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ETH Zürich

11/02/2011

Nicolas Chanon H → γγ sensitivity studies using RooStats 1 / 7

Introduction

2

- This workshop: aims at reviewing state of the art Higgs and Higgs+jet kinematics 
in theoretical predictions and data measurement

- see previous talks from ATLAS on Higgs differential measurement

- V+jets can be seen as a benchmark for Higgs jet multiplicities modeling
- see V+jets talk later this afternoon

-  VV+jets is an irreducible background to H→VV decays and also an interesting 
benchmark for NNLO and multijet computations 

- In this talk I will focus on jet modeling in H→γγ, H→ZZ and H→WW analyses, and 
what we learned about jets with γγ, ZZ, WW measurements, that may be useful for 
the Higgs.
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CMS
Preliminary

 (7 TeV)-1 (8 TeV) +  5.1 fb-119.7 fb

68% CL
95% CL

H→VV summary
PAS HIG-14-009

Higgs boson signal strength μ=σ/σSM

by production 
mechanism

and final state tag

ggH: 
- NNLO normalization
- Shape from Powheg

VBF: 
- NNLO normalization
- Shape from Powheg

VH: 
- NNLO normalization
- Shape from Pythia

ttH: 
- NLO normalization
- Shape from Pythia
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4theoσ / expσProduction Cross Section Ratio:   
0.5 1 1.5 2

CMS PreliminaryApr 2014

All results at:
http://cern.ch/go/pNj7

(NNLO th.), γγ  0.09± 0.11 ±1.04 -15.0 fb
γW  0.06± 0.13 ±1.16 -15.0 fb
γZ  0.05± 0.05 ±0.98 -15.0 fb

WW+WZ  0.03± 0.20 ±1.05 -14.9 fb
WW  0.04± 0.11 ±1.11 -14.9 fb
WW  0.04± 0.12 ±1.22 -13.5 fb
WZ  0.03± 0.10 ±1.17 -14.9 fb
WZ  0.05± 0.08 ±1.12 -119.6 fb
ZZ  0.06± 0.15 ±0.99 -14.9 fb
ZZ  0.08± 0.10 ±1.00 -119.6 fb

7 TeV CMS measurement (exp+th) 

8 TeV CMS measurement (exp+th) 

CMS measurements
vs. NLO theory

VV summary
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

Diboson production
Data / NLO cross-section ratio

Recent progress in 
NNLO computation:
- Diphoton, Zγ, Wγ 

differential available
- WW, ZZ inclusive cross-

section available
- Only WZ is missing !

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
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H→γγ
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Fig. 2: Higgs branching ratios and their uncertainties for the low mass range (left) and for the full mass range
(right).
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Fig. 3: Higgs branching ratios for the different H → 4l and H → 2l2ν final states (left) and for H → 4q, H → 4f

and H → 2q2l, 2qlν, 2q2ν final states (right) and their uncertainties for the full mass range.

are correlated for MH > 500 GeV or small below, we only consider the simultaneous scaling of all
4-fermion partial widths. The thus obtained individual theoretical uncertainties for the branching ratios
are combined linearly to obtain the total theoretical uncertainties.

Finally, the total uncertainties are obtained by adding linearly the total parametric uncertainties
and the total theoretical uncertainties.

2.1.4 Results
In this section the results of the SM Higgs branching ratios, calculated according to the procedure de-
scribed above, are shown and discussed. Figure 2 shows the SM Higgs branching ratios in the low mass
range, 100 GeV < MH < 200 GeV, and in the “full” mass range, 100 GeV < MH < 1000 GeV, as
solid lines. The (coloured) bands around the lines show the respective uncertainties, estimated consid-
ering both the theoretical and the parametric uncertainty sources (as discussed in Section 2.1.3). More
detailed results on the decays H → WW and H → ZZ with the subsequent decay to 4f are presented in
Figures 3. The largest “visible” uncertainties are found for the channels H → τ+τ−, H → gg, H → cc,
and H → tt, see below.

In the following we list the branching ratios for the Higgs two-body fermionic and bosonic final
states, together with their uncertainties, estimated as discussed in Section 2.1.3. Detailed results for four
representative Higgs-boson masses are given in Table 3. Here we show the BR, the PU separately for
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H→γγ analysis
EPJC 74 (2014) 3076

6

- Look for small signal peak (small BR) over large background
- Main analysis is MVA - cut-based analysis and 2nd MVA analyses as cross-checks
- Select two high pt isolated photons from the same vertex

Large background 
from diphoton 
continuum (~70%) 
(after photon Id)

- Photon 
identification BDT 
to reject jets faking 
photons: shower 
shape and isolation
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Diphoton cross-section (7 TeV)
EPJC 74 (2014) 3129

7

- Kinematical range: |ηγ|<2.5, ET,γ1>40, ET,γ2>25 GeV, ΔR(γ1,γ2)>0.45
- Differential cross-section measured as a function of Mγγ, PT,γγ, ΔΦ(γ1,γ2), cos(θ*)
- Background: boosted neutral mesons (π0→γγ) reconstructed as a single γ (fake)
- Method: particle-flow photon isolation template to subtract statistically the background
- Purely data-driven: ~10% systematic uncertainties
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Diphoton cross-section (7 TeV)
EPJC 74 (2014) 3129

8

- NNLO predictions 
improve a lot the data/
MC agreement

- Sherpa (up to 3 ME 
extra-jets) shows also 
a good agreement

- Still an excess in data 
at low ΔΦ (sensitive to 
missing higher order 
QCD effects)
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Backgrounds in H→γγ
EPJC 74 (2014) 3076
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- Excellent agreement of diphoton sherpa with data also in H→γγ searches
- Gamma+jet and dijet with Pythia and k-factor estimated from XS measurements
- Models adequately difficult observables like diphoton mass and diphoton BDT 

output
- But MC is not used to evaluate the background, only to train the BDTs
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ETH Zürich

11/02/2011

Nicolas Chanon H → γγ sensitivity studies using RooStats 1 / 7

H→γγ: categories
EPJC 74 (2014) 3076

10

Diphoton BDT 
- Mass independant
- Kinematics, vertexing, 

PhotonId output, energy 
resolution variables

Sensitivity from 
mass fit. Bkgd: 
Bernstein 
polynomial (bias 
<20% stat 
uncertainty)

Cat 3 Cat 2 Cat 1 Cat 0
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H→γγ: VBF categories
EPJC 74 (2014) 3076
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Categories: 
- Defined with s/b and resolution level
- 5 untagged, 3 VBF categories, 3 VH cat, 
2 ttH

VBF tags:
- VBF is higher γγ pT, two forward jets
- Dijet BDT using γγ, jets kinematics
- Define two categories: s/b~0.5 and 

s/b~0.2

Gluon-gluon fusion contamination in VBF 
categories ~20-50%
Uncertainty:
- Stewart-Tackmann procedure: QCD scale 

uncertainty from Δσ = Δσ1 ⊕ Δσ2

VBF tight
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Spin measurement with H→γγ
EPJC 74 (2014) 3076
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- Cut-based analysis to minimize model-dependence
- Measurement of signal yield in bins of cos(θ*): μ differential measurement
- No unfolding
- Testing minimal graviton couplings, spin 2+ gluon fusion or qqbar initiated
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H→ZZ→4l 
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Fig. 2: Higgs branching ratios and their uncertainties for the low mass range (left) and for the full mass range
(right).
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Fig. 3: Higgs branching ratios for the different H → 4l and H → 2l2ν final states (left) and for H → 4q, H → 4f

and H → 2q2l, 2qlν, 2q2ν final states (right) and their uncertainties for the full mass range.

are correlated for MH > 500 GeV or small below, we only consider the simultaneous scaling of all
4-fermion partial widths. The thus obtained individual theoretical uncertainties for the branching ratios
are combined linearly to obtain the total theoretical uncertainties.

Finally, the total uncertainties are obtained by adding linearly the total parametric uncertainties
and the total theoretical uncertainties.

2.1.4 Results
In this section the results of the SM Higgs branching ratios, calculated according to the procedure de-
scribed above, are shown and discussed. Figure 2 shows the SM Higgs branching ratios in the low mass
range, 100 GeV < MH < 200 GeV, and in the “full” mass range, 100 GeV < MH < 1000 GeV, as
solid lines. The (coloured) bands around the lines show the respective uncertainties, estimated consid-
ering both the theoretical and the parametric uncertainty sources (as discussed in Section 2.1.3). More
detailed results on the decays H → WW and H → ZZ with the subsequent decay to 4f are presented in
Figures 3. The largest “visible” uncertainties are found for the channels H → τ+τ−, H → gg, H → cc,
and H → tt, see below.

In the following we list the branching ratios for the Higgs two-body fermionic and bosonic final
states, together with their uncertainties, estimated as discussed in Section 2.1.3. Detailed results for four
representative Higgs-boson masses are given in Table 3. Here we show the BR, the PU separately for

8
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ZZ→4l and H→ZZ(*)→4l

14

Z→4l:
- XS x BR 

measurement

H→ZZ*→4l:
- Very good s/b~2
- 3D analysis 

- ZZ→4l: onshell Z’s
- differential cross-section
- aTGC

Signature:
2 pair of opposite 
sign isolated 
leptons (4e, 2e2μ, 
4μ) consistent with 
the same vertex
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ZZ→4l cross-section
arxiv:1406.0113 (accepted by PLB)
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- Background subtraction: Z+jets (estimated with inverted 
isolation), ttbar

- Inclusive and differential cross-sections

“ZZ”: 
Powheg qq+ggZZ

√
s (TeV) σLO (pb) σNLO (pb) σNNLO (pb)

7 4.167+0.7%
−1.6% 6.044+2.8%

−2.2% 6.735+2.9%
−2.3%

8 5.060+1.6%
−2.7% 7.369+2.8%

−2.3% 8.284+3.0%
−2.3%

9 5.981+2.4%
−3.5% 8.735+2.9%

−2.3% 9.931+3.1%
−2.4%

10 6.927+3.1%
−4.3% 10.14+2.9%

−2.3% 11.60+3.2%
−2.4%

11 7.895+3.8%
−5.0% 11.57+3.0%

−2.4% 13.34+3.2%
−2.4%

12 8.882+4.3%
−5.6% 13.03+3.0%

−2.4% 15.10+3.2%
−2.4%

13 9.887+4.9%
−6.1% 14.51+3.0%

−2.4% 16.91+3.2%
−2.4%

14 10.91+5.4%
−6.7% 16.01+3.0%

−2.4% 18.77+3.2%
−2.4%

Table 1: Inclusive cross section for ZZ production at the LHC at LO, NLO and NNLO with
µF = µR = mZ . The uncertainties are obtained by varying the renormalization and factorization
scales in the range 0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF/µR < 2.

does not cover the NNLO effect. This is not unexpected since the gluon fusion channel, which
provides a rather large contribution, opens up only at NNLO.

We have reported the first calculation of the inclusive cross section for the production of on-
shell Z-boson pairs at the LHC up to NNLO in QCD perturbation theory. The NNLO corrections
increase the NLO result by an amount varying from 11% to 17% as

√
s ranges from 7 to 14 TeV. The

loop-induced gluon fusion contribution provides more than half of the complete NNLO effect. Our
calculation of the total cross section is based on the two-loop matrix element for qq̄ → ZZ for on-
shell Z bosons. A computation of the two-loop helicity amplitudes will open up a spectrum of more
detailed phenomenological studies at NNLO, including off-shell effects, differential distributions
of the Z boson decay products and direct comparison with the experimentally measured fiducial
cross sections.
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−5.0% 11.57+3.0%

−2.4% 13.34+3.2%
−2.4%

12 8.882+4.3%
−5.6% 13.03+3.0%

−2.4% 15.10+3.2%
−2.4%

13 9.887+4.9%
−6.1% 14.51+3.0%

−2.4% 16.91+3.2%
−2.4%

14 10.91+5.4%
−6.7% 16.01+3.0%

−2.4% 18.77+3.2%
−2.4%

Table 1: Inclusive cross section for ZZ production at the LHC at LO, NLO and NNLO with
µF = µR = mZ . The uncertainties are obtained by varying the renormalization and factorization
scales in the range 0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF/µR < 2.

does not cover the NNLO effect. This is not unexpected since the gluon fusion channel, which
provides a rather large contribution, opens up only at NNLO.

We have reported the first calculation of the inclusive cross section for the production of on-
shell Z-boson pairs at the LHC up to NNLO in QCD perturbation theory. The NNLO corrections
increase the NLO result by an amount varying from 11% to 17% as

√
s ranges from 7 to 14 TeV. The

loop-induced gluon fusion contribution provides more than half of the complete NNLO effect. Our
calculation of the total cross section is based on the two-loop matrix element for qq̄ → ZZ for on-
shell Z bosons. A computation of the two-loop helicity amplitudes will open up a spectrum of more
detailed phenomenological studies at NNLO, including off-shell effects, differential distributions
of the Z boson decay products and direct comparison with the experimentally measured fiducial
cross sections.
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- 0,1jet Kinematic discriminant 
(KD): Matrix element method using 
invariant mass of Z1 and Z2 and 5 
angular variables. 

2

FIG. 1: Illustration of an exotic X particle production and decay in pp collision gg or qq̄ → X → ZZ → 4l±. Six angles fully
characterize orientation of the decay chain: θ∗ and Φ∗ of the first Z boson in the X rest frame, two azimuthal angles Φ and Φ1

between the three planes defined in the X rest frame, and two Z-boson helicity angles θ1 and θ2 defined in the corresponding
Z rest frames. The offset of angle Φ∗ is arbitrarily defined and therefore this angle is not shown.

discussed in Refs. [21–23] KK graviton decays into pairs of gauge bosons are enhanced relative to direct decays into
leptons. Similar situations may occur in “hidden-valley”-type models [24]. An example of a ”heavy photon” is given
in Ref. [25].
Motivated by this, we consider the production of a resonance X at the LHC in gluon-gluon and quark-antiquark

partonic collisions, with the subsequent decay of X into two Z bosons which, in turn, decay leptonically. In Fig. 1,
we show the decay chain X → ZZ → e+e−µ+µ−. However, our analysis is equally applicable to any combination of
decays Z → e+e− or µ+µ−. It may also be applicable to Z decays into τ leptons since τ ’s from Z decays will often be
highly boosted and their decay products collimated. We study how the spin and parity of X , as well as information
on its production and decay mechanisms, can be extracted from angular distributions of four leptons in the final state.
There are a few things that need to be noted. First, we obviously assume that the resonance production and

its decays into four leptons are observed. Note that, because of a relatively small branching fraction for leptonic Z
decays, this assumption implies a fairly large production cross-section for pp → X and a fairly large branching fraction
for the decay X → ZZ. As we already mentioned, there are well-motivated scenarios of BSM physics where those
requirements are satisfied.
Second, having no bias towards any particular model of BSM physics, we consider the most general couplings of the

particle X to relevant SM fields. This approach has to be contrasted with typical studies of e.g. spin-two particles
at hadron colliders where such an exotic particle is often identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this case as the “minimal coupling” of the spin-two particle
to SM fields.
The minimal coupling scenarios are well-motivated within particular models of New Physics, but they are not

sufficiently general. For example, such a minimal coupling may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restriction opens an interesting possibility to understand the couplings
of a particle X to SM fields by means of partial wave analyses, and we would like to set a stage for doing that in this
paper. To pursue this idea in detail, the most general parameterization of the X coupling to SM fields is required.
Such parameterizations are known for spin-zero, spin-one, and spin-two particles interacting with the SM gauge
bosons [7, 8] and we use these parameterizations in this paper. We also note that the model recently discussed in
Refs. [21–23] requires couplings beyond the minimal case in order to produce longitudinal polarization dominance.
Third, we note that while we concentrate on the decay X → ZZ → l+1 l

−
1 l

+
2 l

−
2 , the technique discussed in this

paper is more general and can, in principle, be applied to final states with jets and/or missing energy by studying
such processes as X → ZZ → l+l−jj, X → W+W− → l+νjj, etc. In contrast with pure leptonic final states,
higher statistics, larger backgrounds, and a worse angular resolution must be expected once final states with jets and
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H→ZZ(*)→4l: Higgs pT
PRD 89 (2014) 092007
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Fig. 2: Higgs branching ratios and their uncertainties for the low mass range (left) and for the full mass range
(right).
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Fig. 3: Higgs branching ratios for the different H → 4l and H → 2l2ν final states (left) and for H → 4q, H → 4f

and H → 2q2l, 2qlν, 2q2ν final states (right) and their uncertainties for the full mass range.

are correlated for MH > 500 GeV or small below, we only consider the simultaneous scaling of all
4-fermion partial widths. The thus obtained individual theoretical uncertainties for the branching ratios
are combined linearly to obtain the total theoretical uncertainties.

Finally, the total uncertainties are obtained by adding linearly the total parametric uncertainties
and the total theoretical uncertainties.

2.1.4 Results
In this section the results of the SM Higgs branching ratios, calculated according to the procedure de-
scribed above, are shown and discussed. Figure 2 shows the SM Higgs branching ratios in the low mass
range, 100 GeV < MH < 200 GeV, and in the “full” mass range, 100 GeV < MH < 1000 GeV, as
solid lines. The (coloured) bands around the lines show the respective uncertainties, estimated consid-
ering both the theoretical and the parametric uncertainty sources (as discussed in Section 2.1.3). More
detailed results on the decays H → WW and H → ZZ with the subsequent decay to 4f are presented in
Figures 3. The largest “visible” uncertainties are found for the channels H → τ+τ−, H → gg, H → cc,
and H → tt, see below.

In the following we list the branching ratios for the Higgs two-body fermionic and bosonic final
states, together with their uncertainties, estimated as discussed in Section 2.1.3. Detailed results for four
representative Higgs-boson masses are given in Table 3. Here we show the BR, the PU separately for

8
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H→W+W- analysis
JHEP 01 (2014) 096

H→WW→2l2ν analysis: High BR, but no mass peak (resolution is ~20%)
- Two isolated leptons with pT>20,10 GeV and mET>20 GeV
- CategorIES: 0-jet, 1-jet, 2-jet bins, then ee,μμ,eμ with opposite charge
- Main backgrounds: WW, top (1,2jet bins), W+jets (estimated from control regions in data)
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1-jet bin

24 6 Final states with two charged leptons
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Figure 12: Distributions of the dilepton mass (left) in the same-charge dilepton control region
in the 0-jet category and the transverse mass (right) in the top-tagged control region in the 1-jet
category of the eµ final state.

been tested in dedicated control regions with data. Both the fit procedure and the background
estimations are found to be very robust.

Finally, the template shape for the dominant qq ! WW background process has been cross-
checked by replacing the template histogram obtained from the default generator by another
one and rederiving the shape uncertainty templates that are allowed to vary in the fit. Table 8
summarizes the results of this procedure using MADGRAPH (a priori default used in the analy-
sis), MC@NLO, and POWHEG. The signal significance, and the best-fit signal strength are found
to be consistent with one another for the three different qq ! WW template models tested.

Table 8: A summary of the expected and observed 95% CL upper limits on the H ! WW pro-
duction cross section relative to the SM prediction, significances in units of standard deviations
(sd), and the best-fit value of s/sSM for the SM Higgs boson with a mass of 125 GeV for the 0-jet
and 1-jet categories using the template fit to (mT, m``), where three different generators have
been used to model the qq ! WW background process.

qq ! WW 95% CL limits on s/sSM Significance s/sSM
generator expected / observed expected / observed observed
MADGRAPH (default) 0.4 / 1.2 5.2 / 4.0 sd 0.76 ± 0.21
MC@NLO 0.4 / 1.2 5.3 / 4.2 sd 0.82 ± 0.24
POWHEG 0.4 / 1.2 5.1 / 3.9 sd 0.74 ± 0.21

6.3 The two-jet VBF tag

The second-largest production mode for the SM Higgs boson is through VBF, for which the
cross section is approximately an order of magnitude smaller than that of the gluon fusion
process. In this process two vector bosons are radiated from initial-state quarks and produce
a Higgs boson at tree level. In the scattering process, the two initial-state partons may scatter
at a polar angle from the beam axis large enough to be detected as additional jets in the signal
events. Furthermore, these two jets, being remnants of the incoming proton beams, feature

qq→WW background 
modeling is crucial !

2D analysis in (mT, mll) 
for the opposite flavor 0-
jet and 1-jet bins (cross-
check with a 2nd 2D 
analysis)
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WW cross-section
EPJC 73 (2013) 2610
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Inclusive WW cross-section
- Fakes from inverted isolation
- Measurement performed in 0-jet bin (so far)
- Jet veto QCD scale uncertainty 4.6%
- Unfolding to inclusive cross-section

3

√
s

TeV σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5% 45.16+3.7%

−2.9% 49.04+2.1%
−1.8% 3.25+7.1%

−7.8%

8 35.50+2.4%
−3.5% 54.77+3.7%

−2.9% 59.84+2.2%
−1.9% 4.14+7.2%

−7.8%

13 67.16+5.5%
−6.7% 106.0+4.1%

−3.2% 118.7+2.5%
−2.2% 9.44+7.4%

−7.9%

14 73.74+5.9%
−7.2% 116.7+4.1%

−3.3% 131.3+2.6%
−2.2% 10.64+7.5%

−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-

3
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ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
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In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
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individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
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lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in
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the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-
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Table 2: Expected and observed event yields for the ZZ selection. The uncertainties correspond
to the statistical and systematic uncertainties added in quadrature.

Channel 4e 4µ 2e2µ 2`2t
ZZ 11.6 ± 1.4 20.3 ± 2.2 32.4 ± 3.5 6.5 ± 0.8
Background 0.4 ± 0.2 0.4 ± 0.3 0.5 ± 0.4 5.6 ± 1.4
Signal+background 12.0 ± 1.4 20.7 ± 2.2 32.9 ± 3.5 12.1 ± 1.6
Data 14 19 38 13

tributions around the estimated central values. The resulting cross section is

s(pp ! ZZ) = 8.4 ± 1.0 (stat.) ± 0.7 (syst.) ± 0.4 (lum.)pb.

This is to be compared to the theoretical value of 7.7 ± 0.4 pb calculated with MCFM at NLO
for qq ! ZZ and LO for gg ! ZZ with MSTW08 PDF, and factorization and renormalization
scales set to the Z mass, for both lepton pairs in the mass range 60 < mZ < 120 GeV.

7 Summary

The W+W� and ZZ production cross sections have been measured in proton-proton collisions
at

p
s = 8 TeV in the W+W� ! `0n`00n and ZZ ! 2`2`0 decay modes with ` = e, µ and `0(`00) =

e, µ, t. The data samples correspond to an integrated luminosity of 3.5 fb�1 for the W+W� and
5.3 fb�1 for the ZZ measurements. The measured production cross sections s(pp ! W+W�) =
69.9 ± 2.8 (stat.) ± 5.6 (syst.) ± 3.1 (lum.)pb and s(pp ! ZZ) = 8.4 ± 1.0 (stat.) ± 0.7 (syst.) ±
0.4 (lum.)pb, for both Z bosons produced in the mass region 60 < mZ < 120 GeV, are consistent
with the standard model predictions. This is the first measurement of the diboson production
cross sections at

p
s = 8 TeV.
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the distinct signature of having high momentum and large separation in pseudorapidity, hence
sizeable invariant mass, with an absence of additional hadronic activity in the central rapidity
region due to the lack of color exchange between the parent quarks. By exploiting this specific
signature, VBF searches typically have a good signal-to-background ratio. In this analysis the
signal-to-background ratio approaches one after all the selection criteria are applied.

To select events with the characteristics of the VBF process, the two highest pT jets in the event
are required to have pseudorapidity separation of |Dhjj| > 3.5 and to form an invariant mass
mjj > 500 GeV. Events with an additional jet situated in the pseudorapidity range between the
two leading jets are rejected. Both leptons are also required to be within the pseudorapidity
region defined by the two highest pT jets.

6.3.1 Analysis strategy

Given the small event yield for the 2-jet category with VBF tag with the currently available
datasets, the signal extraction uses a template fit to a single kinematic variable with appropriately-
sized bins. The dilepton mass, m``, has been chosen for its simple definition and discrimination
power, and also because the hadronic information is already extensively used in the event se-
lection. The counting analysis is pursued for the same-flavor category, and also used as a
cross-check of the shape-based approach for the different-flavor final state.

Since the fit to data uses only the m`` distribution, the events are preselected to satisfy mT
smaller than the Higgs boson mass of the given hypothesis. For Higgs boson mass hypotheses
of 250 GeV and above, p`,max

T is required to be greater than 50 GeV. The m`` template has 14
bins for the 8 TeV sample and 10 bins for the 7 TeV sample, covering the range from 12 GeV to
600 GeV.

For the counting analysis, the same requirements as the 0-jet and 1-jet analyses are applied, as
summarized in Table 4, except for the lower mT threshold which is kept at 30 GeV for all Higgs
boson mass hypotheses. The results of the same-flavor counting analysis are combined with
the results of the different-flavor shape analysis to provide the result for this category.

6.3.2 Results

The data yields and the expected yields for the SM Higgs boson signal and various back-
grounds in each of the lepton-flavor final states for the VBF analysis are listed in tables 9
and 10, for several representative Higgs boson mass hypotheses. For a Higgs boson with
mH = 125 GeV, a few signal events are expected to be observed with a signal-to-background
ratio of about one. The contribution to the VBF selection from gluon fusion Higgs boson pro-
duction after all selection requirements is approximately 20% of the total signal yield [87].

Figure 13 shows the comparison of m`` between the prediction and the data for a Higgs bo-
son mass of 125 GeV after the selection for the shape-based analysis. The 95% CL observed
and median expected upper limits on the production cross section of the H ! WW process
are shown in Fig. 14. Limits are reported for both counting and shape-based analyses. The
observed (expected) signal significance for the shape-based approach is 1.3 (2.1) standard devi-
ations for a SM Higgs boson with mass of 125 GeV. The observed signal strength for this mass
is s/sSM = 0.62+0.58

�0.47. A summary of the results for mH = 125 GeV is shown in Table 11.

6.4 The two-jet VH tag

The analysis of the associated production of a SM Higgs boson with a W or a Z boson in the
dilepton final state selects events with two centrally produced (|h| < 2.5) jets from the decay of
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Same sign WW scattering
arxiv:1410.6315 (submitted to PRL)

Signal definition: EWK+QCD with interference
Fiducial region:
Mjj>500 GeV and dijet rapidity difference |Δηjj|>2.5

Backgrounds:
- Jets faking electrons (non-prompt): estimated 
from loosely isolated leptons
- WZ: estimated from data 3 leptons control region

Electroweak production QCD production
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Electroweak WW production can help us 
understanding how Higgs is involved in unitarization.
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Signal extraction:
- Use dijet mass shape (4 bins x positive and 

negative signs)
- Significance: expected 3.1σ, observed 2.0σ

4

The normalization of the fake lepton processes has a 36% systematic uncertainty [17], which
has two sources: the dependence on the sample composition, and the method used to estimate
it. The WZ normalization uncertainty is 35%, and it is completely dominated by the amount of
events in the trilepton control region.

A QCD scale systematic uncertainty of 50% on the VVV normalization is considered, and 5%
on the signal normalization. A correlated PDF uncertainty of 6 � 8% on the normalization of
the signal and WZ processes is included. All of the systematic uncertainties on normalizations
are described by log-normal distribution. A summary of all systematic uncertainties is shown
in Table 2.

Table 2: Summary of all relative systematic uncertainties.

Source Signal WW DPS WZ Wrong sign VVV Non-prompt
Luminosity 2.6 2.6 - 2.6 2.6 -
Lepton efficiency 3.6 3.6 3.6 3.6 3.6 -
Momentum resolution 0.2 0.2 0.2 0.2 0.2 -
b-tagging 2.0 2.0 - 2.0 2.0 -
Emiss

T 1.0 1.0 1.0 1.0 1.0 -
JES 3.0 3.0 3.0 3.0 3.0 -
PDF 7.7 7.0 7.1 - - -
QCD scales EWK 5.0 - - - - -
QCD scales VVV - - - - 50.0 -
WZ normalization - - 37.0 - - -
Wrong sign normalization - - - 10.0 - -
Nom-prompt normalization - - - - - 36.0
Statistical uncertainty 2.0 57.0 15.0 55.0 18.0 19.0

The cross section is extracted for a fiducial dilepton same-sign signal region. An inclusive mea-
surement would be dominated by non-EWK processes with the same final states. The fiducial
region is defined by p`T > 10 GeV, |h`| < 2.5, pj

T > 20 GeV, |h j| < 5.0, mjj > 300 GeV
and |Dhjj| > 2.5. The measured cross sections are corrected to the acceptance in this region
using the MADGRAPH MC generator, which is also used to estimate the predicted cross sec-
tion. The MADGRAPH prediction of the same-sign W pair cross section is corrected by a k-
factor estimated using VBFNLO [25–27]. The measured fiducial cross section is s(W±W± jj) =
4.0+2.4

�2.0 (stat)+1.1
�1.0 (syst) fb with an expectation of 5.8 ± 1.2 fb. In addition to the dilepton same-

sign signal region, a WZ ! `n`` control region is studied by requiring an additional lepton
with pT larger than 10 GeV. The measured fiducial cross section is s(WZjj) = 10.8± 4.0 (stat)±
1.3 (syst) fb with an expectation of 14.4 ± 4.0 fb. The overall correction factor is 7.4% for the
same-sign W pair and 3.6% for the WZ fiducial cross section.

The observed (expected) significance is 2.0 s (3.1 s). If the 10% of the QCD W±W± component
is considered as background, and hence subtracted from the signal fraction, the observed (ex-
pected) signal significance reduces to 1.9 s (2.9 s). In the absence of evidence for vector boson
scattering production, a 95% confidence level (CL) upper limit of 1.5 times the SM expectation
with an expected upper limit of 0.7 times the SM expectation is set.

Various extensions of the SM alter the couplings of vector bosons to each other. In Refer-
ence [28] it is shown that there are nine independent C and P conserving dimension eight
effective operators modifying the quartic couplings between the weak gauge bosons. The vari-
able m`` is found to be the most sensitive variable among those considered, e.g. m``, mlljj, and
mjj. Figure 2 (left) shows the m`` distribution for three values of FT,0/L4 (where L is the new
physics scale), a coefficient of one of the nine effective operators, together with the sum of all

EWK / QCD contamination:
- CMS defines signal as EWK+QCD (interference compatible with 0 within scale 

uncertainty)
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Also measure WZjj cross-section:
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Conclusions
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- Diboson cross-sections: excess seems reduced by comparing to newly 
available NNLO cross-sections

- Accurate description of differential distributions needs NNLO differential or 
multijet ME+PS

 
- Higgs differential measurement at CMS is ongoing work, stay tuned...

- Higgs measurement rely on adequate MC for gluon fusion contamination in 
VBF

- WW scattering: first measurements performed. Needs more data for 5σ. 
Measuring interference with Higgs needs more data.



Thank you!

25



26

BACK-UP SLIDES
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CMS detector
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Luminosity conditions
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Analyses presented in this talk are using:
- 5.1 fb-1 of 7 TeV data in 2011
- Up to 20 fb-1 of 8 TeV data in 2012
Pileup mean interaction ~21 in 2012 (~10 in 2011)
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CMS electromagnetic 
calorimeter(ECAL)

Outline
Introduction

CMS projected sensitivity to H → γγ channel
ECAL Calibration

Electromagnetic energy deposits commissioning
Conclusions

CMS Electromagnetic calorimeter (ECAL)

The ECAL is made of PbWO4 scintillating crystals

Barrel (EB) : 36 “supermodules” of 1700 crystals each (coverage |η| < 1.48)

Endcaps (EE) : 268 “supercrystals” of 25 crystals each (coverage 1.48 < |η| < 3.0)

Additionnaly, a preshower (ES) detector made of silicon strip sensors is located in
front of the endcap (coverage 1.65 < |η| < 2.6)

ECAL energy resolution (measured in
test-beams) :

σ(E)

E
=

a
p

E(GeV )
⊕

b

E(GeV )
⊕ c

a = 2.8% : stochastic term
b = 12% : noise term
c = 0.3% : constant term

Nicolas Chanon Photon commissioning in CMS at
√

s = 7 TeV 5 / 12
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The ECAL is made of scintillating crystals of PbWO4 :
-Barrel : 36 “supermodules” with 1700 crystals each (coverage |η|<1.48)
-Endcaps : 268 “supercrystals” with 25 crystals each (coverage 1.48<|η|<3.0)
Furthermore, a preshower made of silicon strip sensors is located in front of the endcaps 
(1.65<|η|<2.6)

Energy resolution (measured in electron 
test beam) :

a = 2.8% stochastic term
b = 12% noise term
c = 0.3% constant tern
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Diphoton cross-section at 7 TeV
SMP-13-001, 4.7fb-1 at 7 TeV
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Zγ→llγ cross-section
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13014

Kinematical range: 
- Leptons Mll>50 GeV, pT,l>20 GeV, photons |ηγ|<2.5, ET,γ>15 GeV, ΔR(γ,l)>0.7 

(selects ISR)
Two methods are combined to estimate jets faking photons background: 
- Particle-flow photon isolation template 
- η width of the energy deposit (“σiηiη”)
- Sideband regions tuned to minimize bias in MC

NEW
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Zγ→llγ cross-section
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13014

Inclusive cross section measured vs photon pT
- For the first time comparison with NNLO [Grazzini, Kallweit, Rathlev, Torre, hep-

ph:1309.7000]: good agreement
- Kinematical range: Leptons Mll>50 GeV, pT,l>20 GeV, |ηl|<2.5, photons |ηγ|<2.5, 

ET,γ>15 GeV, ΔR(γ,l)>0.7
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Zγ→llγ cross-section
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13014

Exclusive cross-section with jet veto:
- Comparison with MCFM (NLO) and Sherpa with jet-veto: good agreement also 

with NLO because of softer phase-space
- No jet with pT>30 GeV in |ηj|<2.4
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Zγ→llγ cross-section
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13014
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aTGC measurement:
- Limits set using photon pT
- Limits on ZZγ, Zγγ vertices
- Improvement by a factor 2.5-3 over the 
previous 7 TeV measurement
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Zγ→llγ cross-section
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13014
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Behavior using a form factor and unitarity bounds
- The non-unitarized limit can be recovered with a infinity form factor
- Unitarity bound (computed with VBFNLO website) crossed for a form factor of 

around 6 TeV (h3Z) or 3.5 TeV (h4Z)
- Below, the measurement probes aTGC in the unitarity region
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