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Agenda 

- Complete flow lines as basic degrees of freedom and a Monte Carlo 
algorithm for such an approach. 

- Basic formalism for SU(N) 

- Some (basic…) steps into gauge theories: QCD in 0+1 dimensions 

- Basics on the real thing: thimbles and the gauge structure of SU(N) 

- Gaussian approximation for SU(N) (N=2 in d=2, actually)

Thimble regularization 
(E. Witten, arXiv:1001.2933)

(M. Cristoforetti, F. Di Renzo, L. Scorzato - Phys.Rev.D88 2013 and Y. Kikukawa et al JHEP 1310)

has still a long way to go. In particular, Monte Carlo simulations on thimbles are 
a non-trivial task. Also, gauge theories are tricky (but they are in the end a 
final goal we do not want to really live without).

In the context of the chiral random matrix model we introduced an approach to 
computations on thimbles which takes into account the contributions from complete 
flow lines: can it be turned into a Monte Carlo? Is it any useful for SU(N)? 

In the context of the Bose gas, what we call the gaussian approximation worked 
pretty  well  (maybe  even  better  than  one  could  hope/expect):  what  about  its 
applicability to gauge theories?



When you have a complex action in place (sign problem) …

… it can be a good idea to compute observables in thimble regularization
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Thimbles are manifolds which live in the complexification of the original manifold your 
theory is defined on. They are the union of the Steepest Ascent paths attached to 
critical points, on which the imaginary part of the action stays constant. Their real 
dimension is just the same as that of the original manifold.
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Thimbles are manifolds which live in the complexification of the original manifold your 
theory is defined on. They are the union of the Steepest Ascent paths attached to 
critical points, on which the imaginary part of the action stays constant. Their real 
dimension is just the same as that of the original manifold.

A picture to keep in mind …
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Thimbles are manifolds which live in the complexification of the original manifold your 
theory is defined on. They are the union of the Steepest Ascent paths attached to 
critical points, on which the imaginary part of the action stays constant. Their real 
dimension is just the same as that of the original manifold.

… and don’t forget this either …



When you have a complex action in place (sign problem) …

… it can be a good idea to compute observables in thimble regularization
O[z] z

n

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz O(z)e�SR(z)

=

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y O e�SR ei !

Z =

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz e�SR(z)

=

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y e�SR ei !

{zi} ! {�yi} �yi

z 2 J� ei !

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)Z� hhO ei !ii�

Z =

X

�2⌃

n� e�iSI(z�)Z� hhei !ii�

hh•ii� ⌘
1

Z�

ˆ

J�

d

n�y • e�SR

e�SR

Z� hOi

Z� h i

hOi ! hO ei !i
hei !i

h•i =

´
J�

d

n�y • e�SR

´
J�

d

n�y e�SR

e�SR

ei !

O[z] z
n

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz O(z)e�SR(z)

=

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y O e�SR ei !

Z =

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz e�SR(z)

=

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y e�SR ei !

{zi} ! {�yi} �yi

z 2 J� ei !

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)Z� hhO ei !ii�

Z =

X

�2⌃

n� e�iSI(z�)Z� hhei !ii�

hh•ii� ⌘
1

Z�

ˆ

J�

d

n�y • e�SR

e�SR

Z� hOi

Z� h i

hOi ! hO ei !i
hei !i

h•i =

´
J�

d

n�y • e�SR

´
J�

d

n�y e�SR

e�SR

ei !

n n p� n
SR SR

XT ⌘
�

z 2 X
�

�SR(z) � T
 

⇢ X + 3 T � 1

XT X SR

H+

n ⌘ Hn(X ,XT ; ) H+

n ⌃

S X

ds2

=

1

2

gi¯j

�

dzi ⌦ dz̄j
+ dz̄j ⌦ dzi

�

S

dzi

dt
= gi¯j@

¯j
¯S

@
¯j ⌘ @

@z̄j z(t)
SR

dSR

dt
=

✓

dzj

dt
@j +

dz̄j

dt
@
¯j

◆

1

2

�

S +

¯S
�

=

1

2

✓

dzj

dt
@jS +

dz̄j

dt
@
¯j
¯S

◆

=

1

2

⇣

gj¯k@
¯k
¯S @jS + g

¯jk@kS @
¯j
¯S
⌘

= gj¯k@jS @
¯k
¯S = gj¯k

(@jS)

�

@kS
�

� 0

p�

p� t ! �1

J� ⌘
⇢

z(0) 2 X
�

� żi
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Thimbles are manifolds which live in the complexification of the original manifold your 
theory is defined on. They are the union of the Steepest Ascent paths attached to 
critical points, on which the imaginary part of the action stays constant. Their real 
dimension is just the same as that of the original manifold.

The tangent space at the critical point is spanned by the Takagi vectors of the Hessian
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Complete flow lines formalism 
and a Monte Carlo algorithm for such an approach



A natural way to rephrase integrals on thimbles

O[z] z
n

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz O(z)e�SR(z)

=

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y O e�SR ei !

Z =

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz e�SR(z)

=

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y e�SR ei !

{zi} ! {�yi} �yi

z 2 J� ei !

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)Z� hhO ei !ii�

Z =

X

�2⌃

n� e�iSI(z�)Z� hhei !ii�

hh•ii� ⌘
1

Z�

ˆ

J�

d

n�y • e�SR

e�SR

Z� hOi

Z� h i

hOi ! hO ei !i
hei !i

h•i =

´
J�

d

n�y • e�SR

´
J�

d

n�y e�SR

e�SR

ei !

O[z] z
n

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz O(z)e�SR(z)

=

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y O e�SR ei !

Z =

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz e�SR(z)

=

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y e�SR ei !

{zi} ! {�yi} �yi

z 2 J� ei !

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)Z� hhO ei !ii�

Z =

X

�2⌃

n� e�iSI(z�)Z� hhei !ii�

hh•ii� ⌘
1

Z�

ˆ

J�

d

n�y • e�SR

e�SR

Z� hOi

Z� h i

hOi ! hO ei !i
hei !i

h•i =

´
J�

d

n�y • e�SR

´
J�

d

n�y e�SR

e�SR

ei !

O[z] z
n

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz O(z)e�SR(z)

=

1

Z

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y O e�SR ei !

Z =

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

nz e�SR(z)

=

X

�2⌃

n� e�iSI(z�)

ˆ

J�

d

n�y e�SR ei !

{zi} ! {�yi} �yi

z 2 J� ei !

hOi =

1

Z

X

�2⌃

n� e�iSI(z�)Z� hhO ei !ii�

Z =

X

�2⌃

n� e�iSI(z�)Z� hhei !ii�

hh•ii� ⌘
1

Z�

ˆ

J�

d

n�y • e�SR

e�SR

Z� hOi

Z� h i

hOi ! hO ei !i
hei !i

h•i =

´
J�

d

n�y • e�SR

´
J�

d

n�y e�SR

e�SR

ei !

with the partition function given by



A natural way to rephrase integrals on thimbles

For the sake of simplicity we now specify to the case of only one thimble in place. Now 
expectation values are restricted to that thimble (we drop double wedges and footer)
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For the sake of simplicity we now specify to the case of only one thimble in place. Now 
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A very natural parametrization of the thimble (see also Kikukawa et al JHEP1310) 

J�

p� p�

n̂ Tp�J�

n
X

i=1

niv
(i)

{ni}i=1···n

n
X

i=1

n2

i = R

R {v(i)} H(S; p�) z
n̂ t

z

J� 3 z $ (n̂, t) 2 Sn�1

R ⇥

Sn�1

R (n�1)

p
R

1

1 = �n̂(t)

ˆ n
Y

k=1

dnk �
⇣

|~n|2 �R
⌘

ˆ
dt

n
Y

i=1

� (�yi � �yi(n̂, t))

{�yi(n̂, t)}
{V (i)

(t)} n̂ t

Z =

ˆ n
Y

i=1

d�yi e�SR
=

ˆ n
Y

i=1

d�yi e�SR
�n̂(t)

ˆ n
Y

k=1

dnk �
⇣

|~n|2 �R
⌘

ˆ
dt

n
Y

i=1

� (�yi � �yi(n̂, t))

=

ˆ n
Y

k=1

dnk �
⇣

|~n|2 �R
⌘

ˆ
dt

ˆ n
Y

i=1

d�yi � (�yi � �yi(n̂, t)) �n̂(t)e�SR

=

ˆ n
Y

k=1

dnk �
⇣

|~n|2 �R
⌘

ˆ
dt �n̂(t)e�SR(n̂,t)

t
SR

R
R = 1

{V (i)} det V = ei ! |det V | ei !

whose meaning is easy to understand: each point on a SA (flow line) is identified by the 
direction  (on  the  tangent  space)  you  take  when  you  leave  the  critical  point  (this 
singles out the flow line itself) and the flow time at which you reach the point.
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Near the critical point natural coordinates are given in terms of 
the basis provided by the Takagi vectors of H. Then the action is S(⌘) = S(z�) +
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which at a convenient value of (remote) time is our initial condition for the SA.
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which at a convenient value of (remote) time is our initial condition for the SA.

Now we want to express the integral on the thimble as an 
integral over directions and flow times
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we have in the end
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Dn̂ Zn̂ hei!in̂GOOD!  This  is  a  new  average, 
again with a positive measure. 
Once  we  prepare  an  initial 
condition we go all the way up 
the  flow  line  (problem  of 
staying on the thimble solved)
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PROBLEM!  Difficult  to  sample  by  Monte 
Carlo,  so  at  first  we  went  through  the 
very basic one: flat, crude Monte Carlo … 

… which nevertheless worked for the Chiral Random Matrix Model (Di Renzo, Eruzzi PhysRev D92) 
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A new Monte Carlo
First of all: for a gaussian thimble (one for which                    holds everywhere)
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A new Monte Carlo
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A new Monte Carlo
1.You sit on a

2. Extract (by gaussian heat bath) a new       (connected by the rotation we saw)

3. Perform the SA defined by     and compute

4. Accept with probability
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A new Monte Carlo
1.You sit on a

2. Extract (by gaussian heat bath) a new       (connected by the rotation we saw)

3. Perform the SA defined by     and compute

4. Accept with probability
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It works! Again CRMM …
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Basic formalism for SU(N)
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Lattice models on Lefschetz thimbles
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)

– 1 –

Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d
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,
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∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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critical points zσ :

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real
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Morse theory, it follows that

CR =
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nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2
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while the imaginary part of the action stays constant,

d
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· d
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Lefschetz thimble     (    )  (n-dim. real mfd.)
=the union of all down(up)ward flows which 
  trace back to zσ in the limit t goes to -∞
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∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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D[z] exp{−S[z]}, (1.3)
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Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express
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CR =
∑

σ∈Σ
Jσ (1.4)
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number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that
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The relevant basic set-up we need

Going to complex fields means

and the SA (SD) equations are

T aTr [T aA] =
1

2
(A� a11) =

1

2


A� 1

N
Tr (A) 1

�
(6.14)

The same discussion holds for A†, that is the hermitian conjugate term in
the trace. The conclusion is that

r
n,µ̂

S
G

[U ] = � i�

4N
[U

µ̂

(n)V
µ̂

(n)]
TA

(6.15)

with the traceless-antihermitian projector defined by

[A]
TA

=
�
A�A†�� 1

N
Tr

�
A�A†� 1 (6.16)

7 Gauge theories

As a prototype for the thimble approach applied to a gauge theory, we consider
the case of SU (N) on the lattice with complex coupling (we will work with the
position, link and colour indices, that is n, µ̂, a, omitting the first two when
the meaning is clear). When the coupling is complex, the fields need to be
complexified as well, thus going from SU (N) to SL (N,C).

SU (N) 3 U = eixaT
a ! eizaT

a

= ei(xa+iya)T
a 2 SL (N,C)

As “conjugate” fields (which correspond to z̄, conjugate to z of the scalar
field theory) we take U †, stressing that, in SL (N,C), U † 6= U�1. In fact we
have

SU (N) 3 U† = e�ixaT
a ! e�izaT

a

= e�i(xa+iya)T
a

= U�1 2 SL (N,C)

We now introduce the Lie derivatives ra, r̄a

raf (U) :=
@

@↵
f
⇣
ei↵T

a

U
⌘ ����

↵=0

raf
�
U†� := 0

r̄af
�
U†� :=

@

@↵
f
⇣
U †e�i↵T

a
⌘ ����

↵=0

r̄af (U) := 0

It is also convenient to introduce two “real” derivatives, r< and r=, defined
by
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In i.e.

Main ingredient is the Lie derivative

Namely
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Some (basic…) steps into gauge theories: QCD in 0+1 dimensions



QCD in 0+1 dim
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semiclassical approximation

These are interesting because we can predict the 
relative weights of the different critical points!
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The real thing: thimbles and the gauge structure of SU(N)



For gauge theories we need an improved picture for 
the thimble …

The relevant picture is that of a NON-DEGENERATE CRITICAL SUBMANIFOLD   , for whichN

N ⇢ C
F : C ! R dF = 0

@2F ⌫(N )

Nalong

The Hessian is non-degenerate on the normal bundle

U0

U Ht L

U0
G

U GHt L

M0

U
0

UG
0

M
0

M
0

G U(t) UG
(t)

U
0

UG
0

n
+

{v(i)} H(S;U
0

) TU0M0

nG

n
+

= n � nG n = V d(N2 � 1)

nG = V (N2 � 1)

n
+

= V (d � 1)(N2 � 1) {vG(i)} TUG
0
J

0

U(t
0

) UG
(t

0

) |ci|⌧ 1 M
0

Uµ̂(n; t
0

) = e
i

P
i

civ
(i)
nµ̂,aT a

U
0 µ̂(n)

UG
µ̂ (n; t

0

) = e
i

P
i

civ
G(i)
nµ̂,aT a

UG
0 µ̂(n)

G(n) = ei gn,aT a

UG
µ̂ (n; t

0

) = G(n)Uµ̂(n; t
0

)G†
(n + µ̂)

M0 U0 U0

|ci|⌧ 1 TUJ0 U
�i > 0 ci = nie

�it0 t0 ! �1
ni = O(1) �i = 0 ci



The relevant picture is that of a NON-DEGENERATE CRITICAL SUBMANIFOLD   , for whichN

N ⇢ C
F : C ! R dF = 0

@2F ⌫(N )

Nalong

The Hessian is non-degenerate on the normal bundle

Let us consider QCD with its vacuum        ;     is the latter’s complete gauge orbit A = 0 N
This is         and the (real) dimension of the critical manifold is (V � 1)(N2

c � 1)SU(3)

For gauge theories we need an improved picture for 
the thimble … U0

U Ht L

U0
G

U GHt L

M0

U
0

UG
0

M
0

M
0

G U(t) UG
(t)

U
0

UG
0

n
+

{v(i)} H(S;U
0

) TU0M0

nG

n
+

= n � nG n = V d(N2 � 1)

nG = V (N2 � 1)

n
+

= V (d � 1)(N2 � 1) {vG(i)} TUG
0
J

0

U(t
0

) UG
(t

0

) |ci|⌧ 1 M
0

Uµ̂(n; t
0

) = e
i

P
i

civ
(i)
nµ̂,aT a

U
0 µ̂(n)

UG
µ̂ (n; t

0

) = e
i

P
i

civ
G(i)
nµ̂,aT a

UG
0 µ̂(n)

G(n) = ei gn,aT a

UG
µ̂ (n; t

0

) = G(n)Uµ̂(n; t
0

)G†
(n + µ̂)

M0 U0 U0

|ci|⌧ 1 TUJ0 U
�i > 0 ci = nie

�it0 t0 ! �1
ni = O(1) �i = 0 ci



The relevant picture is that of a NON-DEGENERATE CRITICAL SUBMANIFOLD   , for whichN

N ⇢ C
F : C ! R dF = 0

@2F ⌫(N )

Nalong

The Hessian is non-degenerate on the normal bundle

Let us consider QCD with its vacuum        ;     is the latter’s complete gauge orbit A = 0 N
This is         and the (real) dimension of the critical manifold is (V � 1)(N2

c � 1)SU(3)

In order to understand how the thimble will emerge, first observe that on the normal 

bundle we are provided with an equal number of positive and negative Takagi values of   @2F
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All in all, the thimble (e.g. associated to        ) is defined as

[*]

A = 0

18

the configuration A = 0. Hence, the Hessian of the real part of a holomorphic and gauge invariant
function F : C ! C can be regarded as a real matrix in Hom(R2n,R2n), which has n�n

G

positive,
n � n

G

negative and 2n
G

zero eigenvalues. As stressed in [31] (see, in particular its Sec. 3.3),
the n-dimensional integration cycle that we need should be build out of the stable manifold of
curves of SD attached to a middle-dimensional manifold contained in NC. A natural choice for the
middle-dimensional manifold in NC is the original N itself.

Finally, we need are suitable SD equations. The generalization of Eq. (7) to the left-covariant
case leads to:

d

d⌧
U
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(x; ⌧) = (�iT
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r
x,⌫,a

S[U ])U
⌫

(x; ⌧) (25)

Similarly to the scalar model, Eqs. (25) are equivalent to minimizing the real part of the action
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R

[U ]. Moreover, the imaginary part S
I

[U ] is conserved along those curves. Both of these proper-
ties can be verified by using Eqs. (24) and (25):
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After this long preamble, we can finally define the integration cycle J0 as:

J0 :=
n

U 2 (SL(3,C))4V | 9U(⌧) solution of Eq. (25) | U(0) = U & lim
⌧!1

U(⌧) 2 N (0)
o

,

(26)
where N (0) is the critical manifold that contains the point A = 0. The definition (26) ensures that
J0 is an integration cycle of the right dimension (n� n

G

) + (2n
G

)/2 = n. Moreover, the choice of
the critical manifold N (0) ensures (as shown in Sec. III B 2) that the perturbative expansion of the
new formulation coincides with the standard one.

Substituting C with J0 in Eq. (21) concludes the definition of our procedure10:

hOi0 = 1

Z0

Z

J
0

Y

x,⌫

dU
⌫

(x) e�S[U ]O[U ], Z0 =

Z

J
0

Y

x,⌫

dU
⌫

(x) e�S[U ], (27)

In the next sections we justify why this new formulation is physically relevant, and propose a Monte
Carlo algorithm to study it numerically.

B. Justification of the Approach

As already explained in Sec. II B, we do not attempt to derive an exact relation between the path
integral on the cycle C and the one on the cycle J0. Our motivation to study QCD on the thimble
J0 is that it is a non-perturbative definition of a local QFT with the same algebra of operators,
the same degrees of freedom, the same symmetries, and the same perturbative expansion as QCD.
If the continuum spectrum of QCD is an unambiguous prediction of these properties—as it is
generally expected on the basis of universality—then studying the formulation in J0 is physically
very significant. If that should not be the case, it would represent a very interesting surprise, and
a major step forward in our understanding of QFTs.

Motivated by these ideas, we examine, in the following sections, the symmetry properties
(Sec. III B 1) and the perturbative expansion (Sec. III B 2) of our formulation. In Sec. III B 3
we define a strategy to compare precisely the formulations in C and J0 at µ = 0. Finally, in
Sec. III B 4 we comment on the branches of the logarithm that appear in the fermionic e↵ective
action.

10 The measure dU
⌫

(x) needs to be evaluated on a basis of the tangent space of J
0

, which produces a phase, as
discussed in the scalar case.
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Gauge Symmetry of the thimble
d

d⌧

U

⌫

(x; ⌧) = (�iT

a

r
x,⌫,a

S[U ])U
⌫

(x; ⌧)

Consider the SD equation:

(T
a

r
x,⌫,a

S[U ]) !
�
⇤(x)�1

�†
(T

a

r
x,⌫,a

S[U ])⇤(x)†

Under an SL(3,�) gauge transformations it changes as:

U⌫(x) ! ⇤(x)U⌫(x)⇤(x+ ⌫̂)�1

Note that the full SD equation is covariant only 
under the SU(3) subgroup of SL(3,�). ⇤(x)† = ⇤(x)�1

Proof of gauge invariance is now essentially identical 
to the proof of U(1) global symmetry for the scalar case.

Note 1: This means that also Ward Identities are fulfilled.
Note 2: The gauge links are not in SU(3) ... Why should they be?



All in all, the thimble (e.g. associated to        ) is defined as
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Motivated by these ideas, we examine, in the following sections, the symmetry properties
(Sec. III B 1) and the perturbative expansion (Sec. III B 2) of our formulation. In Sec. III B 3
we define a strategy to compare precisely the formulations in C and J0 at µ = 0. Finally, in
Sec. III B 4 we comment on the branches of the logarithm that appear in the fermionic e↵ective
action.
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If the continuum spectrum of QCD is an unambiguous prediction of these properties—as it is
generally expected on the basis of universality—then studying the formulation in J0 is physically
very significant. If that should not be the case, it would represent a very interesting surprise, and
a major step forward in our understanding of QFTs.

Motivated by these ideas, we examine, in the following sections, the symmetry properties
(Sec. III B 1) and the perturbative expansion (Sec. III B 2) of our formulation. In Sec. III B 3
we define a strategy to compare precisely the formulations in C and J0 at µ = 0. Finally, in
Sec. III B 4 we comment on the branches of the logarithm that appear in the fermionic e↵ective
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Note that the full SD equation is covariant only 
under the SU(3) subgroup of SL(3,�). ⇤(x)† = ⇤(x)�1

Proof of gauge invariance is now essentially identical 
to the proof of U(1) global symmetry for the scalar case.

Note 1: This means that also Ward Identities are fulfilled.
Note 2: The gauge links are not in SU(3) ... Why should they be?

A key point is now to understand that
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to the proof of U(1) global symmetry for the scalar case.

Note 1: This means that also Ward Identities are fulfilled.
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This not only means that the SD eq. is covariant only for                ,  i.e. 

... but also that if you take a SA from        , at any stage you can perform a g.transf.

and this will take you to a point starting from which under SD you are going to eventually

land on another point on the gauge orbit of        (decided by the g. transf. you choose)

A = 0



All in all, keep in mind this …

… and keep in mind that at each point of the gauge orbit of our vacuum the tangent space 
is spanned by both positive Takagi values of the Hessian (associated to the ascents) and 
null Takagi values (associated to gauge transformations)



Gaussian approximation for SU(N) (N=2 in d=2, actually)
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The action takes different values at the critical points:
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9 Complex Yang-Mills theory

We consider the Wilson action for SU (N) on a lattice ⇤. For complex coupling,
that is � 2 C we need to complexify the fields as seen before; thus we have to
start with the substitution U † ! U�1.

S
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(9.1)

with
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(m+ ⌫̂)U�1
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(m) (9.2)

The Yang-Mills action is manifestly holomorphic, as it depends only on U
and not on U †.

From the definition of Lie derivatives, it follows that

raU = i T aU

raU�1 = �i U�1T a

so the computation of the derivative ra

n,µ̂

S
G

[U ] is the usual one
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at complex values of the coupling
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where we have used Tr
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T aT b
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= 1
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�ab and D is the number of (euclidean)
space-time dimensions. Notice that the last expression is manifestly symmetric
for (n, µ̂, a) $ (m, ⇢̂, b), as it should be.

10 2D Yang-Mills: analytical computation

Consider the partition function of the Yang-Mills theory in 2 dimensions (ne-
glecting the irrelevant additive constant in the action)
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As f (U⇤) is obviously a (real valued) gauge-invariant function of the plaque-

tte variables, we have that e�f(U⇤) is a class function on SU (N) and therefore
it can be expanded in terms of irreducible characters of U⇤
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where r labels the r-th irreducible representation of SU (N) (being d
r

its
dimension) and �

r

is the character of U⇤ in the r-th representation. Now,
for U , U

1

, U
2

belonging to a compact unitary group whose (normalized) Haar
measure is dU , we have the following relations for the group integrals of the
characters
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Hessian at the identity

d(N2
c � 1)has              extra zero modes, which do not come as a surprise: TORONS!

A more realistic gauge theory                        
(although a somehow artificial sign problem)



hTr (U)i = 6

Z
1X

n=1

1

(n� 1)! (n+ 1)! (n+ 2)!

✓
�

3

◆
3n�1

(8.13)

The action takes different values at the critical points:

S (U
i

) = ��

3
Tr (U

i

) = ��e2⇡iki/3 =

= � |�| (cos'+ i sin')

✓
cos

✓
2⇡k

i

3

◆
+ i sin

✓
2⇡k

i

3

◆◆

that is

(
SR (U

0

) = � |�| cos'
SI (U

0

) = � |�| sin' (8.14)

8
<

:
SR (U

1

) = |�|
⇣

1

2

cos'+
p
3

2

sin'
⌘

SI (U
1

) = |�|
⇣

1

2

sin'�
p
3

2

cos'
⌘ (8.15)

8
<

:
SR (U

2

) = |�|
⇣

1

2

cos'�
p
3

2

sin'
⌘

SI (U
2

) = |�|
⇣

1

2

sin'+
p
3

2

cos'
⌘ (8.16)

9 Complex Yang-Mills theory

We consider the Wilson action for SU (N) on a lattice ⇤. For complex coupling,
that is � 2 C we need to complexify the fields as seen before; thus we have to
start with the substitution U † ! U�1.
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The Yang-Mills action is manifestly holomorphic, as it depends only on U
and not on U †.

From the definition of Lie derivatives, it follows that

raU = i T aU

raU�1 = �i U�1T a

so the computation of the derivative ra

n,µ̂

S
G

[U ] is the usual one

25

at complex values of the coupling

rb

m,⇢̂

ra

n,µ̂

S
G

[U ]
��
U⌘1 =

=

�
2N

P
⌫̂
(1��⌫̂,µ̂)

�
�µ̂,⇢̂

⇥
�n,mTr[2Ta

T

b
+2T

b
T

a]�

��n+⌫̂,mTr[Ta(T b
+T

b)]��n�⌫̂,mTr[Ta(T b
+T

b)]
⇤
+�⌫̂,⇢̂

⇥
��n,mTr[Ta

T

b
+T

b
T

a]+

+�n+µ̂,mTr[Ta(T b
+T

b)]+�n�⌫̂,mTr[Ta(T b
+T

b)]��n+µ̂�⌫̂,mTr[Ta(T b
+T

b)]
⇤ 

=

=

�
2N

P
⌫̂
(1��⌫̂,µ̂){�µ̂,⇢̂[2�n,m��n+⌫̂,m��n�⌫̂,m]+�⌫̂,⇢̂[��n,m+�n+µ̂,m+�n�⌫̂,m��n+µ̂�⌫̂,m]}�ab

=

=

�
2N �

ab
�P

⌫̂
�µ̂,⇢̂[2�n,m��n+⌫̂,m��n�⌫̂,m]+

P
⌫̂

�⌫̂,⇢̂[��n,m+�n+µ̂,m+�n�⌫̂,m��n+µ̂�⌫̂,m]�

�
P
⌫̂

�⌫̂,µ̂�µ̂,⇢̂[2�n,m��n+⌫̂,m��n�⌫̂,m]�
P
⌫̂

�⌫̂,µ̂�⌫̂,⇢̂[��n,m+�n+µ̂,m+�n�⌫̂,m��n+µ̂�⌫̂,m]

 
=

=

�
2N �

ab
�
2D�n,m�µ̂,⇢̂��µ̂,⇢̂

P
⌫̂
(�n+⌫̂,m+�n�⌫̂,m)��n,m+�n+µ̂,m+�n�⇢̂,m��n+µ̂�⇢̂,m�

�2�µ̂,⇢̂�n,m+�µ̂,⇢̂�n+µ̂,m+�µ̂,⇢̂�n�µ̂,m+�µ̂,⇢̂�n,m��µ̂,⇢̂�n+µ̂,m��µ̂,⇢̂�n�µ̂,m+�µ̂,⇢̂�n,m

 
=

=

�
2N �

ab


2D�n,m�µ̂,⇢̂��n,m+�n+µ̂,m+�n�⇢̂,m��n+µ̂�⇢̂,m��µ̂,⇢̂

P
⌫̂
(�n+⌫̂,m+�n�⌫̂,m)

�

where we have used Tr
�
T aT b

�
= 1

2

�ab and D is the number of (euclidean)
space-time dimensions. Notice that the last expression is manifestly symmetric
for (n, µ̂, a) $ (m, ⇢̂, b), as it should be.
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Consider the partition function of the Yang-Mills theory in 2 dimensions (ne-
glecting the irrelevant additive constant in the action)

Z (�) =

Z
DU e�SG[U ] =

Z
DU e

�

P

⇤
1

2N Tr(U⇤+U

†
⇤)

=

Z
DU

Y

⇤
e�f(U⇤)

(10.1)
As f (U⇤) is obviously a (real valued) gauge-invariant function of the plaque-
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measure is dU , we have the following relations for the group integrals of the
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Hessian at the identity

d(N2
c � 1)has              extra zero modes, which do not come as a surprise: TORONS!

Ok! Let’s turn to a twisted action

these directions while starting steepest-ascents from the critical point. How-
ever, there is another subtlety with regards to this hessian. Any vector of the
form V a

µ̂

(that is, constant in space-time) is an eigenvector with eigenvalue 0.
These d

�
N2 � 1

�
zero-modes contain constant gauge transformations as well as

toronic degrees of freedom. These last ones could in principle pose a serious
problem, as they cannot be simply ignored, due to the action not being sym-
metric with respect to that kind of transformations. One should note, however,
that they are expected to become less and less relevant when going to larger
lattice volumes. One possible wayout for the toron problem is to introduce the
so-called “twisted boundary conditions”, that is every time a field crosses the
lattice boundaries, it gauge-transforms with an appropriate set of “twist matri-
ces”. It can be shown that this formulation is equivalent to keeping the usual
periodic boundary conditions while substituting the “twisted action” in place of
the Wilson one.
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in which n
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is an (anti-symmetric) collection of d (d� 1) /2 integers. R
µ̂⌫̂

consists of a particular set of plaquettes (one for each (µ̂⌫̂)-torus). From now on
we will specialize to the case d = 2, in which there is only one such plaquette,
which we shall name P

0

. In two dimensions, the twist is determined by a single
integer k = 1 · · ·N � 1, that is z = e2⇡ik/N and is present only at P

0

.
Now we shall address the problem of the torons by constructing all the

configurations which have S
G

= 0, that is global minima of the (twisted) action.
The first step is to build the so-called “gauge tree”, that is we fix the axial
gauge and gauge-transform the maximum number of links to 1. Figure 11.1a
highlights such links. What we have done so fare is feasible for any generic
lattice configuration. Now we notice that S

G

= 0 if and only if f (t)

P

= 0 for
every plaquette and thus we try to look for the most general lattice configuration
featuring this: in the second figure we highlight in bold the links that must be
set to 1 to ensure that the action density reaches its minimum. In general
the remaining links need not to be unity, but any constant value (one for each
direction) suffices; this gives rise to two ladders of constant U

µ̂

(n) = G
µ̂

and
we call them L

µ̂

and L
⌫̂

(in Figure 11.1b they are depicted with dotted lines).
Now the only plaquette whose action density is not automatically 0 is P

0

. It
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We are playing around with this in its simplest form, i.e. d=2 and Nc=2. It is a nice 
laboratory: everything is known!

In  order  to  proceed,  first  of  all  we  have  to  recall  what  is  the  minimum  action 
configuration once we have moved to the twisted action and chosen convenient twist.

A more realistic gauge theory                        
(although a somehow artificial sign problem)
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where �
i

is the i-th Pauli matrix.
We have already provided an expression for the twisted action, but we still

have to compute the twisted drift as well as the twisted hessian. Denoting n
0

the lattice site on which the twisted plaquette P
0

lies, we have
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)
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The construction of the gauge 
tree will remember many of you 
of classical literature on the 
subject, dating back to quite 
some time ago (Gonzalez-Arroyo, 
Korthals Altes, Van Baal, ...)
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It is this relation that compensates the z
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in the twisted action thus giving
0; for this reason such configurations are often referred to as “twist-eaters”. It
is thus obvious that, apart from the usual (local) gauge freedom, one has the
ability to choose any set of d matrices G
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2 SU (N) respecting the twisted
commutation relation to form a zero-action configuration. In fact it can be
shown that, calling N
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It can be shown that, for the usual (untwisted) Wilson action

dimM
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= (N � 1) (N + d) (11.8)

The toron manifold in this case is highly non-trivial: for example, we have
both “regular” torons as well as “singular torons”. It is this last kind that is
continuously connected with U = 1 and manifests itself as a set of null eigen-
values of the hessian above. Now, let us consider the twisted action. In two
dimensions, the general result concerning twist-eaters is the following: given a
simple twist z

µ̂⌫̂

= z = e2⇡ik/N 6= 1 with k coprime with N , we have

dimM
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and any configuration in M
0

is equivalent to any other by a (constant) gauge
transformation. This is precisely the sought-after result, as we have got rid of
the toronic degrees of freedom completely. It is thus to be expected that the
hessian of the twisted action computed at a twist-eater configuration, exhibits
only V

�
N2 � 1

�
null eigenvalues, all corresponding to gauge transformations

(local and global) and therefore all those directions can be safely ignored (this
is recovered in numerical computations). Now let us look at the explicit con-
struction of a twist-eater configuration for SU (N) in two dimensions. First,
choose a phase factor c such that

cN = (�1)
N�1 (11.10)

then choose a set of N orthonormal vectors {|v
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and G
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are
defined by
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where �
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is the i-th Pauli matrix.
We have already provided an expression for the twisted action, but we still
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The construction of the gauge 
tree will remember many of you 
of classical literature on the 
subject, dating back to quite 
some time ago (Gonzalez-Arroyo, 
Korthals Altes, Van Baal, ...)
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Twist-eater solution

With this we can construct a thimble to start with: in particular we can identify the 
tangent space at the critical point (in the critical orbit …). We find the expected 
number of positive Takagi values to the Hessian (the associated Takagi vectors define 
directions for ascents) and null Takagi values (the associated Takagi vectors define 
directions for the gauge transformations taking you along the orbit). 

Given a thimble formulation, our first attempt will be to test the validity of what we 
call the gaussian approximation.



The gaussian approximation

Langevin Algorithm on a thimble
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Computing the tangent space Tφ(J0) at a generic φ seems impossible

(How do we know which neighbors of φ will eventually fall in φglob-min under SD...?)

... unless we think in 5D!!

First of all observe that Langevin is the natural candidate to simulate on a thimble!

On the thimble by very definition! Noise should be tangent to the thimble!
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This point is at the border …
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of the region where the tangent space almost sits on top 
of the tangent space at the critical point … 



The gaussian approximation (as crude as it is … Bose gas ok! AuroraColl. PRD88)
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Recently A. Alexandru et al have introduced a similar approach to the computation on what 
they call the main tangent space (JHEP 1605 053).
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Not that bad (ok … on a 42 lattice … sic …)

We measure the action density. Caveat: everything very very preliminary!

SU(2) d = 2 � = 5 ei 0.2

Semiclassical approximation suggests gaussian approximation should be reasonably ok …
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Conclusions

- We have a new Monte Carlo for thimbles in terms of complete flow lines.

- Basic formalism for lattice gauge theories is alive and kicking for QCD 0+1.

- SU(2) in d=2 apparently under control in the gaussian approximation in a 
region where it should be under control.

- A HUGE amount of WORK yet to be done … !
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