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Introduction

Finite-density quantum chromodynamics (QCD)

Neutron star merger

(image from NASA)

=QCD
Fundamental theory for quarks and gluons

Neutron star

Cold and dense nuclear matter

2msun neutron star (2010)

Gravitational-wave observations (2016∼)

Path-integral expression of finite-density QCD:

ZQCD(T, µ) =

∫
DA Det(/D(A, µq) +m)︸ ︷︷ ︸

quark

exp (−SYM(A))︸ ︷︷ ︸
gluon

.

Sign problem: Det(/D(A, µq) +m) 6≥ 0 at µq 6= 0.
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Method

Sign problem & Complexification of variables

Consider the path integral:

Z =

∫
Dx exp(−S[x]).

S[x] is real ⇒ No sign problem. Monte Carlo works.

S[x] is complex ⇒ Sign problem appears!

If S[x] ∈ C, eom S ′[x] = 0 may have no real solutions x(t) ∈ R.

Idea: Complexify x(t) ∈ C!
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Method

Lefschetz thimble for Airy integral
Airy integral is given as

Ai(a) =

∫
R

dx

2π
exp i

(
x3

3
+ ax

)
Complexify the integration variable: z = x+ iy.

Re(z)

Im(z)
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Integrand on R, and on J1

(a = 1)
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Method

Rewrite the Airy integral

There exists two Lefschetz thimbles Jσ (σ = 1, 2) for the Airy
integral:

Ai(a) =
∑
σ

nσ

∫
Jσ

dz

2π
exp i

(
z3

3
+ az

)
.

nσ: intersection number of the steepest ascent contour Kσ and R.

Figure: Lefschetz thimbles J and duals K (a = 1e0.1i, −1)
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Method

Gradient flow

Problem in the multi-dimension
Im(S) = const. gives (2n-1)-dim. manifolds, instead of n-dim. ones.

Gradient flow Consider

dzi

dt
=

(
∂S(z)

∂zi

)
.

This defines the steepest descent directions, since

d

dt
S(z) =

∑
i

∣∣∣∣(∂S(z)∂zi

)∣∣∣∣2 ≥ 0.

The flow lines satisfies Im(S) = const. [Witten, arXiv:1001.2933, 1009.6032]
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Method

Lefschetz decomposition formula

Oscillatory integrals with many variables can be evaluated using the
“steepest descent” cycles Jσ: (classical eom S ′(zσ) = 0)∫

Rn
dnx e−S(x) =

∑
σ

〈Kσ,R〉
∫
Jσ

dnz e−S(z).

Jσ are called Lefschetz thimbles, and Im[S] is constant on it:

Jσ =

{
z(0)

∣∣∣ lim
t→−∞

z(t) = zσ

}
,

dzi(t)

dt
=

(
∂S(z)

∂zi

)
.

〈Kσ,R〉: intersection numbers of duals Kσ and Rn

(Kσ = {z(0)|z(∞) = zσ}).
[Pham, ‘83, etc., Witten, arXiv:1001.2933, 1009.6032]
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MC on one-thimble

Monte Carlo simulation on one Lefschetz thimble

Most of the works before LATTICE 2015 are devoted to MC method
with one-thimble ansatz.

Z =

∫
Rn

dnx e−S(x) ⇒ Z ′ =

∫
J0

dnz e−S(z).

[Christoforetti et al. (PRD(2012)), Fujii et al. (JHEP 1310), etc.]

Motivation

Within the mean-field approx, this seems to be justified for
bosonic theories.

It was not known how to take the summation over thimbles.

It is successful for several models, and a lot of numerical techniques
are developed.
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MC on one-thimble

Relativistic Bose gas:

S =

∫
d4x

[
|∂φ|2 + (m2 − µ2)|φ|2 + µφ∗∂0φ+ λ|φ|4

]
(Cristoforetti et al., PRD 88 (2013) 051501; Fujii et al., JHEP 1310 (2013) 147;

Cristoforetti et al., PRD 89 (2014) 114505; Alexandru et al. 1606.02742)

Fujii et al. (JHEP 1310)
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MC on one-thimble

Chiral Random Matrix model

S = Ntr(X†X + Y †Y )− ln det
(

m i ch(µ)X + sh(µ)Y
i ch(µ)X† + sh(µ)Y † m

)Nf

CRMT with 1-thimble ansatz with Nf = 2, µ/
√
N = 2. (Di Renzo, Eruzzi, PRD(2015))

(cf. Naive CL gives the phase-quenched result. (Mollgaard, Splittorff, 1309.4335)

Some gauge cooling extends applicability of CL until µ/
√
N . 3 (Nagata et al. 1604.07717))
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fermion model

(0+1)-dimensional fermion model

List

Tanizaki, Hidaka, Hayata, 1509.07146

Fujii, Kamata, Kikukawa, 1509.08176, 1509.09141

Alexandru, Basar, Bedaque, 1510.03258

Alexandru, Basar, Bedaque, Ridgway, Warrington, 1512.08764

Related studies

2-dim Hubbard on 1-thimble (Mukherjee, Cristoforetti,
1403.5680)

0-dim models (Tanizaki, 1412.1891, Kanazawa, Tanizaki,
1412.2802)

Ch. RMT on 1-thimble (Eruzzi, Di Renzo, 1507.03858)
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fermion model

One-site Fermi Hubbard model
One-site Hubbard model:

Ĥ = Un̂↑n̂↓ − µ(n̂↑ + n̂↓).

Fock state gives the number density immediately:

〈n̂〉 = 1

β

∂

∂µ
lnZ =

2(eβµ + eβ(2µ−U))

1 + 2eβµ + eβ(2µ−U)
.

In the zero-temperature limit,

0 1-0.5 1.50.5

1

2

(YT, Hidaka, Hayata, 1509.07146)
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fermion model

Path integral for one-site model
Effective Lagrangian of the one-site Hubbard model:

L =
ϕ2

2U
+ ψ∗ [∂τ − (U/2 + iϕ+ µ)]ψ.

The path-integral expression is

Z =

√
β

2πU

∫
R
dϕ
(
1 + eβ(iϕ+µ+U/2)

)2︸ ︷︷ ︸
Fermion Det

e−βϕ
2/2U .

Integrand has complex phases causing the sign problem.

ϕ is an auxiliary field for the number density:

〈n̂〉 = Im〈ϕ〉/U.
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fermion model

Sign problem and Gradient flows at µ/U < −0.5

Det

[
∂τ −

(
µ+

U

2
+ iϕ

)]
=
(
1 + e−β(−U/2−µ)eiβϕ

)2 ' 1.

0-0.25-0.5-0.75
-1.0

-0.5

0

0.25 0.5 0.75

Figure: Flow at µ/U = −1. J∗ ' R.
(YT, Hidaka, Hayata, 1509.07146)
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fermion model

Flows at −0.5 < µ/U < 1.5

0-0.25-0.5-0.75

0.0

0.25

0.5

0.75

0.25 0.5 0.75

Figure: Flow at µ/U = 0

Complex saddle points lie on nMF = Im(zm)/U ' µ/U + 1/2.
(YT, Hidaka, Hayata, 1509.07146)
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fermion model

Complex classical solutions

0-0.25-0.5-0.75

0.0

0.25

0.5

0.75

0.25 0.5 0.75

Classical solutions:

zm ' i

(
µ+

U

2

)
+ 2πmT.

At these solutions, the classical actions become

0 1-1/2 3/2

1

2S0 ' −βU
2

(
µ
U
+ 1

2

)2
,

Re (Sm − S0) ' 2π2

βU
m2,

ImSm ' 2πm
(
µ
U
+ 1

2

)
.

Classically, Zclassical =
∑
m

e−Sm .
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fermion model

Numerical results
Results for βU = 30: (1, 3, 5-thimble approx.: J0, J0 ∪ J±1, and J0 ∪ J±1 ∪ J±2 )

exact
1-thimble
3-thimble
5-thimble

-0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

mêU

n

Necessary number of Lefschetz thimbles ' βU/(2π).
(YT, Hidaka, Hayata,1509.07146)
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Relation with complex Langevin

Relation with complex Langevin method

List

Aarts, 1308.4811, Aarts, Bongiovanni, Seiler, Sexty, 1407.2090

Tsutsui, Doi, 1508.04231

Fukushima, Tanizaki, 1507.07351

Hayata, Hidaka, Tanizaki, 1511.02437

Abe, Fukushima, 1607.05436
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Relation with complex Langevin

Complex Langevin method

Complex Langevin has been regarded as a sign-problem solver via
stochastic quantization (Klauder, PRA 29, 2036 (1984), Parisi, PLB 131, 393 (1983)):

dzη(θ)

dθ
= −∂S

∂z
(zη(θ)) +

√
~η(θ).

θ: Stochastic time, η: Random force 〈η(θ)η(θ′)〉η = 2δ(θ − θ′).
Itô calculus shows that

d

dθ
〈O(zη(θ))〉η = ~〈O′′(zη(θ))〉η − 〈O′(zη(θ))S ′(zη(θ))〉η.

If the l.h.s becomes zero as θ →∞, this is the Dyson–Schwinger eq.
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Relation with complex Langevin

Relation between CL and LT?

Both methods relies on complexification, but not much is known for
their relations.
CL and LT looks similar, but they are still different:
(U(1) link model , S = −β cos(z)− ln[1 + κ cos(z − iµ)])

(Aarts, Bongiovanni, Seiler, Sexty, 1407.2090)
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Relation with complex Langevin

Semiclassical incorrectness of CL method

If ~ is small enough, we can show a sufficient condition for incorrect
behaviors of CL method.
(Hayata, Hidaka, YT, 1511.02437)

Assume that CL method is correct, then

〈O(zη)〉η =
1

Z

∑
σ

〈Kσ,Rn〉
∫
Jσ

dz e−S(z)/~O(z).

Since ~� 1,

∃cσ ≥ 0 s.t. 〈O(zη)〉η '
∑
σ

cσO(zσ).
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Relation with complex Langevin

Semiclassical inconsistency

In the semiclassical analysis, one now obtains (for dominant saddle
points)

cσ =
〈Kσ,Rn〉

Z

√
2π~
S ′′(zσ)

e−S(zσ)/~.

The right hand side can be complex, which contradicts with cσ ≥ 0!
(Hayata, Hidaka, YT, 1511.02437)

We show that the complex Langevin is wrong if

There exist several dominantly contributing saddle points, and

Those saddle points have different complex phases.

Open question Connection with the histogram test on CL method?
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Relation with complex Langevin

Refine Complex Langevin via thimbles (1)

Deform the theory so that only one thimble contributes, and apply CL
(Tsutsui, Doi, 1508.04231)

Z =

∫
f(x)e−S(x)dx ⇒ Znew =

∫
(f(x) + ig(x))e−S(x)dx.

One can compute VEV of the original theory using the new one as

〈O〉original = Re〈O〉new −
〈g〉quench

〈f〉quench

Im〈O〉new.

〈g〉quench/〈f〉quench is common for any observables.
Compute 〈O〉new using CL with “appropriate” g.

Open question What g should be chosen?
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Relation with complex Langevin

Refine Complex Langevin via thimbles (2)

Perform the reweighting by attaching complex phases of thimbles to
CL distribution (Hayata, Hidaka, YT, 1511.02437)

Test on one-site fermion model

exact
w/o phase
w/ phase

Á Á Á Á

Á

Á Á Á Á Á Á Á Á Á

Á

Á Á Á Á

· ·
· ·

·
·
·
·
·
·
·
·
·
·
·
·
·
· ·

· ·

-0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

2.5

µ/U

R
e[

n
]

Clear improvement, but there’s unknown systematic error.
Open question Can we justify and make it rigorous?
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Simulation on multiple thimbles

Simulation on multiple thimbles

List

Alexandru, Basar, Bedaque, Ridgway, Warrington, 1512.08764

Alexandru,Basar, Bedaque, Vartak, Warrington, 1605.08040

Related studies

Alexandru, Basar, Bedaque, Ridgway, Warrington, 1604.00956

Alexandru, Basar, Bedaque, Ridgway, Warrington, 1606.02742
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Simulation on multiple thimbles

Possible concerns for practical applications

Interference among Lefschetz thimbles is very important for our
interest (especially when fermion exists).

This means that we must ...

Find all contributing complex saddle points,

Construct Lefschetz thimbles around those saddle points,

Evaluate integration on each Lefschetz thimbles, and

Sum up those results.

We need some machinery to do them automatically.
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Simulation on multiple thimbles

Idea for multiple thimble simulation

Deform the original cycle Rn by the gradient flow,
dz

dt
=

(
∂S

∂z

)
:

(Alexandru, Basar, Bedaque, Ridgway, Warrington, JHEP (2016))

Re(z)

Im(z)
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Simulation on multiple thimbles

Idea for multiple thimble simulation

Deform the original cycle Rn by the gradient flow,
dz

dt
=

(
∂S

∂z

)
:

(Alexandru, Basar, Bedaque, Ridgway, Warrington, JHEP (2016))

Re(z)

Im(z)
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Simulation on multiple thimbles

Formulation
Let us fix a flow time T , and define

J (T ) :=

{
z(T ;x) ∈ Cn

∣∣∣ dz(t;x)
dt

=

(
∂S

∂z

)
, z(0;x) = x ∈ Rn

}
.

By construction, z(T ; ·) : Rn ∼−→ J (T ) and∫
Rn

dnx e−S(x) =

∫
J (T )

dnz e−S(z)

=

∫
Rn

dnx det

(
∂zi(T, x)

∂xj

)
e−S(z(T ;x)).

⇒One can do usual Monte Carlo + reweighting by regarding

Seff,T (x) := S(z(T ;x))− ln

[
det

(
∂zi(T, x)

∂xj

)]
as the effective classical action.
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Simulation on multiple thimbles

Real-time dynamics
This method is applied to Schwinger-Keldysh path integral for

S =

∫
dt

(
1

2
ẋ2 − 1

2
x2 − x4

)
.

Feynman propagators at β = 0.8. Tflow = 0.2. (Alexandru,Basar, Bedaque, Vartak,

Warrington, arXiv:1605.08040)
Yuya Tanizaki (RBRC) Review on Lefschetz-thimble method Aug 2, 2016 @ Plymouth 30 / 31



Summary & Conclusion

Summary and Conclusion

Lefschetz-thimble method is helpful to analyze structures of sign
problems.

Many Lefschetz thimbles can contribute. Especially, interference
among them will play an important role for physical observables.

Dynamics in complexified space is complicated.
Comparison among one-thimble ansatz, complex Langevin, and
saddle point analysis gives us a good insight.

Recent developments may enable us to study nonperturbative
field theories with the sign problem.
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