Detection of *Light* Particle Dark Matter

Introduction

Paolo Agnes, RHUL QSFP school 7th Sept 2021

Overview

- 1) Evidence for DM, Candidates, Direct Detection basics (sub-GeV)
- 2) Direct detection in noble liquids
- 3) DD in semiconductors and other solid-state ideas

Tutorials

1) after this session

2) hands-on on setting exclusion limits on DM interactions (material provided). Tools available online from XENON-1t

Lecture 1: Useful references and further readings:

- Feebly-Interacting Particles:FIPs 2020 Workshop Report https://arxiv.org/abs/2102.12143
- TASI lecture by T. Lin on *dark matter models and direct detection* <u>https://arxiv.org/abs/1904.07915</u>
- N. Fornengo's lectures at SoUP 2021 https://indico.cern.ch/event/871645/timetable/?print=1&view=nicecompact
- J. Monroe's lecture at CHIPP 2019 https://indico.cern.ch/event/744252/timetable/?print=1&view=indico_weeks_view
- R. Essig et al. *Direct Detection of sub-GeV Dark Matter with Semiconductor Targets* https://arxiv.org/abs/1509.01598

We live in a dark universe

Dark Matter

2

Ordinary Matter

Dark Energy

Coma Cluster

. . .

Rotation curves Strong/Weak lensing Galaxy Merger CMB

$$2\langle T\rangle = -\langle V_{GPE}\rangle$$

$$\frac{M_{grav}}{M_{lumi}} \sim 10$$

https://www.astrobin.com/411907/0/

Vera Rubin

Coma Cluster Rotation curves (10 kpc) Strong/Weak lensing Galaxy Merger CMB

Coma Cluster Rotation curves (10 kpc) Strong/Weak lensing Galaxy Merger CMB

Vera Rubin

https://arxiv.org/pdf/astro-ph/9809214.pdf

Gravitational lensing

Gravitational lensing

Coma Cluster Rotation curves (10 kpc) Strong/Weak lensing Galaxy Merger (Mpc) CMB

Xray gas (Chandra) Dark Matter

. . .

https://www.nasa.gov/vision/universe/starsgalaxies/dark_matter_proven.html

Standard DM Halo model

The Solar system is travelling across static halo (DM wind) -> directionality

DM mass parameter space

see TASI lecture by T. Lin

A tiny bit of Cosmology

Thermal equilibrium:

production

Thermal Production: Freeze-out

"Natural" limits

"Natural" limits

 $m \gg m_Z$

"Natural" limits

 $m \gg m_Z$

Lighter Candidates: need for new mediator(s)

The implication is that for sub-GeV DM, new mediators below the weak scale are required

Lighter Candidates: need for new mediator(s)

The implication is that for sub-GeV DM, new mediators below the weak scale are required

- Vector - Dark Photon

kinetic mixing with SM: k or ε

$$\mathcal{L} \supset -\frac{1}{4}\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu} - \frac{1}{4}(1-\kappa^2)V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_V^2V_{\mu}V^{\mu} + e(\tilde{A}_{\mu}+\kappa V_{\mu})J_{\rm EM}^{\mu} + g_{\chi}V_{\mu}J_D^{\mu}$$

- Pseudo-Vector - Axion-like Particles

$$\frac{\partial_{\mu}a}{f_a}\bar{f}\gamma^{\mu}\gamma^5f \qquad \quad \frac{a}{f_a}F\tilde{F}$$

Not necessarily the QCD axion, coupled to fermions or gauge bosons

- Scalar - Dark Higgs

interaction with fermions, proportional to f mass

$$\propto y_f \phi \bar{f} f$$

- Spinor - Heavy neutral lepton

 $\bar{L}H\nu_s$

sterile neutrino, mixed with SM neutrinos

Sterile Neutrinos as keV DM

Boyarsky, Drewes, Lasserre, Mertens, Ruchayskiy [1807.07938]

Scalar Portal

https://arxiv.org/abs/2102.12143

Axion-like particles

https://arxiv.org/pdf/1210.3196.pdf

Existing Bounds on vector mediator

https://arxiv.org/abs/1904.07915

Paolo Agnes, QSFP school, 2021

Production Mechanisms - conclusions

https://arxiv.org/pdf/0911.1120.pdf

DM direct detection

DM direct detection

Lighter the candidate ==> more challenging the detection

Differential rate

$$\frac{dR}{dE_R} = N_T n_\chi \int \frac{d\sigma}{dE_R} v f(\mathbf{v}) \, d^3 \mathbf{v}$$

Differential rate

$$\frac{dR}{dE_R} = N_T n_\chi \int \frac{d\sigma}{dE_R} v f(\mathbf{v}) \, d^3 \mathbf{v}$$

$$\chi(p) \qquad \qquad \chi(p')$$

$$N(k = 0) \qquad \qquad N(q = p - p')$$

 $|\mathbf{q}|_{\text{max}} = 2\mu_{\chi N}|\mathbf{p}|/m_{\chi} = 2\mu_{\chi N}v$ where $v \sim 10^{-3}$.

 $\mu_{\chi N} \simeq 10 - 100 \text{ GeV} \text{ and } |\mathbf{q}|_{\text{max}} \simeq 20 - 200 \text{ MeV}.$

$$E_R^{\text{max}} = \frac{|\mathbf{q}|_{\text{max}}^2}{2m_N} = \frac{2\mu_{\chi N}^2 v^2}{m_N} \simeq 20 - 200 \,\text{keV}.$$

-> Tutorial 1

Cross section calculation

SPIN INDEPENDENT CASE

$$\sigma \propto \mathcal{M} = \langle \mathcal{N}, \chi | \mathcal{L}_{\text{eff}} | \mathcal{N}, \chi \rangle$$

 $\mathcal{O}_1^{\rm NR}=1\!\!1$

Non-relativistic limit, **coherent** interaction

nuclear response functions describe the q dependence

10⁰

 10^{-1}

 10^{2}

 E_R [keV]

WIMP - nucleon

$$\frac{dR}{dE_R} = N_T n_\chi \int \frac{d\sigma}{dE_R} v f(\mathbf{v}) \, d^3 \mathbf{v}$$

Standard DM Halo model - velocity distribution

$$\rho_0 = 0.3 \ GeV/c^2$$

$$f(\overrightarrow{v}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{|\overrightarrow{v}|^2}{2\sigma^2}}$$

$$\sigma = \sqrt{\frac{3}{2}} v_c$$
 where $v_c = 220$ km/s

 $v_{esc} \sim 544$ - $600 \ km/s$

Interaction rates

- Interaction rates:

~ 1 ev / t / day at M ~ 100 GeV / σ ~ 10^{-47} cm^2.

- Interaction deposited energies:

- ~ 100 keV for WIMP mass ~ 100 GeV
- ~ 1 keV for WIMP mass ~ 10 GeV
- ~ 0.1 eV for WIMP mass ~ 100 MeV

==> event rate scales as A^2

==> large A means lower E_R

==> lower DM mass means lower E_R

Current exclusion limits

Dark Matter - Electron

$$\frac{dR}{d\,\omega} = N_T n_\chi \int \frac{d\sigma}{d\,\omega} v f(\mathbf{v}) \, d^3 \mathbf{v}$$

$$\omega = \frac{\mathbf{p} \cdot \mathbf{q}}{m_{\chi}} - \frac{\mathbf{q}^2}{2m_{\chi}} = E_e(\mathbf{k}') - E_e(\mathbf{k}),$$

$$\frac{\mathbf{p} \cdot \mathbf{q}}{m_{\chi}} = \frac{\mathbf{k} \cdot \mathbf{q}}{m_e} - \frac{\mathbf{q}^2}{2\mu_{\chi e}}$$

 $k_e \simeq 1/R_{\rm Bohr} = \alpha m_e$

$$v_{e,i} = |\mathbf{k}|/m_e \gg v_{\chi,i} = |\mathbf{p}|/m_{\chi}$$

10-2 10-3

Dark Matter - Electron

$$\frac{dR}{d\,\omega} = N_T n_\chi \int \frac{d\sigma}{d\,\omega} v f(\mathbf{v}) \, d^3 \mathbf{v}$$

$$\omega = \frac{\mathbf{p} \cdot \mathbf{q}}{m_{\chi}} - \frac{\mathbf{q}^2}{2m_{\chi}} = E_e(\mathbf{k}') - E_e(\mathbf{k}),$$

$$\begin{array}{c} \chi(p) & \chi(p') \\ \hline \\ e(k) & e(k') \end{array}$$

 $k_e \simeq 1/R_{\rm Bohr} = \alpha m_e$

$$\frac{\mathbf{p} \cdot \mathbf{q}}{m_{\chi}} = \frac{\mathbf{k} \cdot \mathbf{q}}{m_e} - \frac{\mathbf{q}^2}{2\mu_{\chi e}} \qquad \qquad v_{e,i} = |\mathbf{k}|/m_e \gg v_{\chi,i} = |\mathbf{p}|/m_{\chi}$$

$$10^{-2} \qquad 10^{-3}$$

 $|\mathbf{q}| \simeq \mu_{\chi e} v_{e,i}$

 $m_{\chi} \gtrsim m_e$: $|\mathbf{q}| \simeq \mu_{\chi e} v_{e,i} \approx m_e v_{e,i}$

 $\omega \simeq m_e v_{e,i} v_{\chi,i} \approx \text{ few eV}$

Dark Matter - Electron

 $\frac{\mathbf{p} \cdot \mathbf{q}}{m_{\chi}} = \frac{\mathbf{k} \cdot \mathbf{q}}{m_e} - \frac{\mathbf{q}^2}{2\mu_{\chi e}}$

$$\frac{dR}{d\,\omega} = N_T n_\chi \int \frac{d\sigma}{d\,\omega} v f(\mathbf{v}) \, d^3 \mathbf{v}$$

$$\omega = \frac{\mathbf{p} \cdot \mathbf{q}}{m_{\chi}} - \frac{\mathbf{q}^2}{2m_{\chi}} = E_e(\mathbf{k}') - E_e(\mathbf{k}),$$

$$\chi(p) \qquad \qquad \chi(p')$$

 $k_e \simeq 1/R_{\rm Bohr} = \alpha m_e$

$$v_{e,i} = |\mathbf{k}|/m_e \gg v_{\chi,i} = |\mathbf{p}|/m_\chi$$

 $|\mathbf{q}| \simeq \mu_{\chi e} v_{e,i}$

$$\begin{split} m_{\chi} \gtrsim m_{e}: & m_{\chi} \lesssim m_{e}: \\ |\mathbf{q}| \simeq \mu_{\chi e} v_{e,i} \approx m_{e} v_{e,i} & |\mathbf{q}| \simeq \mu_{\chi e} v_{e,i} \approx m_{\chi} v_{e,i}: \\ \omega \simeq m_{e} v_{e,i} v_{\chi,i} \approx \text{ few eV} & \omega \simeq \frac{1}{2} m_{\chi} v_{\chi,i}^{2} \end{split}$$

Cross section calculation

Free electrons, j initial state

$$(\sigma v)_j = \int \frac{d^3 \mathbf{p}'}{(2\pi)^3} \frac{d^3 \mathbf{k}'}{(2\pi)^3} (2\pi) \delta(\Delta E_e - \omega) \frac{|\mathcal{M}_{\text{free}}|^2}{16m_{\chi}^2 m_e^2} |f_{j \to \mathbf{k}'}(\mathbf{q})|^2$$

$$|\mathcal{M}|^2 = \frac{16g_{\chi}^2 \kappa^2 e^2 m_{\chi}^2 m_e^2}{((q_{\mu}^2) - m_V^2)^2} \approx \frac{16g_{\chi}^2 \kappa^2 e^2 m_{\chi}^2 m_e^2}{(|\mathbf{q}|^2 + m_V^2)^2}$$

Model <u>dependent</u>, here assuming generic V boson

$$\frac{\mu_{\chi e}^2 |\mathcal{M}|^2}{16\pi m_{\chi}^2 m_e^2} \equiv \bar{\sigma}_e F_{\rm DM}^2(q), \quad F_{\rm DM}^2(q) \equiv \left(\frac{(\alpha m_e)^2 + m_V^2}{|\mathbf{q}|^2 + m_V^2}\right)^2$$

Light mediator:
$$F_{DM}(q) = \frac{\alpha^2 m_e^2}{q^2}$$

Heavy mediator: $F_{DM}(q) = 1$

Free electrons -> Atoms

Paolo Agnes, QSFP school, 2021

Predicted spectra

DM-interaction signal prediction

WIMP-nucleon

DM -electron

- Interaction rates:

R ~ 1 ev / t / day at M ~ 100 GeV / σ ~ 10⁻⁴⁷ cm²

 $R \sim N_T \rho/m_{\chi} \sigma_e v_0 \sim 50 \text{ ev / kg / day}$ at $m_{\chi} \sim 10 \text{ MeV} / \sigma \sim 10^{-37} \text{ cm}^2$

- Interaction deposited energies:

 $E_R \sim 100 \text{ keV for WIMP mass} \sim 100 \text{ GeV}$ $E_R \sim 1 \text{ keV for WIMP mass} \sim 10 \text{ GeV}$ $E_R \sim 0.1 \text{ eV for WIMP mass} \sim 100 \text{ MeV}$

 $E_R \sim 50 \text{ eV for } m_{\chi} \sim 100 \text{ MeV}$ $E_R \sim 10 \text{ eV for } m_{\chi} \sim 10 \text{ MeV}$

Projected Sensitivity

Projected Sensitivity

Phys.Rev. D85 (2012) 076007

At even lower deposited energies

- a = inter-atom distance ~ 10^{-10} m
 - ~ 10⁵ eV
- u_i : displacement

For ~MeV DM: Edep ~ 0.1 eV => q << 1

q = amplitude of wave vector

q ~ 0 : low frequency oscillations q ~ π/a : perfectly out of phase

 ω_q : energy of the vibration mode

slope: sound speed (10⁻⁵)

https://arxiv.org/pdf/1712.06598.pdf

At even lower deposited energies

https://arxiv.org/pdf/1712.06598.pdf

Projected sensitivity

https://arxiv.org/pdf/1712.06598.pdf

Summary

https://arxiv.org/abs/1904.07915

Detector Technologies

Atomic/Molecular systems (e.g Noble liquids)

~ 10 eV

12 eV for Xe, 15 eV for Ar 23 eV mean ionisation E

Superconductors, Dirac materials ~ meV

Y. Hochberg, et al Phys. Rev. Lett. 116, 011301 (2016), arXiv:1504.07237 [hep-ph]. Y. Hochberg et al Phys. Rev. D97, 015004 (2018), arXiv:1708.08929 [hep-ph].

Conclusions

https://arxiv.org/pdf/1807.10291.pdf

Paolo Agnes, QSFP school, 2021

Extra Slides