# Atom interferometry and gravitational wave detection

**Quantum Sensors for Fundamental Physics** 

**QSFP School 2021** 

Jason Hogan Stanford University September 2021



### Outline

#### Lecture 1

- General introduction/motivation
- Non-relativistic atom interferometer phase theory
- Example applications
- Tutorial: Accelerometer phase response

Lecture 2

- General relativistic phase shift theory
- GR effects and clock interferometry
- Gravitational wave detection and MAGIS
- Aharonov-Bohm phase shifts
- Tutorial: Gravitational wave phase response

Lecture 3

- Advanced atom optics (large momentum transfer techniques)
- Systematic errors, backgrounds, and mitigations
- Supporting tools: matter wave lensing, optical lattices, phase shear readout

### Lecture 1

### Science applications

- Gravitational wave detection
- Quantum mechanics at macroscopic scales
- QED tests (alpha measurements)
- Quantum entanglement for enhanced readout
- Equivalence principle tests, tests of GR
- Short distance gravity
- Search for dark matter
- Atom charge neutrality





Compact binary inspiral



*Rb wavepackets separated by 54 cm* 

Image: https://www2.physics.ox.ac.uk/research/dark-matter-dark-energy

### Atom interference



http://scienceblogs.com/principles/2013/10/22/quantum-erasure/ http://www.cobolt.se/interferometry.html

### Atom optics using light

#### (1) Light absorption:



#### (2) Stimulated emission:



### Atom optics using light

#### (1) Light absorption:



### Light Pulse Atom Interferometry



### Common atom optics processes



Spontaneous emission in alkali atoms require 2-photon atom optics

### Example interferometer geometries



Mach-Zehnder interferometer

*Phase shift measures acceleration* Example: Equivalence principle tests,

inertial sensing Also: Gyroscopes (space-space instead of space-time)



Ramsey-Borde interferometer

*Phase shift measures kinetic energy difference (due to absorbed photons)* Example: fine structure constant measurements

### Atom interferometer phase shift analysis



This approach mostly follows "Light-pulse atom interferometry" (2008), as well as Bongs/Kasevich (2006) and others.

#### **Other approaches:**

- C. Borde, ABCD formalism, e.g., Metrologia 39, 435-463, (2002)
- Storey, Cohen-Tannoudji. "The Feynman path integral approach to atomic interferometry. A tutorial" (1994)
- Representation-free approach: Kleinert (2015)
- Wigner function approach: Dubetsky (2006)

### Non-relativistic phase shift calculation

$$\hat{H}_{\text{tot}} = \hat{H}_{\text{a}} + \hat{H}_{\text{ext}} + \hat{V}_{\text{int}}(\hat{\mathbf{x}})$$

Internal External Interaction

Internal:  $i\partial_t |A_i\rangle = \hat{H}_a |A_i\rangle = E_i |A_i\rangle \qquad |A_i\rangle = |i\rangle e^{-iE_i(t-t_0)}$ 

- Atomic energy levels
- No need to calculate, can look up, etc.

**External:** 
$$i\partial_t |\psi\rangle = H(\hat{\mathbf{x}}, \hat{\mathbf{p}}) |\psi\rangle$$
  
 $\hat{H}_{\text{ext}}$ 

- Includes kinetic energy p<sup>2</sup>/2m
- mgz gravity
- Gravity gradients (quadratic and higher)
- Rotations (mix position and momentum)
- Magnetic field gradients

• ...

### External Hamiltonian: Eigenfunction analysis?



#### Example

$$V(z) = \begin{cases} mgz, & z \ge 0, \\ \infty, & z \le 0, \end{cases}$$
$$u_E(z) = \mathcal{N}_E \cdot \operatorname{Ai}\left(\left(\frac{2}{m\hbar^2 \tilde{g}^2}\right)^{1/3} [m\tilde{g}z - E]\right)$$
$$Airy \text{ functions}$$
$$E_n = \left(\frac{m\hbar^2 \tilde{g}^2}{2}\right)^{\frac{1}{3}} a_{n+1}$$

- Freely falling wavepacket is a superposition
- Different energy eignevalues results in time dependence of wavepacket...

#### Some issues

- "Tunneling into the classically forbidden region"
- "New" dependence on the inertial and gravitational mass? (but note the hard wall at z=0)
- How to handle higher order terms in the potential?

$$E_n = \left(\frac{1}{2}\hbar^2 g^2\right)^{\frac{1}{3}} m_g^{\frac{2}{3}} m_i^{-\frac{1}{3}} a_{n+1}$$

Possible approach, but not necessarily the most useful

### **Propagation phase**

Time evolution of atom's state between laser pulses:

*Galilean transformation* operator:  $\hat{G}_c \equiv \hat{G}(\mathbf{x}_c, \mathbf{p}_c, L_c) = e^{i \int L_c dt} e^{-i\hat{\mathbf{p}} \cdot \mathbf{x}_c} e^{i\mathbf{p}_c \cdot \hat{\mathbf{x}}}$ 

Phase Translation Boost



- The phase of the center of the wavepacket is the classical action
- The carrier and wavepacket envelope move together along the classical path

$$\Delta \phi_{\text{propagation}} = \sum_{\text{upper}} \left( \int_{t_I}^{t_F} (L_c - E_i) dt \right) - \sum_{\text{lower}} \left( \int_{t_I}^{t_F} (L_c - E_i) dt \right)$$

### Separation phase

Wavepackets do not always perfectly overlap at the final beamsplitter, due to tidal forces across wavepacket separation



$$\Delta \phi_{\text{separation}} = \bar{\mathbf{p}} \cdot \Delta \mathbf{x}$$
$$\Delta \mathbf{x} \equiv \mathbf{x}_l - \mathbf{x}_u$$

Conceptually similar to propagation phase; completes the loop.

### Laser phase

$$\left|\Psi\right\rangle = \int d\mathbf{p} \sum_{i} c_{i}(\mathbf{p}) \left|\psi_{\mathbf{p}}\right\rangle \left|A_{i}\right\rangle$$

Atom-light interactions follow from Schrodinger equation (interaction picture):

$$\dot{c}_1(\mathbf{p}) = \frac{1}{2i} \Omega c_2(\mathbf{p} + \mathbf{k}) e^{-i\phi_L} e^{-i\int_{t_0}^t \Delta(\mathbf{p})dt}$$
$$\dot{c}_2(\mathbf{p} + \mathbf{k}) = \frac{1}{2i} \Omega^* c_1(\mathbf{p}) e^{i\phi_L} e^{i\int_{t_0}^t \Delta(\mathbf{p})dt}$$

Transition $|\mathbf{p}\rangle \rightarrow |\mathbf{p} + \mathbf{k}\rangle e^{i\phi_L}$ rules: $|\mathbf{p} + \mathbf{k}\rangle \rightarrow |\mathbf{p}\rangle e^{-i\phi_L}$ 

 $\phi_L \equiv \mathbf{k} \cdot \mathbf{x}_c(t_0) - \omega t_0 + \phi$ Atom
position

- Laser phase is imprinted on the wavefunction at each pulse
- The position of the atom (at time of pulse) is encoded in the atom's wavefunction
- "Measures" the atom position with a wavelength-scale "ruler"  $\rightarrow$  corresponding momentum kick (uncertainty principle)

#### Rabi oscillations



### Summary: Non-relativistic phase shift calculation

The atom interferometer phase shift can be decomposed as

$$\Delta\phi_{\rm tot} = \Delta\phi_{\rm propagation} + \Delta\phi_{\rm separation} + \Delta\phi_{\rm laser}$$

$$\Delta \phi_{\text{propagation}} = \sum_{\text{upper}} \left( \int_{t_I}^{t_F} (L_c - E_i) dt \right) - \sum_{\text{lower}} \left( \int_{t_I}^{t_F} (L_c - E_i) dt \right)$$
$$\Delta \phi_{\text{laser}} = \left( \sum_j \pm \phi_L(t_j, \mathbf{x}_u(t_j)) \right)_{\text{upper}} - \left( \sum_j \pm \phi_L(t_j, \mathbf{x}_l(t_j)) \right)_{\text{lower}}$$
$$\Delta \phi_{\text{separation}} = \bar{\mathbf{p}} \cdot \Delta \mathbf{x}$$

### Semi-classical phase shift analysis example

Three contributions:

- Laser phase at each node
- Propagation phase along each path
- Separation phase at end of interferometer

$$\Delta\phi_{\rm total} = \Delta\phi_{\rm prop} + \Delta\phi_{\rm laser} + \Delta\phi_{\rm sep}$$



Include all relevant forces in the classical Lagrangian:

$$L = \frac{1}{2}m(\dot{\mathbf{r}} + \mathbf{\Omega} \times (\mathbf{r} + \mathbf{R}_e))^2 - m\phi(\mathbf{r} + \mathbf{R}_e) - \frac{1}{2}\alpha \mathbf{B(r)}^2$$

$$\int \mathbf{R} \text{otation of Earth} \qquad \text{Gravity gradients, etc.} \qquad \text{Magnetic field shifts}$$

$$\phi(\mathbf{r} + \mathbf{R}_e) = -\left(\mathbf{g} \cdot \mathbf{r} + \frac{1}{2!}(T_{ij})r_ir_j + \frac{1}{3!}(Q_{ijk})r_ir_jr_k + \frac{1}{4!}(S_{ijkl})r_ir_jr_kr_l\right)$$

### Example phase shift result

## Phase shifts (3-pulse accelerometer) $\Delta \phi_{\text{propagation}} = \frac{1}{\hbar} ((S_{AC} + S_{CE}) - (S_{AB} + S_{BD}))$ $\Delta \phi_{\text{laser}} = \phi_L(\mathbf{r}_A, 0) - \phi_L(\mathbf{r}_C, T) - \phi_L(\mathbf{r}_B, T) + \phi_L(\mathbf{r}_D, 2T)$ $\Delta \phi_{\text{separation}} = \frac{1}{2\hbar} (\mathbf{p}_D + \mathbf{p}_E) \cdot (\mathbf{r}_D - \mathbf{r}_E)$

#### Solve using power series trajectories

$$r_i(t) = \sum_{n=0}^{N} a_{in}(t-t_0)^n$$

*Includes gravity gradients, rotation (Coriolis forces), magnetic forces* 

| Phase shift                                                                                                  | Size (rad)                                   | Fractional size        |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|
| $I = T^2$                                                                                                    | 0.05 108                                     | 1.00                   |
| $-\kappa_{\rm eff}gT^2$                                                                                      | $-2.85 \times 10^{\circ}$                    | 1.00                   |
| $k_{\rm eff} R_e \Omega_y^2 T^2$                                                                             | $6.18 \times 10^{3}$                         | $2.17 \times 10^{-6}$  |
| $-k_{\text{eff}}T_{zz}v_{z}T^{3}$                                                                            | $1.58 \times 10^{3}$                         | $5.54 \times 10^{-6}$  |
| $\frac{1}{12}k_{\text{eff}}gT_{zz}T^*$                                                                       | $-9.21 \times 10^{2}$                        | $3.23 \times 10^{-6}$  |
| $-3k_{\mathrm{eff}}v_z\Omega_y^2T^3$                                                                         | -5.14                                        | $1.80 \times 10^{-8}$  |
| $\frac{2k_{\mathrm{eff}}v_x\Omega_yT^2}{7L}$                                                                 | 3.35                                         | $1.18 \times 10^{-8}$  |
| $\frac{1}{4}k_{\text{eff}}g\Omega_y^2 T^4$                                                                   | 3.00                                         | $1.05 \times 10^{-8}$  |
| $-\frac{1}{12}k_{\mathrm{eff}}R_eT_{zz}\Omega_y^2T^4$                                                        | 2.00                                         | $7.01 \times 10^{-3}$  |
| $-rac{\hbar k_{	ext{eff}}^2}{2m}T_{zz}T^3$                                                                  | $7.05 	imes 10^{-1}$                         | $2.48 \times 10^{-9}$  |
| $\frac{3}{4}k_{\mathrm{eff}}gQ_{zzz}v_zT^5$                                                                  | $9.84 \times 10^{-3}$                        | $3.46 \times 10^{-11}$ |
| $-\frac{7}{12}k_{\mathrm{eff}}Q_{zzz}v_z^2T^4$                                                               | $-7.66 \times 10^{-3}$                       | $2.69 \times 10^{-11}$ |
| $-\frac{7}{4}k_{\mathrm{eff}}R_e\Omega_y^4T^4$                                                               | $-6.50 \times 10^{-3}$                       | $2.28 \times 10^{-11}$ |
| $-rac{7}{4}\hat{k}_{	ext{eff}}R_e\Omega_y^2\hat{\Omega}_z^2T^4$                                             | $-3.81 \times 10^{-3}$                       | $1.34 \times 10^{-11}$ |
| $-rac{31}{120}k_{ m eff}g^2 Q_{zzz}T^6$                                                                     | $-3.39 \times 10^{-3}$                       | $1.19 \times 10^{-11}$ |
| $-\frac{3\hbar k_{\mathrm{eff}}^2}{2}\Omega_u^2 T^3$                                                         | $-2.30 \times 10^{-3}$                       | $8.06 	imes 10^{-12}$  |
| $\frac{1}{4} k_{\text{eff}} T_{zz}^{2} v_{z} T^{5}$                                                          | $2.19 \times 10^{-3}$                        | $7.68 \times 10^{-12}$ |
| $-\frac{31}{220}k_{\text{eff}}qT_{22}^2T^6$                                                                  | $-7.53 \times 10^{-4}$                       | $2.65 \times 10^{-12}$ |
| $3_{60}^{360} + eng_z z^z$<br>$3k_{eff} v_u \Omega_u \Omega_z T^3$                                           | $2.98 	imes 10^{-4}$                         | $1.05 \times 10^{-12}$ |
| $-k_{\text{eff}}\Omega_{y}\Omega_{z}u_{0}T^{2}$                                                              | $-7.41 \times 10^{-5}$                       | $2.60 \times 10^{-13}$ |
| $-\frac{3}{4}k_{\text{eff}}R_eQ_{zzz}v_z\Omega_u^2T^5$                                                       | $-2.14 \times 10^{-5}$                       | $7.50 \times 10^{-14}$ |
| $\frac{31}{20}k_{\rm eff}qR_eQ_{zzz}\Omega_u^2T^6$                                                           | $1.47 \times 10^{-5}$                        | $5.17 \times 10^{-14}$ |
| $\frac{3}{2}k_{\rm eff}T_{zz}v_z\Omega_z^2T^5$                                                               | $-1.42 \times 10^{-5}$                       | $5.00 \times 10^{-14}$ |
| $-\frac{7}{2}k_{\text{eff}}T_{zz}v_x\Omega_yT^4$                                                             | $1.08 \times 10^{-5}$                        | $3.81 \times 10^{-14}$ |
| $-2k_{\text{eff}}T_{xx}\Omega_{y}x_{0}T^{3}$                                                                 | $-6.92 \times 10^{-6}$                       | $2.43 \times 10^{-14}$ |
| $7\hbar k_{\text{eff}}^2 O$ at $T^4$                                                                         | $6.84 \times 10^{-6}$                        | $2.40 \times 10^{-14}$ |
| $-\frac{12m}{7k}Q_{zzz}U_zI$                                                                                 | $-0.84 \times 10$<br>5.42 × 10 <sup>-6</sup> | $1.00 \times 10^{-14}$ |
| $-\frac{1}{6}\kappa_{\text{eff}} I_{xx} v_{x} v_{x} v_{y} I$ $\frac{31}{6} \mu_{x} a_{x} T \Omega^{2} T^{6}$ | $-5.42 \times 10^{-6}$                       | $1.30 \times 10^{-14}$ |
| $-\frac{1}{60}\kappa_{eff}g_{1}z_{2}z_{2}y_{1}$<br>$k_{a}T_{a}v_{0}O^{2}T^{5}$                               | $4.30 \times 10^{-6}$                        | $1.72 \times 10^{-14}$ |
| $h_{\text{eff}} I_{xx} U_z \mathfrak{L}_y I_y$                                                               | 4.75 × 10                                    | 1.07 × 10              |
| $\frac{GRW_{\text{eff}}}{8m}gQ_{zzz}T^3$                                                                     | $4.40 \times 10^{-6}$                        | $1.55 \times 10^{-14}$ |
| $\frac{31}{360} k_{\text{eff}} R_e T_{zz}^2 \Omega_y^2 T^6$                                                  | $1.63 \times 10^{-6}$                        | $5.74 \times 10^{-13}$ |
| $-\frac{31}{90}k_{\mathrm{eff}}gT_{xx}\Omega_y^2T^6$                                                         | $-1.63 \times 10^{-6}$                       | $5.74 \times 10^{-15}$ |
| $rac{\hbar k_{ m eff}^2}{8m}T_{zz}^2T^5$                                                                    | $9.78 	imes 10^{-7}$                         | $3.43 \times 10^{-15}$ |
| $-\frac{\hbar k_{\rm eff} \alpha B_0 (\partial_z B) T^2}{2}$                                                 | $-7.67 \times 10^{-8}$                       | $2.69 \times 10^{-16}$ |
| $\frac{31}{20}k_{\rm eff}qS_{zzzz}^{m}v_{z}^{2}T^{6}$                                                        | $-7.52 \times 10^{-8}$                       | $2.64 \times 10^{-16}$ |
| $-\frac{1}{4}k_{\text{eff}}S_{zzzz}v_{z}^{3}T^{5}$                                                           | $3.64 \times 10^{-8}$                        | $1.28 \times 10^{-16}$ |
| $\frac{31}{72} k_{\text{eff}}^4 T_{zz} Q_{zzz} v_z^2 T^6$                                                    | $-3.13 \times 10^{-8}$                       | $1.10 \times 10^{-16}$ |

### Perturbative approach

### The Feynman path integral approach to atomic interferometry. A tutorial

Pippa Storey and Claude Cohen-Tannoudji

(Received 22 September 1994, accepted 26 September 1994)

$$L = L_0 + \epsilon L_1$$
 Any perturbing Lagrangian:  
magnetic fields, gravity, ...

Can show (to first order in perturbation)

$$\delta \phi = \frac{\epsilon}{\hbar} \int_{\Gamma_{cl}^{(0)}} L_1 \, \mathrm{d}t. \qquad \text{(to leading order)}$$

- Ignore affect of the perturbation on the atom trajectories
- Simple way to estimate leading order phase response
- Does not capture higher order effects





### Mach-Zehnder as discrete derivative sensor

**Simple picture:** Atom interferometer records the positions of the atom with respect to a wavelength-scale "laser ruler"



$$\phi_L \equiv \mathbf{k} \cdot \mathbf{x}_c(t_0) - \omega t_0 + \phi$$

- For Mach-Zehnder, propagation + separation phase tend to cancel ...Except for high-order potentials (e.g., Aharonov Bohm effects)
  - See Overstreet et al., Am. J. Phys. 89, 324 (2021)
- Laser phase records the position of the atom at each pulse
- Total phase encodes differences (motion) between pulses
- "Discrete derivative sensor": Records any spatial (or temporal) variation of atom (or background fields).

### Two pulse atomic clock sequence

Atomic clocks are closely related to atom interferometers Consider a *microwave* atomic clock (Ramsey sequence)



Can ignore separation phase (recoil is negligible for a microwave transition)

$$\begin{split} \Delta \phi &= \Delta \phi_{\text{prop}} + \Delta \phi_{\text{laser}} = \omega_A T + \phi_1 - \phi_2 \\ &= (\omega - \omega_A) T + k x_1 - k x_2 \\ &= (\omega - \omega_A) T + k v T \qquad \text{(atom velocity v)} \end{split}$$

Sensitive to atom velocity (Doppler shift)

For atom interferometers with optical transitions, recoil must be managed → Requires more pulses

### Atom interferometer as discrete derivative sensor



- $\Delta \phi = \phi_1 \phi_2 = (\omega \omega_A)T + kx_1 kx_2$  $= (\omega \omega_A)T + kvT$
- Measures velocity

$$\Delta \phi = (\phi_1 - \phi_2) - (\phi_2 - \phi_3) = kv_1T - kv_2T = kaT^2$$

- "Difference" of two Ramsey sequences
- Measures acceleration

$$\Delta \phi = ka_1 T^2 - ka_2 T^2 = k\,\delta a\,T^3$$

- Difference of two MZ loops
- Measures acceleration gradient (in space and/or time)

### Accelerometer sensitivity



### 10-meter scale atom drop towers



Hannover, Germany



Wuhan, China

AION, UK



Stanford University

### Interference at long interrogation time





Dickerson, et al., PRL **111**, 083001 (2013).

### **Example Applications**

- Tests of the equivalence principle
- Search for new forces
- Measurements of the fine structure constant  $\alpha$
- $\bullet$  Measurements of the gravitational constant G
- Gravitational wave detection
- Dark matter detection
- Testing atom charge neutrality
- Tests of quantum mechanics

### 10-meter fountain equivalence principle test

#### **Simultaneous Dual Interferometer**



Asenbaum et al., Phys. Rev. Lett. 125, 191101 (2020)

### New force tests

Violations of EP due to "fifth forces"

Yukawa type:

$$V(r) = -\frac{GM_1M_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

EP tests are sensitive to "charge" differences of new forces

Typically, new forces violate EP



### Fine Structure Constant Measurement

 $\hbar k^2$ 

 $2m_{\rm At}$ 

Measure the fine structure constant  $\alpha$  to test QED

• Ramsey-Borde sequence phase sensitive to the recoil frequency:  $16n(n + N)\omega_r T$ 

• Use recoil measurement to determine h/m:  $\omega_r =$ 

$$\frac{1}{\alpha} = 137.035999046(27)$$

$$\alpha^2 = \frac{2 R_\infty}{c} \frac{m_{\rm At}}{m_e} \frac{h}{m_{\rm At}}$$



"Measurement of the fine-structure constant as a test of the Standard Model," R. H. Parker, et al., Science 360, 191-195 (2018)

### Phase shift from spacetime curvature



In GR, 'true' gravity is **spacetime curvature** (a uniform acceleration can be transformed away)



Asenbaum et al., PRL **118**, 183602 (2017)