

Atomic clocks in the age of gravitational wave detectors

Andrei Derevianko University of Nevada, Reno,

What will we cover today?

- Dark matter and modified gravity
- Tests of general relativity (GR)
- Detection of gravitational waves
- Exotic field modality in multi-messenger astronomy
- Do not throw away outliers

Atomic clocks as quantum sensors

Quantum oscillator (qubit) is well protected from the traditional physics environmental perturbations

 \Box Residual traditional physics perturbations are well characterized \Longrightarrow low-level background

Exotic physics can leave uncharacterized perturbations in atomic and cavity frequencies

Portals to exotic physics

- Exotic fields can change atomic/cavity frequencies [variation of fundamental constants by dark sector,...]
- Effects of special/general relativity on ticking rate [modified gravity,...]
- Comparison link effective index of refraction [gravitational waves/dark sector,...]

Dark matter/dark energy

- DM: Handful of observational evidence from gravitational interactions on galactic scales
- Conventional paradigm = DM is made out of particles/fields
 - What is the microscopic composition?
 - □ Are there non-gravitational interactions?

Difficulties with particle dark matter paradigm

Galactic core cusps vs observed flat density profiles

- Predicts too many satellite galaxies
- Does not explain alignment of satellite galaxies
- □ At odds with bosonic Tully-Fisher relation
- At odds with Renzo's rule
- Collisions of galaxies are too fast (DM has friction)

Alternative: modified gravity

On the largest and/or smallest scales, gravity acts in novel ways compared to the well-tested scales in the middle

Galactic cores

- Mumber of satellite galaxies
- ☑ Alignment of satellite galaxies
- **M** Bosonic Tully-Fisher relation
- Menzo's rule
- ☑ Collisions of galaxies

Difficulties: peaks in cosmic microwave background power spectrum, early universe, galaxy clusters

Duality?

Modified gravity

Image: Constraint of the second second

We need to search for both manifestations

Tests of General Relativity

Testing GR with gravitational red shift

Tokyo Skytree experiment

FOCOS (Fundamental physics with an Optical Clock Orbiting in Space)

Highly elliptical orbit => variation in U + comparison with terrestrial clocks (fixed U)

Chris Oats ++

Gravitational waves (GW)

Laser Interferometer Gravitational-Wave Observatory (LIGO)

Black-hole merger & LIGO detection

So far ~20 GW events observed (as of 2021)

SNR ~ 5-7

The Gravitational Wave Spectrum

Some GR/GW basics

Line element (Lorentz scalar)

$$(ds)^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} \qquad \qquad x^{\mu} = (ct, \mathbf{r})$$

metric

Flat space time

$$g_{\mu\nu}^{(\text{flat})} = \text{diag}(1, -1, -1, -1) \qquad (ds)^2 = (cdt)^2 - (dx)^2 - (dy)^2 - (dz)^2$$

+ gravitational wave

$$g_{\mu\nu} = g_{\mu\nu}^{(\text{flat})} + h_{\mu\nu} \cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$$

Strain ~10⁻²¹ (LIGO)

Proper time

The dark blue vertical line represents an inertial observer measuring a coordinate time interval *t* between events E_1 and E_2 . The red curve represents a clock measuring its proper time interval τ between the same two events.

For stationary clock in GW metric

$$g_{00} = 1 + h_{00} \cos\left(\mathbf{k} \cdot \mathbf{r} - \boldsymbol{\omega}t\right)$$

$$\tau \approx t + \frac{1}{2} h_{00} \int \cos(\mathbf{k} \cdot \mathbf{r} - \omega t') dt'$$

Clock comparison template in GR

Koop & Finn, PRD 96, 042118 (2014)

Emit pulses at regular time intervals and measure intervals b/w arriving pulses

Loeb & Maoz proposal

Sr optical clock analysis

Track GW in the intermediate frequency band between LISA and LIGO

Proposed clock space missions

SAGE: Space Atomic Gravity Explorer Eur. Phys. J. D 73, 228 (2019)

AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration Eur. Phys. J. Quantum Technol. 7, 6 (2020)

SAGE and AEDGE: Primary goal is detection of gravitational waves with secondary goals like dark matter detection and tests of quantum mechanics

ACES: Atomic Clock Ensemble in Space (2015-2016) main objective is to demonstrate the performances of Cs fountain clock in the microgravity environment of the International Space Station (ISS).

https://earth.esa.int/web/eoportal/satellite-missions/i/iss-aces

Exotic field modality in multi-messenger astronomy

ELF module overview

- Exotic low-mass fields (ELFs)
- ELF production mechanisms
- Expected signal and characteristic anti-chirp
- Discovery reach of existing networks
- Preliminary results from the GPS data

Sourced exotic fields

www.nature.com/natastron/February 2021 Vol. 5 No. 2

nature astronomy

Quantum sensor networks for exotic astrophysics

Quantum sensor networks as exotic field telescopes for multi-messenger astronomy

Conner Dailey[©]¹, Colin Bradley¹, Derek F. Jackson Kimball[©]², Ibrahim A. Sulai³, Szymon Pustelny⁴, Arne Wickenbrock⁵ and Andrei Derevianko[©]¹⊠

Multi-messenger astronomy

GW170817

Merger of two neutron stars (Aug 17, 2017)

Host galaxy 40 megaparsecs away

Trigger: gravitational waves detected by LIGO-Virgo

The source was observed in a comprehensive campaign across the electromagnetic spectrum

- in the X-ray, ultraviolet, optical, infrared, and radio bands
- over hours, days, and weeks.

Can we see the merger in the atomic clock data?

Exotic Low-mass Fields (ELFs)

- Modern clocks are **not** sensitive to gravitational waves (requires clock comparison over huge baselines)
- Exquisite sensitivity to "new" physics beyond the Standard model
- Focus on exotic, BSM, scalar (S = 0) fields:
 - abundant in BSM theories [axions, dilatons, relaxions, etc]
 - can solve the hierarchy & strong-CP problems
 - dark-matter candidates

ELFs as a signature of quantum gravity?

- Coalescing singularities in black hole mergers? yet unknown theory of quantum gravity
- Scalar-tensor gravity.

BH and NS immersed in the scalar field. Modes can be excited during the merger. Dynamic scalarization + monopole scalar emission

- Scalar fields can be trapped in neutron stars released during the merger
- Clouds of scalars (superatoms) around black holes up to 10% of BH mass is in the cloud
- Direct production (e.g., $\gamma + \gamma \rightarrow \phi + \phi$ or $N + N \rightarrow N + N + \phi + \phi$)

A pragmatic observational approach based on energy arguments:

ELF channel energy
$$\Delta E = \text{fraction of } M_{\odot}c^2$$

Generic wave-form independent of the production mechanism

Scalar bootcamp

Massive (mass m) and spin-less (S = 0) field

Relativistic Schrödinger eqn [Klein-Gorgon eqn]

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\varphi - \nabla^2\varphi + \left(\frac{mc}{\hbar}\right)^2\varphi = 0$$

Solutions: the usual spherical and plane waves

$$\varphi \sim e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})}$$

Relativistic energy-momentum relation => dispersion relation

$$\varepsilon = \hbar\omega = \left[\left(c\hbar k \right)^2 + \left(mc^2 \right)^2 \right]^{1/2}$$

Scalar waves are like E&M waves

"Internal" refractive index (ultrarelativistic scalars)

$$n(\omega) \approx 1 - \frac{1}{2} \frac{mc^2}{\hbar \omega}$$

Most of Jackson E&M problems/intuition can be directly transferred

- Group velocity $v_g \lesssim c$
- Dispersive propagation

What kind of ELFs can we detect?

Gravitational wave travels @ c over 10^8 light-years

Reasonable time delay < a week $\Rightarrow v_g \approx c$

- I. ELFs must be **ultrarelativistic**: $mc^2 \ll \varepsilon = \hbar \omega$
- 2. For a clock, $max(\omega) = 2\pi \text{ Hz} \Rightarrow m \ll 10^{-14} \text{ eV}$

ELFs must be **ultralight**

Energetics

Copious emission

$$\frac{\Delta E = \text{fraction of } M_{\odot}c^2}{\varepsilon = 10^{-10}\,\text{eV}} \sim 10^{70}\,\text{ELFs}$$

Large mode occupation numbers => classical field all the way to the sensor

Anti-chirp signature

• Start with a Gaussian pulse (ω_0, τ_0)

• higher frequency ω have larger momenta $\hbar k \Rightarrow$ Higher frequencies arrive earlier!

• Instantaneous frequency chirp

$$\frac{d\omega}{dt} < 0$$

Detailed analysis

$$\phi(t) \approx \frac{1}{R} \left(\frac{c\Delta E}{2\pi^{3/2}\omega_0^2 \tau} \right)^{1/2} \exp\left(-\frac{(t-t_s)^2}{2\tau^2} \right) \times \cos\left(\omega_0 (t-t_s) - \frac{\omega_0}{4\delta t} (t-t_s)^2 \right)$$

Time lag between GW and ELF bursts

Duration at the sensor

Frequency slope

$$\frac{d\omega(t)}{dt} = -\frac{\omega_0}{2\delta t}$$

LIGO style time frequency map

- I. Chop data stream into equal chunks
- 2. Discrete Fourier Transform in each window
- 3. Each tile = (window time stamp, frequency)
- 4. Compute power spectral density in each tile

Power of the network

ELF power spectrum template

Anti-chirp is independent of the production mechanism

Network desiderata

Time resolution Δ_t

- I. Resolve leading edge: $\Delta_t \ll L/c$
- 2. Resolve envelope: $\Delta_t \ll \tau$

GNOME: $L \sim 10,000 \text{ km}; L/c \sim 40 \text{ ms}; \Delta_t = 1 \text{ ms}$ **GPS:** $L \sim 50,000 \text{ km}; L/c \sim 0.2 \text{ s}; \Delta_t = 30 \text{ s} \rightarrow 1 \text{ s}$

GPS can not track the leading edge = compound multi-node sensor all clocks must have the same signal

Coupling ELFs to sensors

Induced variation in fundamental constants

$$\frac{\Delta \alpha}{\alpha} = \Gamma_{\alpha} \varphi(\mathbf{r}, \mathbf{t}) \qquad \qquad \frac{\Delta m_e}{m_e} = \Gamma_{m_e} \varphi(\mathbf{r}, \mathbf{t})$$

 \Rightarrow affects clock frequencies and the measured time

Projected sensitivity GW170817 (NS+NS)

 $\Delta E_{\rm ELF} = 0.1 \, M_{\odot} c^2$

 $R = 40 \,\mathrm{Mpc}$

Preliminary results from GPS clocks

GPS.DM observatory

Mining ~20 years of archival data for atomic clocks onboard GPS satellites 30 second sampling time - need faster sampling rate for the ELF search

Excess power in GPS atomic clocks

 $t-t_c(s)$

Better 1 s data (Paul Reis, JPL)

Network Average

- The "ELF signal" went away.
- Work in progress still artifacts in 1s data.
- We can set limits on quadratic couplings.

Conner Dailey, MSc thesis, U. Nevada, Reno (2019) Current efforts: Arko Pratim Sen

Cavities vs clocks

At c, ELF burst propagates across Earth in 40 ms.

Clock sampling rate is slow ~ Hz. Terrestrial networks can not track ELFs.

Cavities ~ 100 kHz. ELFs can be tracked!

Campus-sized network ~ 3 km

A. Geraci, C. Bradley, D. Gao, J. Weinstein, and A. Derevianko, PRL 123, 31304 (2019)

Outliers: Black swan physics

Black swan physics

- Rare but dramatic events
 - [both in time and frequency domains]
- Pragmatic empirical approach to data
- Data is the king. Make it public.
- Do not throw away outliers [unless you know technical reasons]

Budker & Derevianko, Physics Today 68, 10 (2015)

"Fundamental" physics sensors summary

 $\dot{\alpha} \& \vec{\nabla} \alpha$

- Variation of fundamental constants
- Dark matter searches
- Gravitational waves
- Tests of general relativity
- Multi-messenger astronomy