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In this tutorial, we explore the dependence of atomic transition frequencies on the fine structure
constant α and the electron-proton mass ration me/mp.

1. In this problem, we consider atomic transitions between levels with difference principle quantum
numbers or between fine structure multiplets which have the same principle quantum number but
different angular momenta. The frequencies associated with these transitions are of the order of
1015 Hz, i.e., in the far left end of the visible spectrum. The clocks using these transitions are thus
referred to as ‘optical clocks’.

Let us begin with the case of a hydrogenlike atom/ion consisting of a single electron moving in
the Coulomb field of an infinitely heavy nucleus of charge Ze. The Schrödinger formular for the
electron’s nonrelativistic energy reads

En = −Z
2

n2
Ry , (1)

while the relativistic energy is given by the Dirac formula

Enj = mec
2

[
1 +

(
Zα

n− |κ|+ γ

)2
]−1/2

. (2)

Here,

Ry =
mee

4

32π2ε20~2
(3)

is the Rydberg constant, n = 1, 2, ... is the principal quantum number and j is the electron’s total
angular momentum. The quantum number κ is defined via j and the orbital angular momentum l
as κ = (l − j)(2j + 1) and γ =

√
κ2 − (Zα)2.

(a) Use Eqs. (1) and (2) to verify that the leading relativistic (fine structure) correction to the
energy level is given by

∆fs
nj = −En

(Zα)2

n

(
1

j + 1/2
− 3

4n

)
. (4)

Hint: It might be a good idea to use Mathematica or Maple to do the expansion.

Equations (1) and (4) suggest that the dependence of an electronic energy level on α may be written
as

Enj(α) = mec
2 + E0

nj + qnj

[(
α

α0

)2

− 1

]
, (5)

where α0 is the current value of the fine structure constant, 1/α0 = 137.035999084(51), and E0
nj is

the energy corresponding to this value of α.

In Eq. (5), E0
nj is independent of α. This may appear odd at first sight, since one can rewrite the

definition of Ry as
Ry = α2mec

2/2 , (6)

in which indicates that all terms in Eq. (5) are proportional to α2.

However, the point here is that because energy is a dimensionful quantity, a value of its measurement
depends on the units we are using. In other words, we actually measure the ratio of the energy in
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question with respect to another reference energy, e.g., Ry. A natural reference energy to choose is
that between the ground state hyperfine doublet of Cs, which defines the second. We will consider
this choice of reference in Exercise 2.

For this exercise, we simply note that if we take the ratio of two energies En1j1/En2j2 then the
units cancel out and we can use the expansion (5). In other words, when investigating the effects
of varying fundamental constants, we need not worry about units and their dependence on the
fundamental constants.

(b) Using Eqs. (1) and (4), find the expressions for E0
nj and qnj in terms of Z, n and j.

Although the results we obtained so far were for a hydrogenlike atom/ion, they hold for multielectron
atoms as well. Therefore, let us now consider the transition between two levels n1j1 and n2j2 in an
arbitrary atom. Clearly, the transition energy E ≡ En2j2 − En1j1 may be put in the form

E = E0 + q

[(
α

α0

)2

− 1

]
, (7)

where E0 ≡ E0
n2j2
− E0

n1j1
and q ≡ qn2j2 − qn1j1 .

The parameter q links the variation δE of of the transition energy E to the variation δα of α.

(c) Using Eq. (7), show that
δE

E

∣∣∣∣
α=α0

= K
δα

α0
, (8)

and derive the formula for the dimensionless sensitivity factor K.

As discussed in question 1b, in an experimental setting, we measure the ratio R = E1/E2 = ν1/ν2,
between two transition energies (or frequencies, ν = E/h).

(d) Show that R changes in response to the variation of α as

δR

R

∣∣∣∣
α=α0

= ∆K
δα

α0
, (9)

and derive the formula for the dimensionless sensitivity factor ∆K.

2. In this exercise we consider the more traditional ‘microwave clocks’ which use transitions with
frequencies of the order of GHz. The most notable example is perhaps 133Cs clocks which define
the second.

Atomic transitions in the GHz range often happen between hyperfine levels, which arise due to the
interaction between the nuclear multipoles, e.g., magnetic dipole and electric quadrupole, and the
fields created by the atomic electrons. In this exercise, we will consider the nuclear magnetic dipole
only.

The magnetic dipole of a nucleus µI is proportional to the nuclear spin I

µI = gµNI , (10)

where g is the nuclear gyromagnetic factor, µN = e~
2mp

is the nuclear magneton and mp is the proton
mass.

Due to the interaction between µI and the electrons, the electrons’ total angular momentum J is
no longer a good quantum number. Instead, electronic states are now eigenfunctions of the operator
F ≡ I + J. In other words, a state with a definite J at the fine structure level splits further into
states with F = |J − I|, ..., J + I.

Let us now consider again the case of a hydrogenlike atom/ion. We may write the interaction
between the electron and the nuclear magnetic moment µI as

Vhfs =
µ0

4π

eµI · (r×α)

r3
, (11)
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where r is the electron’s position vector and α are its alpha matrices (this interaction Hamiltonian
comes from the minimal coupling prescription for the Dirac equation: p→ p−eA where A = µ0

4π
µI×r
r3

is the vector potential created by µI).

Using perturbation theory, we find that the hyperfine shift corresponding to the level Enj is given
by

∆hfs
njF =

µ0e

(4π)2
µI
I

m2
ec

3

~2
(Zα)3κ

j(j + 1)

2κ(γ + nr)−N
N4γ(4γ2 − 1)

[F (F + 1)− I(I + 1)− j(j + 1)] , (12)

where nr = n− |κ| and N =
√
n2r + 2nrγ + κ2.

(a) Show that Eq. (12) may be put in the form

∆hfs
njF = AhfsgI

me

mp
α2Fhfs(α)Ry , (13)

where Ahfs is a number depending on the particular atom but not α and Fhfs(α) is a relativsitc
correction factor specific to each hyperfine transition.

(b) Show that Fhfs has no linear term in α. Then show that the change in the transition energy E
between two levels in the same hyperfine multiple in response to α variation satisfies

δE

E

∣∣∣∣
α=α0

= (K + 2)
δα

α0
, (14)

where K is a quantity similar to that which you found in problem 1c.

Hint: It might be a good idea to use Mathematica or Maple to do the expansion

(c) Relate the change of E on the change of me/mp.

Although we derived these results for a hydrogenlike atom/ion, they apply equally well for multi-
electron atoms. As with problem 1, we are interested in how the ratio R = E1/E2 of two transition
energies depends on the variation of α and me/mp. We consider to separate cases: (1) both E1

and E2 are optical and (2) one where E1 is optical but E2 is microwave. Note that if we take E2

to be the standard ground state hyperfine splitting in 133Cs then R is the ‘absolute’ measurement
of E1 in the normal sense.

(d) Derive the sensitivity of R with respect to α and me/mp in case (1).

(e) Derive the sensitivity of R with respect to α and me/mp in case (2).
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