 90\% \text{ CL},$$ $\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 7.8 \times 10^{-8} \text{ at } 95\% \text{ CL}.$ - 3 times *worse* limit than the B Factories using 1fb-1 of data. - Background plays a role, so one has to take care extrapolating limits. - Expect some improvement in method when extrapolating beyond this level. - See LHCb-CONF-2012-015 (personal opinion: Unfortunately LHCb succumbed to using CLs) ### τLFV