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Thimble regularization
(E. Witten, arXiv:1001.2933)
(M. Cristoforetti, F. D1 Renzo, L. Scorzato - Phys.Rev.D88 2013 and Y. Kikukawa et al JHEP 1310)

has still a long way to go. In particular, Monte Carlo simulations on thimbles are
a non-trivial task. Also, gauge theories are tricky (but they are in the end a
final goal we do not want to really live without).

In the context of the chiral random matrix model we 1introduced an approach to
computations on thimbles which takes into account the contributions from complete
flow lines: can 1t be turned into a Monte Carlo? Is 1t any useful for SU(N)?

In the context of the Bose gas, what we call the gaussian approximation worked

pretty well (maybe even better than one could hope/expect): what about 1its
applicability to gauge theories?

Agenda

- Complete flow lines as basic degrees of freedom and a Monte Carlo
algorithm for such an approach.

Basic formalism for SU(N)

Some (basic..) steps into gauge theories: QCD in 0+1 dimensions

Basics on the real thing: thimbles and the gauge structure of SU(N)

Gaussian approximation for SU(N) (N=2 in d=2, actually)



When you have a complex action in place (sign problem)

. 1t can be a good idea to compute observables in thimble regularization
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Thimbles are manifolds which 1ive in the complexification of the original manifold your
theory 1s defined on. They are the union of the Steepest Ascent paths attached to

critical points, on which the 1imaginary part of the action stays constant. Their real
dimension 1s just the same as that of the original manifold.
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A picture to keep in mind ..




When you have a complex action in place (sign problem) ..

. 1t can be a good idea to compute observables in thimble regularization
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Thimbles are manifolds which live in the complexification of the original manifold your
theory 1s defined on. They are the union of the Steepest Ascent paths attached to

critical points, on which the 1imaginary part of the action stays constant. Their real
dimension 1s just the same as that of the original manifold.

. and don’t forget this either ..
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The tangent space at the critical point 1s spanned by the Takagi vectors of the Hessian

In general at each point an orthonormal basis of the tangent space

H(S: o (z) — )\1—(71) . .
(55po ) v induces the natural coordinate system ..
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but we only know a basis for the tangent space 1if we %:i‘/( a2S>
transport the vector basis that we know at the critical point . 0202



Complete flow lines formalism
and a Monte Carlo algorithm for such an approach



A natural way to rephrase integrals on thimbles
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For the sake of simplicity we now specify to the case of only one thimble in place. Now
expectation values are restricted to that thimble (we drop double wedges and footer)
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A very natural parametrization of the thimble (see also )
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whose meaning 1s easy to understand: each point on a SA (flow line) 1is identified by the
direction (on the tangent space) you take when you leave the critical point (this
singles out the flow line itself) and the flow time at which you reach the point.



In practice: you make a choice for a direction on the tangent space Zniv(i) with ZH?ZR
i=1 i=1

Near the critical point natural coordinates are given in terms of 1
the basis provided by the Takagi vectors of H. Then the action is S(n) = S(z2s) + 52)\7;777;2
i=1

and the evolution along a flow line is given by n;(t) =n; eit

and V) (t) = pl0) At

which at a convenient value of (remote) time is our initial condition for the SA.
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In practice: you make a choice for a direction on the tangent space Zniv(i) with Zn? =R
i=1 i=1

Near the critical point natural coordinates are given in term 1"
of the basis provided by the Takagi vectors. Then the action is S(n) =8(z,) + 52)\7;777;2
i=1

and the evolution along a flow line is given by 7;(t) =n; eit

and V) (t) = p() it

which at a convenient value of (remote) time is our initial condition for the SA.

Now we want to express the integral on the thimble as an
integral over directions and flow times

Basically we play a Faddeev-Popov trick .. 1= Aﬂ(t)/HdTLk(g (|ﬁ|2 —R) /dt H5(5yi — dy;(n, 1))
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All in all
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All in all
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we have 1in the end

GOOD! This 1s a new average,
again with a positive measure.
Once we prepare an 1initial
condition we go all the way up
the flow 1line (problem of
staying on the thimble solved)




PROBLEM! Difficult to sample by Monte
Carlo, so at first we went through the
very basic one: flat, crude Monte Carlo ..

. Which nevertheless worked for the Chiral Random Matrix Model (Di Renzo, Eruzzi PhysRev D92)
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A new Monte Carlo

1

First of all: for a gaussian thimble (one for which S(n):S(zaH%Z/\mQ holds everywhere)
1=1
“+0o0
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This we can sample by heat bath with a method we all teach our students

F(x):P(X<x):/_;f(y)dy £€[0,1] flat random
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1

First of all: for a gaussian thimble (one for which é%n):fxag4—%§Z>Mn2 holds everywhere)
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This we can sample by heat bath with a method we all teach our students

F(x):P(X<a:):/_iof(y)dy £€[0,1] flat random

Simply pick a couple n; +nj=R-— 2{: ni =C n; =VCcos(¢), nj = VCsin(¢)
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defines a probability

for which we can play the above trick: this is a HEAT BATH for the gaussian thimble



A new Monte Carlo

A

1.You sit on a 7}

. ~ / .
2. Extract (by gaussian heat bath) a new 7} (connected by the rotation we saw)

A

3. Perform the SA defined by n/ and compute Z’fL’

4. Accept with probability (@)
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1.You sit on a 7}

. ~ / .
2. Extract (by gaussian heat bath) a new 77  (connected by the rotation we saw)
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It works! Again CRMM .. |
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Basic formalism for SU(CN)



The relevant basic set-up we need
Going to complex fields means  SU(N)> U = gxaT® _ izaT® _ pi(@ativa)T® o QT (N, C)
In SL(N,C), Ut # U~ i.e. SU(N) 3 U = e @1’  o7%T" = g=i@ativ)T" _ 7=1 ¢ Q[ (N, C)

Main ingredient 1s the Lie derivative
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from which we can have the basis
for the tangent space at any point




Some (basic..) steps i1nto gauge theories: QCD in 0+1 dimensions



QCD 1n 0+1 dim
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Actually in a good gauge ZN, = j/ (iLfdetA”'(f413x3-+-6”/T17—+<?_“/T77T)

SU(3)

We compute (anti)Polyakov loop and the chiral condensate » =T & log Z

om

We have 3 critical points (Z3 roots) and we know both the results
and their semiclassical approximations



semiclassical approximation
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These are interesting because we can predict the
relative weights of the different critical points!
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Ne=6m= 0.1 from semiclassical approximation




Chiral condensate at Ny = 6
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Ne= 2 m=1 from semiclassical approximation




Chiral condensate at Ny
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The real thing: thimbles and the gauge structure of SU(N)



For gauge theories we need an improved picture for
the thimble ..

The relevant picture i1is that of a NON-DEGENERATE CRITICAL SUBMANIFOLD M for which

N cC
F:C—=R

dFf =0 along N

The Hessian 82F 1s non-degenerate on the normal bundle V(N)
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For gauge theories we need an improved picture for
the thimble

The relevant picture i1is that of a NON-DEGENERATE CRITICAL SUBMANIFOLD /Vc for which

N ccC
F:C—=R

dFf =0 along N

The Hessian f?2f7 1s non-degenerate on the normal bundle Z/CAf)

Let us consider QCD with its vacuum A = (0; A is the latter’s complete gauge orbit
.. : : - : : 2
This 1is ;quxff)and the (real) dimension of the critical manifold 1is (‘f-—-l)(]V; — 1)

In order to understand how the thimble will emerge, first observe that on the normal

bundle we are provided with an equal number of positive and negative Takagi values off92f7

which are associated to the SD and SA flows.

Once again, in constructing thimbles we will be left with the right real dimension.



All in all, the thimble (e.g. associated to A = ()) is defined as
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All in all, the thimble (e.g. associated to A = ()) is defined as

(3,C)*Y | 3U(r) solution of [*]1] U(0)=U & lim U(7) eN(O)}

T—00

A key point is now to understand that

under SL(3,C) gauge transformations (Tavaz,z/,aS[U]) _ (A(x)_l)T (Tava: y CLS[U])A(CIZ‘)T
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This not only means that the SD eq. is covariant only Forz\(lﬂT = A(x)

. but also that if you take a SA from A = (), at any stage you can perform a g.transf.
and this will take you to a point starting from which under SD you are going to eventually

land on another point on the gauge orbit of A = () (decided by the g. transf. you choose)



All in all, keep in mind this ..

. and keep 1in mind that at each point of the gauge orbit of our vacuum the tangent space
1s spanned by both positive Takagi values of the Hessian (associated to the ascents) and
null Takagi values (associated to gauge transformations)



Gaussian approximation for SU(N) (N=2 1in d=2, actually)



A more realistic gauge theory
(although a somehow artificial sign problem)
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has d(Ng — 1) extra zero modes, which do not come as a surprise: TORONS!
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meAN p<v

) ) ) b _
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has d(Nf — 1) extra zero modes, which do not come as a surprise: TORONS!

Ok! Let’s turn to a twisted action Sa U] :BZfI(Dt) (Up)
2o U P e R, i
I(Dt) (Up) = {fP (2a0UP) < iy 2o = e2minan /N ¢ 7

fp (Up) P ¢ Rup

We are playing around with this 1in 1its simplest form, 1i.e. d=Z2 and N=2.

It 1s a nice
laboratory: everything is known!

In order to proceed, first of all we have to recall what 1s the minimum action
configuration once we have moved to the twisted action and chosen convenient twist.
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(a) Gauge tree

(b) Zero action configurations

Twist-eater solution

The construction of the gauge
tree will remember many of you
of classical literature on the
subject, dating back to quite
some time ago ( ,

; y )
C?p(;ﬁ,ZZ,Zﬂpls&l(;p

dimANy = (V = 1) (N? — 1) + dim Mg (2;5)

dim Moy = N2 — 1




The construction of the gauge
¢ tree will remember many of you

of classical literature on the
subject, dating back to quite

some time ago ( ,

: oo

Po
@ @ L .no
4 4 L 4 L 4
4 4 L 4 L 4
@ @ o ®

(a) Gauge tree

Mo (230) = U(G1, -+, Ga) |G € SUN), GoGy = 250GpGo

Twist-eater solution

With this we can construct a thimble to start with:

C?p(;ﬁ,ZZ,Zﬂpls&l(;p

(b) Zero action configurations

dimANy = (V = 1) (N? — 1) + dim Mg (2;5)

dim Moy = N —1

1n particular we can 1identify the

tangent space at the critical point (in the critical orbit .). We find the expected
number of positive Takagi values to the Hessian (the associated Takagi vectors define
directions for ascents) and null Takagi values (the associated Takagi vectors define
directions for the gauge transformations taking you along the orbit).

Given a thimble formulation, our first attempt will be to test the validity of what we
call the gaussian approximation.



The gaussian approximation

First of all observe that Langevin 1s the natural candidate to simulate on a thimble!
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On the thimble by very definition!
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Noise should be tangent to the thimble!



The gaussian approximation

First of all observe that Langevin 1s the natural candidate to simulate on a thimble!
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On the thimble by very definition! Noise should be tangent to the thimble!
(bmin But we easily know what the tangent 1is
"”("‘“—“"~~iﬂ_ﬂﬂ_u_u_g_n only (at) near the critical point!

e

fxThis point sits on the flow line well beyond the border
——of the region where the tangent space almost sits on top
of the tangent space at the critical point ..

Region of applicability of the

Hessian computed in ¢ min



The gCIUSS'i.(JI’I appr'oximation (as crude as it is .. Bose gas ok! AuroraColl. PRD88)
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On the thimble by very definition! Noise 1s on the tangent space at the crit. point!

(bmin But there can be cases in which the relevant
region for the functional 1integral can be
deformed to end up on top of the tangent space
at the critical point (think of saddle point).

We call this gaussian approximation because
the thimble and the tangent space at the
critical point are the same for a theory
having only quadratic contributions on top of
the value at the critical point (think of the
saddle point approximation): 1in such a case
the thimble 1is flat.

Recently A. Alexandru et al have introduced a similar approach to the computation on what
they call the main tangent space (JHEP 1605 053).



The gaussian appr'oximation (as crude as it is .. Bose gas ok! AuroraColl. PRD88)
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On the thimble by very definition! Noise 1s on the tangent space at the crit. point!

(bmin But there can be cases in which the relevant
region for the functional 1integral can be
deformed to end up on top of the tangent space
at the critical point (think of saddle point).

Recently A. Alexandru et al have introduced a similar approach to the computation on what
they call the main tangent space (JHEP 1605 053).



Not that bad (ok .. on a 42 lattice .. sic ..)

SU2) d=2 p=5¢e""

Semiclassical approximation suggests gaussian approximation should be reasonably ok ..

We measure the action density. Caveat: everything very very preliminary!
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Conclusions

- We have a new Monte Carlo for thimbles in terms of complete flow lines.
- Basic formalism for lattice gauge theories is alive and kicking for QCD 0+1.

- SU(2) 1in d=2 apparently under control 1in the gaussian approximation 1in a
region where it should be under control.

- A HUGE amount of WORK yet to be done .. !
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