Tutorial 1: Neutrino detection

Lecturer: Thierry Lasserre

Tutors: Patrick Foldenauer Salvador Rosauro Alcaraz Arsenii Titov

Quantum Sensors for Fundamental Physics - QSFP 2021
13 September 2021

β-decay: Fermi Theory (1)

We can derive the electron spectrum of the process $n \rightarrow p+e^{-}+\bar{\nu}_{e}$ from first principles in Quantum mechanics:

- Assume free particle states:
$|i\rangle=|n\rangle$
$\Rightarrow \quad \psi_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=e^{i \vec{p}_{n} \cdot \vec{x}_{1}}$
$|f\rangle=\left|p, e^{-}, \bar{\nu}_{e}\right\rangle$
$\Rightarrow \quad \psi_{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=e^{i \vec{p}_{p} \cdot \vec{x}_{2}} e^{i \vec{p}_{e} \cdot \vec{x}_{3}} e^{i \vec{p}_{\nu} \cdot \vec{x}_{4}}$
- We can assume the interaction to be point-like:

$$
V_{W}\left(x_{1}, x_{3}, x_{3}, x_{4}\right)=G_{F} \delta^{(3)}\left(\vec{x}_{1}-\vec{x}_{2}\right) \delta^{(3)}\left(\vec{x}_{2}-\vec{x}_{3}\right) \delta^{(3)}\left(\vec{x}_{3}-\vec{x}_{4}\right)
$$

New interaction constant

β-decay: Fermi Theory (2)

The matrix element for this process is given by

$$
\langle i| V_{W}|f\rangle=\int d^{3} x_{1} \ldots d^{3} x_{4} \psi_{i}^{*} V_{W}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \psi_{f}
$$

Inserting the expression and integrating over x_{1}, x_{2}, x_{3} yields
$\langle i| V_{W}|f\rangle=G_{F} \int d^{3} x^{4} e^{i\left(\vec{p}_{p}+\vec{p}_{e}+\vec{p}_{\nu}-\vec{p}_{n}\right) \cdot \vec{x}_{4}}=(2 \pi)^{3} G_{F} \delta^{(3)}\left(\vec{p}_{p}+\vec{p}_{e}+\vec{p}_{\nu}-\vec{p}_{n}\right)$

With the matrix element we can compute the decay rate of the process using Fermi's golden rule:

$$
d \Gamma_{i f}=2 \pi\left|V_{i f}\right|^{2} \rho\left(E_{i}\right)
$$

With the density of states

$$
\rho\left(E_{i}\right)=\delta\left(Q-E_{e}-E_{\nu}\right) \frac{d^{3} p_{p}}{(2 \pi)^{3}} \frac{d^{3} p_{e}}{(2 \pi)^{3}} \frac{d^{3} p_{\nu}}{(2 \pi)^{3}} \quad \text { with } \quad Q=m_{n}-m_{p}
$$

β-decay: Fermi Theory - Exercise

Exercise 1. Using Fermi's golden rule find an expression for the electron spectrum in the beta decay, i.e. $d \Gamma_{i f} / d E_{e}$

Hint 1: Remember that $\int d x \delta(x-a) f(x)=f(a)$

Hint 2: Integrate first over the proton momentum p_{p} and use the relation

$$
\int d^{3} p_{p} \delta^{(3)}\left(\vec{p}_{p}+\vec{p}_{e}+\vec{p}_{\nu}-\vec{p}_{n}\right) \delta^{(3)}\left(\vec{p}_{p}+\vec{p}_{e}+\vec{p}_{\nu}-\vec{p}_{n}\right)=\delta^{(3)}(0)=\frac{V}{(2 \pi)^{3}}
$$

where V is a normalisation volume that can be set to 1 .

Hint 3: Integrate over p_{ν} and substitute p_{e} using the relations

$$
\begin{aligned}
& d^{3} p_{\nu}=4 \pi E_{\nu}^{2} d E_{\nu} \\
& d^{3} p_{e}=4 \pi p_{e}^{2} d p_{e}=4 \pi \sqrt{E_{e}^{2}-m_{e}^{2}} E_{e} d E_{e}
\end{aligned}
$$

β-decay: Fermi Theory (3)

The expression we obtained from our quantum mechanics calculation exactly describes the measured β-decay electron spectrum

$$
\frac{d \Gamma_{i f}}{d E_{e}}=\frac{G_{F}^{2}}{2 \pi^{3}}\left(Q-E_{e}\right)^{2} \sqrt{E_{e}^{2}-m_{e}^{2}} E_{e}
$$

This allows to extract the Fermi constant G_{F} from the spectrum and determine it to

$$
G_{F} \approx 1.15 \times 10^{-5} \mathrm{GeV}^{-2}
$$

Inverse β-decay

With the methods developed before we can also find an expression for the inverse β-decay, or neutrino-proton scattering $\bar{\nu}_{e}+p \rightarrow n+e^{+}$.

We proceed exactly analogous, but with the initial and final states as

$$
\begin{array}{lll}
|i\rangle=\left|\bar{\nu}_{e}, p\right\rangle & \Rightarrow & \psi_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=e^{i \vec{p}_{\nu} \cdot \vec{x}_{1}} e^{i \vec{p}_{p} \cdot \vec{x}_{2}} \\
|f\rangle=\left|n, e^{+}\right\rangle & \Rightarrow & \psi_{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=e^{i \vec{p}_{n} \cdot \vec{x}_{3}} e^{i \vec{p}_{e} \cdot \vec{x}_{4}}
\end{array}
$$

Assuming the proton to be at rest $\vec{p}_{p}=0$, we can derive the cross section from

$$
d \sigma=2 \pi\left|V_{i f}\right|^{2} \delta\left(E_{\nu}+m_{p}-E_{n}-E_{e}\right) \frac{d^{3} p_{e}}{(2 \pi)^{3}} \frac{d^{3} p_{n}}{(2 \pi)^{3}}
$$

Inserting the expression for $V_{i j}$ from before and integrating over p_{n} yields the simple expression for the total cross section (neglecting m_{e} and taking $m_{n} \approx m_{p}$)

$$
\sigma_{\mathrm{tot}} \approx \frac{G_{F}^{2}}{\pi} \frac{E_{\nu}^{2} m_{p}}{2 E_{\nu}+m_{p}}
$$

Inverse β-decay - Exercise

Exercise 2. Using the expression for the neutrino-proton scattering cross section

$$
\sigma_{\mathrm{tot}} \approx \frac{G_{F}^{2}}{\pi} \frac{E_{\nu}^{2} m_{p}}{2 E_{\nu}+m_{p}}
$$

give a rough estimate for the expected cross section of reactor neutrinos with an energy of $E_{\nu} \approx 1 \mathrm{MeV}$. Express your results in units of barn and cm^{2}.

Compare your result to Thomson scattering of a photon on a non-relativistic electron, $\sigma_{\text {Thomson }} \approx 10^{-24} \mathrm{~cm}^{2}$.

Hint: 1 barn $\equiv 10^{-24} \mathrm{~cm}^{2}=2.57 \times 10^{3} \mathrm{GeV}^{-2}$

Neutrino detection

Exercise 3. Consider a research nuclear reactor with a power of $P_{\text {reactor }}=20 \mathrm{MW}$ which mainly has ${ }_{92}^{235} \mathrm{U}$. If an average of 6 neutrinos are emitted from each fission, what would be the neutrino flux at a location 150 m away from the core?

Hint: The reaction is ${ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{55}^{144} C s+{ }_{37}^{90} R b+2{ }_{0}^{1} n$, and the atomic masses for each element are:
$m\left({ }^{235} U\right)=235.044 u$,
$m\left({ }^{144} C s\right)=143.932 u$,
$m\left({ }^{90} R b\right)=89.915 u$,
$m\left({ }_{0}^{1} n\right)=1.009 u$.
$1 u=931.5 \mathrm{MeV}$

Hint 2: $1 \mathrm{MW} \approx 6.25 \cdot 10^{18} \mathrm{MeV} / \mathrm{s}$

Neutrino detection

Exercise 4. If we wanted to detect these reactor neutrinos through inverse beta decay (IBD), how much mass of the liquid scintillator $C_{18} H_{30}$ would we need to have an event rate of about 10 events/day?

Hint1: Remember that the IBD cross section on free protons is
$\sigma_{\mathrm{IBD}} \sim 10^{-44} \mathrm{~cm}^{2}$, and the event rate would be given by

$$
N_{\mathrm{IBD}} / \Delta t=\phi_{\nu} \sigma_{\mathrm{IBD}} N_{\text {targets }} .
$$

Hint2: Assume that the number of free protons per molecule is given by the number of H atoms

The molar mass for $C_{18} H_{30}$ is $M_{C_{18} H_{30}}=246.4 \mathrm{~g} / \mathrm{mol}$
Avogadro's number is $N_{A}=6.022 \times 10^{23} / \mathrm{mol}$

Neutrino detection

Exercise 5. Apart from IBD, there are other processes through which neutrinos can interact with matter. A particularly interesting one is coherent neutrino nucleus scattering (CEvNS), in which low energy neutrinos interact with the whole atomic nucleus instead of interacting with individual nucleons.

How large would a detector made of $\mathrm{CsI}(\mathrm{Na})$ need to be to observe an event rate of about 10 events/day?

Compare this to the previous detector relying on IBD.
Hint: The CEvNS cross section on Cs for neutrinos with $E_{\nu} \sim 2 \mathrm{MeV}$ is $\sigma_{\mathrm{CE} L \mathrm{NS}} \sim 10^{-40} \mathrm{~cm}^{2}$.

The molar mass of CsI is $M_{\mathrm{CsI}}=259.8 \mathrm{~g} / \mathrm{mol}$

