Detection of *Light* Particle Dark Matter

with noble liquids

Paolo Agnes, RHUL QSFP school 9th Sept 2021

Short review of Evidence for DM WIMPs and alternative candidates Principles of Direct Detection of DM Formalism of sub-GeV DM DD in matter

Plan for Today:

Experiments point of view Common Challenges Noble liquids: dual-phase TPCs Outlook

Readings:

- DarkSide-50, DEAP-3600 papers
- Xenon1t, LZ, Xenon100 papers

DM direct detection: observables

DM direct detection

Setting limits

-> Tutorial 2

Backgrounds under control!

$$P(n|s,b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

G Cowan: https://www.pp.rhul.ac.uk/~cowan/stat/medsig/medsigNote.pdf

Backgrounds in a typical WIMP experiment

Carla Macolino, TAUP 2019 - DARWIN

estimates here are for a specific energy region and assume some discrimination

The main Challenge: backgrounds

1) go underground

deep in mines or underneath mountains are both OK

cosmogenic neutrons and cosmogenic activation are proportional to muon flux

LNGS

Material Assay and Selection

Is an essential part of design/construction of the experiment.

⁴⁰K in humans → primary source of radiation from our body (practically constant)

- K content of the body is 0.2 %
- Natural abundance of 0.0117 % of K_{Nat}
- K-40 specific activity 2.6e5 Bq g⁻¹ (using the half-life 1.28 x 10⁹ y from raconv).

For a 70-kg person, the amount of 40 K will be about 4.26 kBq (\approx 60 Bq/kg)

¹⁴C for a 70-kg person would be about 3.08 kBq.

Table 6: Gamma assay results for major detector materials. A description of the components can be found in Section 4. Activities are reported with 1-sigma uncertainties. A 90% confidence limit is placed when the measurement is below the background sensitivity of the detector. It is assumed that secular equilibrium is broken between ²³⁰Th and ²²⁶Ra in the ²³⁸U decay chain.

100 - -l

998

Table 7: Gamma assay results for tooling used during construction and manufacture of detector components. Activities are reported with 1-sigma uncertainties. A 90% confidence limit is placed when the measurement is below the background sensitivity of the detector. It is assumed that secular equilibrium is broken between ²³⁰Th and ²²⁶Ra in the ²³⁸U decay chain.

Component	238 Ulower	238 Uupper	²³² Th	²³⁵ U
	[mBq/kg]			
Purification System Welding				
TIG weld sample	7.7 ± 5.7	< 27	25.2 ± 7.8	< 16
SMAW weld sample	< 23	< 1255	51.9 ± 12.2	< 13
Welding electrodes A (Blue Demon TE2C-116-10T)	221 ± 65	< 493	1890 ± 184	< 56
Welding electrodes B (Blue Demon TE2C-116-10T)	66.6 ± 42.6	< 1300	710 ± 103	< 138
Welding electrodes C (Blue Demon TE2C-116-10T)	86.1 ± 21.8	< 642	911 ± 73	< 108
Weld filler rods	< 4.8	< 157	3.0 ± 2.5	< 1.8
Inner AV Sanding				
Brazed diamond sanding pad (Superabrasives)	141 ± 24	< 845	49.8 ± 17.9	31 ± 19
Plated diamond sanding pad (Superabrasives)	4680 ± 283	< 4130	6180 ± 300	218 ± 64
3M 6002J flexible diamond pads	25.1 ± 15.4	< 785	< 10.8	< 33
Diamond sandpaper (Diamante Italia)	3120 ± 136	< 2300	3370 ± 125	157 ± 22
Red sandpaper (RPT)	48.7 ± 19.7	< 335	< 10.1	< 32
LG Acrylic Polishing				
Diamond lapping film (3M 661X)	142 ± 38	< 882	93.6 ± 35.0	< 31
Diamond lapping film (3M 661X)	94.0 ± 16.5	< 276	$105.\pm18.1$	< 33

Component	236 Urower	200 U upper	Th		
-		[mBq/kg]			
Methyl methacrylate monomer (LG bonding)	$1.4\ \pm 1.0$	< 15	< 0.9	< 1.8	
AV acrylic	< 0.1	< 2.2	< 0.5	< 0.2	
Acrylic beads (RPT)	< 3.1	16 ± 15	0.8 ± 0.3	0.6 ± 0.5	
LG acrylic	< 0.1	< 9.0	< 0.3	< 0.6	
304 welded stainless steel (steel shell)	1.4 ± 1.1	< 5.0	4.7 ± 1.5	< 3.3	
304 stainless steel stock (steel shell)	2.1 ± 1.1	40 ± 56	1.9 ± 1.1	< 5.4	
316 stainless steel bolts (steel shell)	< 6.1	< 315	94 ± 9	< 17	
Carbon steel (stock)	2.0 ± 0.7	111 ± 43	10.0 ± 1.0	8.6 ± 1.9	
R5912 HQE PMT glass	921 ± 34	225 ± 114	139 ± 7	25 ± 3	
R5912 HQE PMT ceramic	978 ± 56	15500 ± 2800	245 ± 28	503 ± 51	
R5912 HQE PMT feedthrough pieces	1140 ± 60	2350 ± 1460	430 ± 32	38 ± 9	
R5912 HQE PMT metal components	< 5.5	-	< 3.3	_	
RG59 PMT cable (Belden E82241)	4.5 ± 1.3	91 ± 46	1.2 ± 0.9	3.4 ± 1.4	
PMT mount PVC (Harvel)	72 ± 5	232 ± 130	18.6 ± 2.5	5.6 ± 1.5	
PMT mount copper	< 0.5	< 10	< 0.8	< 1.3	
Filler block polyethylene	0.4 ± 0.3	< 14	< 0.1	< 0.15	
Filler block Styrofoam [39]	33.5 ± 3.4	115 ± 64	< 1.5	< 1.4	
White Tyvek paper (diffuse reflector)	< 0.3	50 ± 37	1.3 ± 0.8	< 2.2	
Black Tyvek paper (LG wrapping)	< 1.8	< 127	5.6 ± 2.3	< 3.8	
Black polyethylene tube (upper neck)	13.7 ± 1.8	< 60	3.2 ± 1.1	2.6 ± 1.4	
TPB (Sigma Aldrich)	< 3.9	_	< 8.7	_	

995

797.....

Not only gamma rays!

U and Th decay chains are particularly relevant for neutrons too, via (a,n) reactions

The Radon contamination

0

ci

Radon escapes both solids and liquids

²²⁰Rn, ²¹⁹Rn, and especially ²²²Rn and their daughters release several highenergy γ 's and α 's

- underground Rn contamination is larger than surface (~10 vs ~100 Bq/m³)

- Rn daughters plate-out on surfaces

==> Techniques based on charcoal adsorption suppress Rn ~ by $10^4 - 10^5$ ==> Rn-free clean rooms

Recipe for building a low-background

1) go underground 2) use radio-pure materials 3) plan for shield(s), better if active The DarkSide-50 case: Liquid argon TPC 50 kg LAr Liquid Scintillator Veto (LSV) 30 tons, 2 m radius 110 PMTs (LY = 0.5 pe/keV) Water Cherenkov Detector (WCD) 1 kt water, 5.5 m radius 80 PMTs

Active Veto:

- suppresses bg rates from outside
- measures bg rate *in-situ*! and reduce systematics

GAr

LAr

Liquid

Scintillator

n

1) go underground

1012

1010

 10^{8}

106

104

 10^{2}

100

 10^{-2}

 10^{-4}

 10^{-6}

 10^{-1}

Neutrino flux [cm²/s/MeV]

- 2) use radio-pure materials
- 3) plan for shield(s), better if active

4) learn to deal with irreducible backgrounds

neutrinos from Sun, SNae, atmosphere

"Neutrino Floor"

- 1) go underground
- 2) use radio-pure materials
- 3) plan for shield(s), better if active
- 4) learn to deal with irreducible backgrounds
- 5) not immune from detector-specific backgrounds, usually not easily predictable

Examples:

- single electrons emission from photo-ionisation of metal surfaces in the detector https://iopscience.iop.org/article/10.1088/1748-0221/13/02/P02032
- dust in the detector or construction materials shadowing the signal

https://pos.sissa.it/395/527/pdf

- Cerenkov radiation from gamma rays NOT reaching the active volume

https://arxiv.org/abs/1802.07198

- ...

Example: Xenon-1t projections vs real data

Noble liquids

Why noble liquids?

Noble liquids are suitable targets:

dense, inexpensive, easy to purify
 large ionization/scintillation yields (W~10 eV)
 ER recoil background discrimination

	Ar	Хе
density	1.4 g/cm ³	~3 g/cm ³
cost	1 \$/kg (AAr) 100 \$/kg (UAr)	1 k\$/kg
internal radioactivity	1 Bq/kg (AAr) < 1 mBq/kg (UAr)	~ uBq/kg
Rn purification	0.2 uBq/kg	∼ uBq/kg
Ionisation yield	40 e- / keV	70 e- / keV
Scintillation yield	50 ph / keV	80 ph / keV
ER discrimination	1E+08	1E+03

AAr: Atmospheric Argon UAr: Underground Argon

Complementarity: great value in case of an excess

The Xenon Programme

The DarkSide programme

GDAMC Global Dark Matter Argon Collaboration, merges **ArDM**, **DEAP-3600**, **DarkSide-50**, **MiniCLEAN** for a dual-phase LAr TPC, through a **staged** approach:

Background suppression

- Ultra-low background materials
- Depleted Liquid Argon
- Low background photo-detectors
- Low background material components

Background identification

- Pulse Shape Discrimination (PSD)
- Ionization/scintillation ratio
- Position reconstruction (surface events)
- Multiple scatters within the TPC

Active Shielding

- Active Neutron Veto
- Water Cherenkov against muons (WCD)

Main goal: collect 200 t yr bg-free exposure

Energy loss in LAr (LXe)

 $< W_{Ar} >_{ER} = 20 eV$ $< W_{Xe} >_{ER} = 13 eV$

typical drift fields: 200 - 500 V/cm

The Liquid Argon Time Projection Chamber: A New Concept For Neutrino Detector C. Rubbia, CERN-EP/77-07 (1977)

Energy loss in LAr (LXe)

liquids are transparent to their own scintillation

Observables: PMT signals

Light signals from Photo-Multipliers (PMTs)

1 incident photon -> QE x 1. (~1.15 for VUV sensitive PTMs) reconstructed Photo-electron VUV (> 150 nm) sensitive photo sensors exist, typical efficiency ~30%

Below 150 nm, need to rely on WaveLengthShifters (WLS) to convert VUV light to visible

Nuclear Recoil quenching

Largest systematics for WIMP-nucleon searches

Implementation & Results

Dual-phase TPC (time projection chamber)

==> 3D vertex reconstruction (surface events, multi-sited events) !

Discrimination

DEAP-3600: Phys. Rev. D 100, 022004

S1 PSD in LAr: ER Rejection factor: ~ 10⁸

Charge/Light in LAr/LXe: ER Rejection factor: 10² - 10³

XENON-1t: PRL 121, 111302 (2018)

Detector Calibration

Energy deposit ⇔ Observable

photon detection efficiency ~ 0.1 - 0.15 LY_{ER} ~ 7 PE / keV_{ee} LY_{NR} ~ 2.5 PE/keV_{NR} (high energy)

charge is multiplied in the gas, with typical gain of 10-20 g2 ~ 10-20 PE/e-

PHYSICAL REVIEW D 99, 112009 (2019)

High-mass WIMP search - DS50

However, the PSD sets a HIGH-ENERGY threshold ~ 50 keV_{NR}

High-mass WIMP search

90% CL upper limits on spin-independent WIMP-nucleon coupling

DS-50: Phys. Rev. D 98, 102006 (2018) DEAP-3600: Phys. Rev. D 100, 022004 PandaX-II: Phys Lett B 792, 193 (2018) XENON-1t: PRL 121, 111302 (2018)

Low-mass searches

S2only analyses

Look at the **ionization only** spectrum (W_{ion} = 23.5 eV, multiplication in the gas: 23 PE/e⁻) **Below 3 keV_{ee}**: give up the scintillation signal (too small to trigger the detector), and thus - **minimal fiducialization** (only radial)

- no PSD

S2only analyses

Look at the **ionization only** spectrum (W_{ion} = 23.5 eV, multiplication in the gas: 23 PE/e⁻) **Below 3 keV**_{ee}: give up the scintillation signal (too small to trigger the detector), and thus - **minimal fiducialization** (only radial) - **no PSD**

Trigger efficiency is 100% at 1.5 Ne-0.5 0.45 0.4 0.35 Acceptance 0.3 0.25 0.2 Fiducialization 0.15 Trigger efficiency 0.1 × S2 Identification (f₀₀<0.15) 0.05 0 10 20 30 40 50 60 70 80 90 S2 [PE]

37**A**r

arXiv:2107.08087

	K-she	ell EC	L1-she	ll EC
Branching Ratio	90.4%		8.4%	
Total Released Energy	2829		277	
Mean number of primaries ^a	3.9		2.8	
	$\langle N \rangle$	$\langle E \rangle$	$\langle N \rangle$	$\langle E \rangle$
K Auger electrons	0.905	2414		
K X-rays	0.095	2634		
L Auger electrons	1.77	179	0.9995	179
L X-rays	8E-4	188	0.0005	207
M Auger electrons	0.35	51	0.96	51
UV photons $(E>16 \text{ eV})$	0.77	25	0.86	25
Undetectable via ionization	3.26	13	2.10	13

^a Excluding undetectable via ionization

arXiv:2107.08087

Background model

Background model for DarkSide-50

- Full simulation of each radioactive component (²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co) from detector materials and intrinsic to the target (³⁹Ar and ⁸⁵Kr).
- Multivariate fit based on S1 single scatter, S1 multiple scatter, and drift time
- Covers a wide energy range

Dataset

MC spectra in the low energy region, converted in N_{e-} (ER). Activities constrained to the results of fit at high energy. WIMP induced spectra in N_{e-} (NR); PLL analysis.

Un-modeled component(s) below 7 e⁻: impurities (+ radiogenic neutrons?)

Additional searches

The Migdal Effect

Due to sudden acceleration, the struck atom may **release electron(s)**, total released energies up to keV

Predicted probability is $<< 10^{-3}$ and a function of q, thus:

- only small correction for high-mass WIMPs
- decreases for light DM particles

However, the ER channel, as opposed to NR one, is **not quenched** and may **enhance** sensitivity to low-mass candidates

picture from PRL123, 241803 (2019)

Contributions of different shells:

The Migdal Effect

Results with Xenon are leading exclusion. Allow to explore sub-GeV range!

Assume the ER component only

Significant uncertainties in the calculations, yet to be fully characterised experimentally

Suggested that experimentally should be even more significant than WIMP-e-[arXiv:1908.00012]

DM-electron

https://supercdms.slac.stanford.edu/dark-matter-limit-plotter

https://supercdms.slac.stanford.edu/dark-matter-limit-plotter

https://supercdms.slac.stanford.edu/dark-matter-limit-plotter

Dark Photon Absorption

Non-thermal candidate! Need a different production mechanism

$$\sigma_{V}(E_{V} = m_{V})v_{V} \simeq \kappa^{2}\sigma_{\gamma}(\omega = m_{V})c,$$

$$\int_{10^{4}}^{10^{5}} \int_{0}^{11 \text{ keV}} \int_{\text{background model}}^{\text{background model}} \kappa = 10^{-13}$$

$$\int_{10^{4}}^{10^{4}} \int_{0}^{10^{4}} \int_{0}^{10^$$

 $10^7 \equiv$

https://arxiv.org/pdf/1412.8378.pdf

 10^{2}

Dark Photon Absorption

https://supercdms.slac.stanford.edu/dark-matter-limit-plotter doi:10.1088/1475-7516/2012/06/013

Axion-Like Particles

Non-thermal candidate! Need a different production mechanism

Future projects

Spurious events at low energy

Existing datasets: Xenon-1t (LXe) / DarkSide-50 (LAr)

- Different exposure and detector size
- Same detector design and principles
- Same backgrounds!

Spurious events at low energy

Photo-ionisation on metal components

Spatial correlation with preceding event

Delayed extraction of ionization electrons...
trapped on electronegative impurities
at the liquid-gas interface

LBECA

Implement technological solutions to reduce those bgs:

- avoid metal surfaces
- target cleanliness (less impurities)
- SiPM readout to improve spatial resolution (tag correlated events)
- low-background materials
- higher extraction field for higher efficiency
- IR light source to shorten lifetime of trapped e- at surface

https://arxiv.org/pdf/2001.09311.pdf

DarkSide-LM

- Lower backgrounds thanks to low-γ materials, γ-vetoes, and ³⁹Ar reduction with Urania and Aria
- Ongoing R&D to lower threshold, understand and decrease spurious electron backgrounds, and measure low-energy ionization response of LAr

Additional Searches: low-energy Xe-1t excess

Axions were introduced to solve the strong CP problem

The Sun could be a source of Axion-like Particles via 3 production mechanisms

Detection via axio-electric effect (photoelectric), constrain coupling strength gae.

Tritium hypothesis

Backup