Symmetries of 2xHpM ,

cp violation

and potential of
Linear Colliders

I.F. Ginzburg
Sobolev Inst. of Mathematics, SB RAS,
Novosibirsk
Based on papers with
M. Krawczyk and I.P. Ivanov



The simplest extension of the SM —
a Two Higgs Doublet Model (2HDM ):
L=LM+Ly+ Ly,

L*gg% — SM interaction, gauge bosons + fermions
Lg=T—-V — Higgs lagrangian,
T — Higgs kinetic term, V — Higgs potential,

Ly — Yukawa interaction of fermions to scalars.

T = (Dud1)T(DH¢1) + (Dug2) T (DFeo)
+3¢(Dyd1)T(DFéo) + 3 (Dpuda) T (DHe1)

= 2 (¢l ¢1)2 + 22(6h62)2 + Az(dlé1) (h2)
+24(0162) (0501) + 3 [As(6162)% + h.c]
+{[x6(sl01) + /\7<¢£¢2>} (162) + hec.} + M()
M(¢y) = =% {m31 (] 61) + m3,(s1¢2)
+[m12(¢1§b2) + hcn -

A5_7, »%, mi1o — denerally complex.



Two fields with identical quantum numbers

J
Most general 2HDM allow for global

transformations which mix ¢1, ¢o =

Reparameterization
invariance

in the space of Lagrangians with coordinates

2
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Aj, m .

T he physical reality corresponding to a particu-
lar choice of Lagrangian does not change with
the change of Lagrangian

under the global transformation F

< b1 ) ipg [ COSO eP/2  sin@elm ( 71 )
=e | .
¢2 —sinfe T cosfetP/2 2 )

accompanied by compensating transformation
of A;, m;;, » and renormalization of fields n;.

It is governed by 3 angles 6, p, T.

Reparameterization transformation and
reparameterization representation.
Reparameterization equivalent space



Particular case
at 0 =0 (7 is irrelevant):

Rephasing invariance

under the global rephasing transformation

qu; — e_ipiqSZH (Z — 17 2)7
po = (p1+p2)/2, p=p2—p1,
accompanied by transformation
2 2 2 2 _ip

Al—4 = Ala,  myj —mg,  mip; — mis

)\5 — )\5 627;/0, >‘6,7 — >‘6,7 ez'p, L — %eip_

p — rephasing gauge parameter,
po — overall phase parameter.

This invariance is extended to the description
of a whole system of scalars and fermions by
adding of similar transformations for the phases
of fermion fields and Yukawa couplings.

Rephasing transformation and
rephasing representation.
Rephasing equivalent subspace of the
reparameterization equivalent space



(Violated) z, symmetry

The 2HDM with general Ly generally give large
P and FCNC effects at EWSB .

Experiment: ¢P and FCNC effects are weak.
= The natural analysis of 2HDM should start

with the lagrangian having additional symmetry
which forbids a ¢P and FCNC effects. =
That is Z2 symmetry under independent trans-
formations for both fields

P1 — —P1, P2 — P2,

¢1 — ¢1r ¢2 — _CbZ: ’
which forbids (¢1, ¢>) mixing.

This symmetry can be weakly broken to open
door for weak CP and FCNC effects.

Z» conserving case: mio =g = A7 =x =0
— 8 parameters of L .
Soft violation of Zo: dim. 2 operator with m1»o
(retained unmixed ¢; fields at small distances)
— 10 parameters of L.
Hard violation of Z,: 4 dim. 4 operators with
Xe, A7, . (P1, ¢o) are mixed at small distances
— 14 /16 parameters of L.




(Hidden) softly violated Z> symmetry

It looks natural to assume: 2HDM appears as
low energy limit of some underlying theory where
fields ¢; have different quantum numbers, with-
out mixing = the basic lagrangian has no mixed
kKinetic term, this term cannot be generated in
the perturbation theory — softly violated Z, sym-
metry, A\g = A7 = »» = 0. The reparameteriza-
tion makes A\g, A7 = 0 = the mixed kinetic term
appears in the perturbation but it can be elimi-
nated with backward reparameterization (hidden
softly violated Z> symmetry) — 12 parameters of
L: 10 +60, 7 (p was among 10).

Transformation to the observable Higgs fields h;,
etc. gives terms like Ag 7 in the obtained poten-
tial. The correlations between quartic couplings
in the case of soft Z> symmetry (or in its hidden
form) prevent running mixing between fields ¢,
at small distances.



Hardly violated Z, symmetry

The case of hidden softly violated Z>, symmetry
mimic hard violation of Z> symmetry BUT case
with hard Z> symmetry contains 2 additional pa-
rameters in potential

(+ 2 extra parameters, Res, Imoix).
One can eliminate mixed kinetic terms by
the nonunitary transformation, like

Va1 + Vg | Virtd — Vs
2\ /1 (L4 [52) 24/ = |3¢])
Starting from the case » = 0, >\6,7 #* 0, the
renormalization of quadratically divergent, non-
diagonal two-point functions leads to » #= 0
= A\g, A7, ¥ are running

= all of these terms should be included in La-
grangian on the same footing

= the treatment of the hard violation of Z5

symmetry without » terms (as in most of

papers considering this " most general
2HDM potential”) is inconsistent.

(¢1,P5)




The minimum of the potential

defines the v.e.v.’'s (¢;) Vvia

27‘5/7; (61 = (P1), P2 = (¢2)) =0

O
with <¢1>:\%2<v01>’ <¢2>:\1f2< 7;§>;
voe

vi =wvcCosPB, vo=wsingG, B€ (0, n/2).
—1/2
The SM constraint v = (GF\/i) /2 — 246 Gev.

At the rephasing transformation & — & — p
= Phase shift £ can be eliminated by suitable
rephasing transformation.




In different problems different reparameteriza-
tion representations are more useful.

Hard Z, violation

Specific cases
of hard Z5 violation

‘ )

(Hidden) soft Zo violation
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|:| Higgs representation (vq{=v, vo=0)
B Realvq, v
NS Soft Zo violation in Higgs sector, if exists
7= Model Il, if exists
B Soft Z5 violation + Model |1

The reparemetrization equivalent space
FOR THE SAME PHYSICAL REALITY
in different cases
and specific series of representations,
"vertical” domains present some rephasing
equivalent subspace
A;, &, tan g are reparameterization non invariant.
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e \We use the zero rephasing representation —
point in the "horizontal zone” in figure, all \’'s
and M in this representation are overlined, and

_ — — V1 — UVo—
N345 = A3 + Mg + Re(Qs), Ag7 = ,U—l/\6 + 0_2’\7’
2 1

< 1 (v1— Vo —
A67 = 5 <—>\6 - —)\7> :
Vo V1

Than we express mass term of potential via
v.e.v.'s v; plus these \'s:

Mg, = Av + 05 [X345 —2v + Re (X67 + 5\67) ] :

N _— . soft N -— -
Zo sym hard
o _ v 2 2r% < N
M55 = A2v5 + v1 P\345 Z2v + Re <>\67 — >\67)} :
7o Sym soft hard

mip = 2uiva(v + 46),

o = Im(X5/2—|—X67/2).
soft hard

There are no limitation for quantity v,

while § is expressed via Im(\g5_7).

(The simple form of this subdivision is property
of zero rephasing representation.)
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The standard decomposition of the fields ¢; in
terms of reparemerization noninvariant " phys-
ical” fields (but in zero rephasing representa-
tion):
o ( )
o, = 1 , i=1,2).
\ﬁ(’vi-F??z“FZXz')

Reparameterization invariant
fields:

Goldstone boson fields
GO = cgx1 + sgx2,
+ + +
G= =cgpr T 5593

cg = COsfB, sg=sinp.

Charged Higgs boson fields
H* = 5307 + cgp5 with

1 _
M2, =v?|v— 5Re(/\4 + X5 4+ Xg7)| -
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Neutral Higgs sector is diagonalized as

hi1 R11 Ri2 Ri3 71
ho| = | Ro1 Roo Ro3 72
h3 R31 Rz R33) \cgx2—sgx1 =4

in two steps. First step is identical to that in
CP conserving case. The CP violating mixing is
described by two terms in neutral mass matrix,

M13 - — (5 + ]mj\67) SBUQ,
Moz = — (5 — Imx67) cﬁfuz.
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Relative couplings of Higgs boson h;:

- def .
Xh = gi/gsM,  a=gq, 0, V(=2Z, W)

Yukawa interaction

To have only soft violation of Z> symme-
try (to keep separate fields ¢; at small dis-
tances), each right-handed fermion should
couple to only one field, either ¢1 or ¢»>.

Otherwise, e.g. in Model III, hard violation of
Z> symmetry appears via one—loop corrections.

Model II

— L4 = P ] 9akQrrP1dRry + k—¥2 . GukQLrP2URE
+ X gulrrd1lre +h.c
k=1,2,3

For the physical Higgs fields it result in (for two-
component spinors)

. 1 .
ngz) = @[Rﬁ — 1 COS 8 R;3],

Xgi) o [R;1 —isin B R;3].

COs 3
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T he unitarity of the mixing matrix R result in

pattern relation, sum rules, etc.

e Pattern relation among the basic relative cou-
plings of each neutral Higgs particle h; (GKO):

O 4+ x5 = 1+ x5, o)
e Horizontal sum rule for each neutral Higgs bo-
son h; (Gunion et al)

x$712sin2 8 + [x{|2cos2 B = 1. (hsr)

e \VVertical sum rule for each basic relative cou-
pling x; to all three neutral Higgs bosons h; (Gu-
nion et al):

3 .
S =1  G=Viduw.  (vsr)
i=1
e Linear relation (Ir) (GK):

X%}i) = Re (cos2 BXC(;) + sin? ﬁxq(f)> ,
. . (ir)
Im (c052 6)(&2) — sin? 5X,,§;>) =0.

e New reparameterization independent relation
(GK):

(1= x$712) Imx§? + (1 = x$212) 1mx (P = 0. (nir)
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e tan 8 — a basic parameter of the 2HDM , de-
fined in the Model II reparametrization represen-
tations can be determined via measurable basic
couplings to one of neutral Higgs bosons:

(XV —xd))*_lmx() 1—|X )|2

tanzﬁ
X?SZ) _ X$/) )‘2

Imx b

In the CP conserving case for ¢ = h or H

((2 — _YInHtH-
DM7 4

M2 M2 — 2
_ [ My (), Mg (4 4 3@
(1 QMIQJi) X1V + QMIQJ (X )
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List of problems, solvable with above results

Many analyses of 2HDM assume that the light-
est Higgs boson A1 is similar to the Higgs boson
of the SM , all other Higgs bosons are very
heavy (with mass ~ M).

Usual additional hidden requirement (7!7):

The theory must have explicit decoupling prop-
erty. the mention features remain valid at M —
oo (decoupling property).

In fact, the mentioned physical picture can be
realized in the 2HDM both with and without

decoupling property.
sk sk >k >k sk sk sk sk sk >k k

e \We analysed in detail decoupling limit corre-
sponding v > |\;| with possible strong CP violation
for heaviest Higgs bosons hs, hs3.
e \We consider in detail many other realizations
of a SM —like scenario, which can take place for
a natural set of parameters of 2HDM .

sk sk sk sk sk sk ok skok sk ok
e For a natural set of parameters of 2HDM we
show that the measurements of Higgs boson
production at Photon Collider (in vy and ey
collisions) can distinguish reliably the SM from
2HDM (see Maria's talk).
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B We plan to study whether the well known form
of MSSM with loop corrections describe hard
violation of Z> symmetry or it can be considered
as hidden soft violation of Z> symmetry.

17



