QSFP 2021 – Experimental Neutrino Physics

Lecture 2 September 16, 2021 Thierry Lasserre – CEA - Saclay Email: thierry.lasserre@cea.fr Selected facts about neutrinos in the Standard Model...

The Standard Model

- The Standard Model combines the electromagnetic, weak, and strong interactions
- Bosons with spin 1 communicate the forces between Fermion of spin $\frac{1}{2}$
- Mass of Fermions (but neutrinos?) is generated through the Higgs boson (spin 1)

The Nobel Prize in Physics 1979

Glashow

Prize share: 1/3

Abdus Salam Prize share: 1/3

Steven Weinberg Prize share: 1/3

The Standard Model

• The Standard Model includes all known elementary fermions

- Matter particles are grouped into three families
- Each fermion has a corresponding antiparticle

The Standard Model: Weak Interaction

• Three sets of bosons mediate three interactions

- Each interaction has its characteristic set of boson
- Neutrinos are only involved in weak interactions

Standard Model: 3 types of neutrinos

- Three neutrino flavors
- Neutrinos only interact via weak interaction (and gravity)

Interaction Rules

- Electric charge conservation
- Lepton number conservation
- Energy / Momentum conservation

Neutrino Production

Semi-leptonic decay: β -decay's

β^- decay

- Lifetime neutron: 15 minutes (887 s)
- Occurs in reactors, fission explosions

β^+ -decay

• Free proton decay has never been observed

Energy balance has to be fulfilled

$$X \rightarrow Y + e + \nu$$

$$E_0 = M(X) - M(Y) - m_e - m_\nu > 0$$

m_p = 938.3 MeV

m_n = 939.6 MeV

Semi-leptonic decay: $\beta^{\scriptscriptstyle +}$ and Electron capture

$\beta^{\text{+}}\text{-decay}$

- Free proton decay has never been observed
- β^+ decay only occurs in proton-rich nuclei

Electron capture:

- Electron captured from atomic shell
- Occurs when released energy is not enough to create a positron

Semi-leptonic decay: e.g. Pion decay

Pion (quark and an antiquark) to muons

- Pion lifetime: 2.6 x 10⁻⁸ s
- Decays with 99.99% probability to muons
- Atmospheric / Accelerator neutrinos

Pion to electrons

 Suppressed due to smaller mass of electron (compared to muon) → helicity suppression

 W^+

W

 e^+

 ν_e

 $\overline{\nu}_e$

Leptonic Decay: muon and tau decay

Muon decay

- Muon lifetime: 2.2 ms
- Decays to muon-neutrino, electron, and electronneutrino of known spectrum
- Atmospheric / Accelerator neutrinos

Tau decay

- Tau lifetime: 2.3 x 10⁻¹³ s
- Decays to neutrinos + muon (17%) or electron (17%)
- Accelerator neutrinos

Neutrino Sources

Neutrinos from the atmosphere

- Collision of cosmic rays (protons) with atmosphere
- Generation of showers of pions = ud quark
- Muon- and electron-neutrinos are produced in 2:1 ratio
- Used to detect neutrino oscillations (1998)

Neutrinos from the sun

- Nuclear fusion in the sun
- Only electron neutrinos are created
- @Earth: 66 Billion neutrinos /cm²/s

Neutrinos from accelerators

- Decay tunnel Shielding
- Protons hit a target (e.g. made of beryllium)
- Generation of pions, kaons, and charmed mesons
- Mesons decay and produce neutrinos

Neutrino Interactions

Inverse beta decay

Inverse β^- -decay

- Capture of electron neutrino
- High-enough energy muon/tau-neutrinos would be needed to create a muon/tau

Inverse β^+ -decay

- Capture of electron anti-neutrino
- Important detection reaction !

Electron scattering

Charged-current

- Neutrino-electron scattering via the exchange of a charged current
- High-enough energy muon/tau-neutrinos would be needed to create a muon/tau

Neutral current:

- Identical coupling of the neutral current to all flavors
- Very important for all-flavor neutrino detection

For all flavors, Charged Current interactions

Neutrino cross section (on nucleons)

- 1 barn = 10^{-24} cm²
- @1 MeV (solar, radioactive decay): $\sigma = 10^{-44} \text{ cm}^2$
- Comparison to electro-weak interaction: $e^++e^- \rightarrow \chi \chi(1 \text{ MeV}): \sigma = 10^{-25} \text{ cm}^2$

Neutrino cross section (on nucleons)

• 1 barn = 10^{-24} cm²

per second

- @1 GeV (accelerator, atmospheric): $\sigma = 10^{-38} \text{ cm}^2$
- Comparison to p-p interaction (1 GeV): $\sigma = 10^{-26} \text{ cm}^2$

Muon neutrinos

A bit of history

- 1930: Neutrino Predicted
- 1937: Muon Discovered
- **1941**: Muon shown to decay into electron + neutrino(s)

• **1948**: Energy spectrum of Muon decay shown to be continuous: there must be 2 neutrinos in the decay

Most people felt that the neutrinos should be different, and they named them : neutrino and neutretto

- **1955**: (electron) antineutrino directly observed
- **1962**: direct observation of muon neutrino

Muon neutrino discovery: experimental concept

- Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) generates protons of 15 GeV
- Proton beam hits beryllium target, producing pions
- Pions decay into muons and muonneutrinos
- Neutrinos, Pions, muons, etc. pass through a wall of 13.5 meters thick steel: only neutrinos pass
- Neutrinos detected in 10-ton spark chamber
- Muon and electron neutrino creates different signature

Gas enclosure (He/Ne)

5kV 0kV 5kV

Muon neutrino discovery

- DAQ =
- Detected 113 events (with 3.48 x 10¹⁷ protons on target)
- Of these, 34 were single muon events
- Only 6 electron neutrinos (showers) observed
- If there was no difference between muon neutrinos and electron neutrinos, we would expect a similar number of electron showers

FIG. 8. 400-MeV electrons from the Cosmotron.

FIG. 5. Single muon events. (A) $p_{\mu} > 540$ MeV and δ ray indicating direction of motion (neutrino beam incident from left); (B) $p_{\mu} > 700$ MeV/c; (C) $p_{\mu} > 440$ with δ ray.

Muon neutrino discovery

erma

Tau neutrinos

 Protons accelerated by the Tevatron (Fermilab) produce tau neutrinos via decay of charmed mesons

- Protons accelerated by the Tevatron produce tau neutrinos via decay of charmed mesons
- Shielding and magnetic deflection stops/removes all particles but the neutrinos
- Tau neutrino interacts in steel target and produces a tau
- Tau travels for 1mm, leaves a track in the emulsion, then decays into a neutrino and charged particles
- Charged particles leave a track in the emulsion
- ➤ Famous kink-signal*

ē, μ̄, d

W

- The DONUT (Direct Observation of the Nu Tau) experiment recorded a total of six million potential interactions.
- Four events provided evidence for the tau neutrino in 2000
- Last particle to be discovered before the Higgs boson in 2012

Discovery of the neutrinos (Overview)

	Electron v	Muon v	Tau v
Source	Reactor: Electron Anti-neutrinos	Accelerator: Pions → Muon neutrinos	Accelerator: Charmed mesons → tau neutrinos
Detector	Water with Cadmium + Scintillator	Aluminum Plates + Spark Chamber	Lead + Scintillator + Emulsion sheet layers
Signature	Coincidence signal	Long tracks	Kink
Location	Hanford reactor site, USA	Brookhaven, USA	Tevatron @ Fermilab, USA
People/Group	Reines, Cowan	Ledermann, Schwartz, Steinberger	DONUT Collaboration
Year	1957	1962	2000

Neutrino Flavours und Masses

Key ingredient 1:

- A neutrino with a specific mass has no specific flavor
- A neutrino with a specific **flavor** has no specific **mass**

Key ingredient 2:

- Neutrino is born in a flavor eigenstate, but propagates as mass eigenstate
- Neutrino mass eigenstates evolve differently with time

$$e^{-i\hat{H}t/\hbar} |v_{e}\rangle = U_{e1} \cdot e^{-iE_{1}t/\hbar} |v_{1}\rangle + U_{e2} \cdot e^{-iE_{2}t/\hbar} |v_{2}\rangle + U_{e3} \cdot e^{-iE_{3}t/\hbar} |v_{3}\rangle$$

Electron Neutrino

 $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\chi} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 2} & U_{\mu 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

 $\mathbf{t=0} \qquad |v_e\rangle = U_{e1} \cdot |v_1\rangle + U_{e2} \cdot |v_2\rangle + U_{e3} \cdot |v_3\rangle$

Electron Neutrino

$$\begin{aligned} \mathsf{t=0} & |v_e\rangle = U_{e1} \cdot |v_1\rangle + U_{e2} \cdot |v_2\rangle + U_{e3} \cdot |v_3\rangle \\ \mathsf{t>0} & e^{-i\hat{H}t/\hbar} |v_e\rangle = U_{e1} \cdot e^{-i\hat{H}t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-i\hat{H}t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-i\hat{H}t/\hbar} |v_3\rangle \end{aligned}$$

Th. Lasserre - QSFP 2021

$$\begin{aligned} \mathsf{t=0} & |v_e\rangle = U_{e1} \cdot |v_1\rangle + U_{e2} \cdot |v_2\rangle + U_{e3} \cdot |v_3\rangle \\ \mathsf{t>0} & e^{-i\hat{H}t/\hbar} |v_e\rangle = U_{e1} \cdot e^{-i\hat{H}t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-i\hat{H}t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-i\hat{H}t/\hbar} |v_3\rangle \\ & e^{-i\hat{H}t/\hbar} |v_e\rangle = U_{e1} \cdot e^{-iE_1t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-iE_2t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-iE_3t/\hbar} |v_3\rangle \end{aligned}$$

The three mass eigenstates evolve differently in time

$$\begin{aligned} \mathsf{t=0} & |v_e\rangle = U_{e1} \cdot |v_1\rangle + U_{e2} \cdot |v_2\rangle + U_{e3} \cdot |v_3\rangle \\ \mathsf{t>0} & e^{-i\hat{H}t/\hbar} |v_e\rangle = U_{e1} \cdot e^{-i\hat{H}t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-i\hat{H}t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-i\hat{H}t/\hbar} |v_3\rangle \\ & |v_x\rangle = U_{e1} \cdot e^{-iE_1t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-iE_2t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-iE_3t/\hbar} |v_3\rangle \end{aligned}$$

The neutrino is no longer a pure electron neutrino

Electron Neutrino

Projection onto the electron flavor gives us the probability to detect an electron neutrino

$$P = \left| \left\langle v_e \, \middle| \, v_x \right\rangle \right|^2$$

??? Neutrino

$$\begin{aligned} \mathsf{t=0} & |v_e\rangle = U_{e1} \cdot |v_1\rangle + U_{e2} \cdot |v_2\rangle + U_{e3} \cdot |v_3\rangle \\ \mathsf{t>0} & e^{-i\hat{H}t/\hbar} |v_e\rangle = U_{e1} \cdot e^{-i\hat{H}t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-i\hat{H}t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-i\hat{H}t/\hbar} |v_3\rangle \\ & |v_x\rangle = U_{e1} \cdot e^{-iE_1t/\hbar} |v_1\rangle + U_{e2} \cdot e^{-iE_2t/\hbar} |v_2\rangle + U_{e3} \cdot e^{-iE_3t/\hbar} |v_3\rangle \end{aligned}$$

The neutrino is no longer a pure electron neutrino

Another view...

Neutrino produced as flavor eigenstate

Neutrino mass eigenstates propagate. Interference pattern determines probability to detect a specific neutrino flavor Neutrino mass eigenstates are well separated. No more neutrino oscillations

Neutrino Oscillations (for 2 Flavour)

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\theta \cdot \sin^{2} (\Delta m^{2} \cdot L_{v} / E_{v})$$

Neutrino Oscillations (for 2 Flavour)

Neutrino Oscillations (for 2 Flavour)

Th. Lasserre - QSFP 2021

Nobel Prize in Physics 2015

Takaaki Kajita and Arthur B. McDonald: "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

3-Flavour mixing, historically referred as:

3v Oscillation Formalism

• 3 masses
$$m_{1,2,3}$$
: $\Delta m_{sol}^2 = m_2^2 - m_1^2 \sim 8 \ 10^{-5} \ eV^2$ & $\Delta m_{atm}^2 = |m_3^2 - m_1^2| \sim 2 \ 10^{-3} \ eV^2$

• Oscillation in vacuum :
$$P(v_x \rightarrow v_x) \approx 1 - \sin^2(2\theta_i) \times \sin^2\left(1.3 \cdot \Delta m_i^2 \cdot \frac{L}{E}\right)$$

What are the leptonic mixing parameters?

The KamLAND experiment

- KamLAND (Kamioka Liquid scintillator Anti-Neutrino Detector) is so far the largest low-energy antineutrino
- Located on the island of Honshu in Japan, since 2002
- Built to detect hundreds of anti-neutrinos per year from nuclear reactors hundreds of kilometers away

The KamLAND detection principle

- Inverse beta decay (IBD) reaction
- Prompt signal comes from positron annihilation
- Delayed signal occurs when neutron captures a proton
- Challenge: reduce background
 - Cosmic rays (overburden)
 - Natural radioactivity (pure materials)

The KamLAND reactor neutrino measurement

Question before the year 2001: are there reactor neutrino (MeV) oscillation at a distance >100 km?

What KamLAND did we expect in 2001?

spectrum

61

The KamLAND reactor neutrino measurement

- established reactor antineutrino disappearance, L>>100km, at high significance
- Energy threshold at 2.6 MeV
 - Backgrounds at low energy
 - Geoneutrinos!

$$\Delta m^2_{21} = 7.59 \pm 0.21 \cdot 10^{-5} \ {
m eV}^2, \ an^2 heta_{12} = 0.47^{+0.06}_{-0.05}$$

What KamLAND did we expect in 2001?

spectrum

positron energy (MeV)

63

Solar + Reactor Experiments

• Consistent Solar/Reactor $\Delta m_{21}^2 \& \theta_{12}$