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Quantum Simulation
an introduction
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Outline
Lecture 1: Introduction
• Simulating physics with computers -> Quantum simulation
• Basic concepts

Lecture 2: Examples 
• Analog quantum simulation
• Digital quantum simulation

Lecture 3: Simulating quantum fields in the lab
• Relativisitc quantum fields
• Emergent Sine-Gordon quantum simulator
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Outline
Lecture 2: Implemementing Quantum Simulations
• Quantum Simulation – an overview

• Scientific opportunities
• Platforms
• Challenges
• Verification

• Analog quantum simulation
• Atoms in optical lattices
• Hubbard Model 
• Mott-insulator phase transition
• Tools
• Examples (tutorial: Fermi Hubbard model – anti ferromagnet)

• Digital quantum simulation
• Ion trap digital quantum simulation
• Examples (tutorial: lattice gauge theory)

J. Schmiedmayer: Quantum Simulation 4

Quantum Simulation

Digital Quantum Simulators: 
Trotter-Suzuki’s decomposition of the many-body evolution operator 
into sequences of of elementary quantum gates.

Example: 

Analog Quantum Simulators: 
Build the desired Hamiltonian directly in the Lab and prepare the 
ground state, observe time evolution.

Example:   Hubbard Model, … 

Emergent Quantum Simulators (lecture III)
The complexity of the many body wave function does not allow to 
‘observe’ all the details.  Every measurement we do is a ‘coarse 
graining’ which leads to an emerging effective description that is 
very different from the microscopic physics.

Example:   Sine-Gordon model <-> two tunnel coupled superfluids

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
E. A. Martinez et al. Nature 534, 516 (2016)

Quantum simulation with ultracold atomic gases, 
I. Bloch, et al.  Nature Phys. 8, 267 (2012).

Schweigler , et al. Nature 545, 323 (2017) 
Zache et al. arXiv:1909.12815.
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Scientific Opportunities for  
Quantum Simulators

Quantum simulators: Architectures and Opportunities,
E. Altman et al., PRX-Quantum 2, 017003 (2021).1. Quantum materials

correlated electronic materials, high temperature superconductors, 
frustrated quantum magnets, spin ice, spin glass
Bose-Hubbard, Fermi-Hubbard model QuSim: -> explore exotic phases

2. Quantum chemistry
calculation excitation rates, modelling catalysis … , nitrogen fixation, light harvesting
emulating models of reactions and molecules

3. Quantum devices and transport
calculation quantum properties of (nanoscale) electronic devices 
transport of spin, current, heat, information, …  quantum networks of devices

4. Gravity, particle physics and cosmology
lattice gauge theories,  color superconductivity, defect formation, curved space time, horizons,
Unruh radiation, …. many body quantum chaos and scrambling

5. Non equilibrium many body dynamics
spans all scales, really hard problems that can not be traced on classical computers
from relaxation and thermalization -> emergence of classical world
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Platforms for Quantum Simulation
Quantum simulators: Architectures and Opportunities,

E. Altman et al., PRX-Quantum 2, 017003 (2021).

• Cold and ultracold molecules
• Color centers
• Dopants in semi conductors
• Gate defined quantum dots
• Photons in nano structures
• Photons and atoms in cavities
• Rydberg atom arrays
• Superconducting quantum circuits
• Trapped atomic ions
• Ultra cold neutral atoms
• Van der Waals heterostructures, 

Moire materials, Exciton – Polariton,
quantum fluids of light

• rich internal structure, 
‘long range’ dipole-dipole interactions for polar molecules

• Very many incarnations, NV-center in diamond, ’artificial’ atoms, long 
coherence time, fixed in solid but inhomogeneous broadening

• Very many incarnations, ’artificial’ atoms, fixed in solid but 
inhomogeneous broadening

• Flexible design, coherence time is an issue of material purity,
recently big breakthroughs due t spin-0 hosts (28Si)

• Mature technology, but problem with loss and detection that needs to 
be overcome, mostly probabilistic

• Light in cavity mediates long range interaction, exciting developments 
when combining with singles site detection/manipulation 

• controllable strong interaction, fast loading and operation time,
reusable samples, easily scalable, arbitrary arrangements

• Designed nodes (qubits) and designed connections. very fast (ns 
operation time), need exquisite fine tuning, ideal for disorder physics

• System with the best and most robust control, long coherence, 
difficult to scale up, digital quantum gate based quantum simulation

• Best isolation from environment, 100 thousand's identical nodes, wel
ldeveloped techniques to cool, control, measure, bosons <-> fermions

• Many new possibilities. Excitons and quantum fluids of light allow to 
simulate driven dissipative systems
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Challenges
Quantum simulators: Architectures and Opportunities,

E. Altman et al., PRX-Quantum 2, 017003 (2021).
1. Scalability and complexity

variability of the constituents <-> control
connectivity <-> complexity
operation speed <-> isolation and coherence

2. State preparation and control
how to prepare the initial states: complexity <-> cooling
error propagation <-> engineered baths
optimal quantum control … 

3. Verification of simulators
how can I know if my simulator does what it is supposed to do?

4. Readout
how to read a simulator, how to read a complex wave function 
one can not do tomography (exponential difficult)
correlation functions become very hard to analyse for non trivial (correlated) systems
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Verifying Quantum Simulation
Quantum simulators: Architectures and Opportunities,

E. Altman et al., PRX-Quantum 2, 017003 (2021).1. Validating analog quantum simulators
systems contain contributions to Hamiltonian that are not related to the model to be simulated
universality of low energy physics may save the simulation
quantification of the different perturbations and their effect on the simulation is mostly unknown

2. Validating digital quantum simulators
digitization errors, Trotter step errors, control errors on gates … de-coherence
tools exist for small scale systems (<10 qubits) … need benchmarking tools that work for large systems

3. Comparison to classical calculation
limited to cases where there are classical algorithms for some parameter space of the simulation

4. Verification of simulators
run simulation a different systems, self verification, …. new methods in the works

5. Error correction and mitigation
identify and correct for unwanted interactions … especially important for analog QuSim

6. Mesoscopic metric for quantum complexity
models based on asymptotic limits … but real systems are finite and mesoscopic
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Analog Quantum Simulation

Build the desired Hamiltonian directly 
in the Lab and prepare the ground 
state, observe time evolution, … .

Example:
• Hubbard Model
• Lieb-Lininger Model 

Fermi-Hubbard antiferromagnet
• Disorder physics,
• MBL
• …

Question: 
• how good does one need to 

control the parameters?
• how to verify the results
• …

Main platforms:
• Ultra cold atoms 

• Bosons <-> Fermions
• Lattices <-> continouse systems
• Atoms are identical J
• Slow (top ~ ms) tcoh / top ~ 105

• Experiment cycle time > seconds

• Rydberg atoms in optical tweezers
• Atoms are identical J Bosons <-> Fermions, 
• Arbitrary designed configurations
• Not only next neighbor interactions 
• Faster (top ~ µs) tcoh / top ~ 105

• Experiment cycle time > 10-3 seconds

• Superconducting circuits
• Designed nodes and connectivity
• Local control of node and connections
• Needs fine tuning
• Fast (top ~ ns) tcoh / top ~ 105

• Experiment cycle time > 10-6 seconds
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Analog Quantum Simulation

Build the desired Hamiltonian directly in the Lab and 
prepare the ground state, observe time evolution, … .

Example:
• Hubbard Model
• Lieb-Lininger Model 

Fermi-Hubbard antiferromagnet
• Disorder physics, 

MBL
• …

Question: 
• how good does one need to 

control the parameters?
• how to verify the results
• …

Quantum simulation with ultracold atomic gases, 
I. Bloch, J. Dalibard, S. Nascimbène, 

Nature Phys. 8, 267 (2012).

Analog Quantum Simulation
with ultracold atoms

Hubbard Model



J. Schmiedmayer: Quantum Simulation 11

Optical Lattices
periodic potentials to trap and manipulate atoms

Trapping Atoms in Light Fields
Optical Dipole Potentials

Energy of a dipole in an electric field:
electric field induces a dipole moment:
Dipole potential:

Complex optical potetnial:

couppling
detuning
decay rate

dipU d E= - ×
! !

d E= a
! !

( ) ( )dipU I rµ -a w
!

Red detuning:
Atoms trapped 
in intensity 
maxima

Blue detuning:
Atoms repelled 
from intensity 
maxima

For a review see R. Grimm et al. 
Adv. At. Mol. Opt. Phys. 42, 95-170 (2000). 
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The Bose-Hubbard model

Crystalline solids
How to build a lattice

Superfluid to Mott insulator Quantum gas microscope
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+ weak harmonic confinement
• the resulting potential is a simple cubic lattice
• the lattice potential is perfect: no defects, no slips
• the BEC coherently spreads over more than 100.000 

lattice sites
• filling per site: 1-3 atoms
• potential depth can be adjusted between 0..50 Erecoil
• trap frequency per site » 2p x 50 kHz

• energy scale:

• confinement
m
kErecoil 2

22!
=

Optical Lattices Optical Dipole Forces
Optical lattice:
4 µm polystyrol particles on 
water surface
conservative light force for 
macroscopic particles ® optical 
tweezers

2 beam lattice

4 beam lattice

optical tweezers do amazing things in biology
(measure the force of a ribosome)

TrecoilT aEV ww /1                4 00 ==
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+ weak harmonic confinement
• the resulting potential is a simple cubic lattice
• the lattice potential is perfect: no defects, no slips
• the BEC coherently spreads over more than 100.000 

lattice sites
• filling per site: 1-3 atoms
• potential depth can be adjusted between 0..50 Erecoil
• trap frequency per site » 2p x 50 kHz
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Optical Lattices

4 beam lattice
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separated by the reciprocal lattice vector
band structure

Knq !+

decomposition 
in plain waves

lattice physics: 
bloch bands

double well

many wells

E0 E0

J
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degeneracy is lifted 
by tunnel coupling

J

J‘
DE
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»J
For a quasi infinite lattice, we expect the appearence of a band structure
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free particle parabola vibrational states in the latticegapped excitation spectrum

lattice physics: bloch bands
first Brillouin zone representation

looking for E(q) such that

solving the Hamiltonian for each 
quasimomentum using the |q+n�K> basis:

which has to be solved numerically for each n and q
Result: Bloch bands
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…the „Greiner / Bloch machine“…
now working on more than 10 labs

A typical lattice experiment
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2 ms 6 ms 10 ms 14 ms 18 ms

BEC in an Optical Lattice
Matter Wave Interference

Individual condensates in the lattice expand and 
interfere with each other, revealing the momentum 
distribution of the atoms in the lattice.

Momentum Distributions 
1D diffraction

( ))( () )( j
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j

x
jw x xx x eA × -= ×Y å f

Number of 
atoms on jth

lattice site

Phase of wave 
function on jth 

lattice site

Localized wave 
function on
Jth lattice site

0f =Δ f = pΔ

( )' / 2 /j V tf = l ×Δ !

Phase difference 
between neighboring 
lattice sites

BEC in 
lattice:

Adjusting the phase difference between 
neighboring lattice sites

Time of flight experiment 3D lattice
start with a pure condensate
in a magnetic trap

turn on lattice potential adiabatically, so 
that the wave function remains in the 
many body ground state of the system!
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the ratio between tunelling J and interaction U can be 
varied by changing the depth of the 3D lattice potential 

In 1998, D. Jaksch and P. Zoller proposed to observe the superfluid – Mott insulator 
transition using bosons in optical lattices (never observed in solid state system)

Bose-Hubbard Model
take into account interactions between particles ocupying the same site
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Bose-Hubbard Model

Expanding the field operator in the Wannier basis of

localized wave functions on each lattice site, yields :

Bose-Hubbard Hamiltonian

Tunnelmatrix element/Hopping element On-site interaction matrix element
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M.P.A. Fisher et al, PRB 40, 546 (1989)
D. Jaksch et al., PRL 81, 3108 (1998)
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Superfluid Limit
Tunneling matrix element dominates

Atoms are delocalized over the entire lattice !
Macroscopic wave function describes this state very well.
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Poissonian atom number distribution per lattice site
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Mott-Insulator
Interaction energy dominsates

Atoms are completely localized to lattice sites !

Fock states with vanishing atom number fluctuations
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The Bose-Hubbard model
superfluid limit
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The Bose-Hubbard model
Mott-insulator limit
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Without gradient potential

Quantum Phase Transition
Jaksch et al. PRL 81, 3108 (1998)

Mott Ins. State

<n> = 1
<Eint> = 0

1 1
2 2l r r lf Äf + f Äf

+

0.5 x

Superfluid State

0.25 x

0.25 x

<n> = 1
<Eint> = ½ U

( ) ( )1 1
2 2l r l rf + f Ä f + f

+

+

Th
e 

S
im

pl
es

t
Po

ss
ib

le
“L

at
ti

ce
“:

2 
At

om
s 

in
 a

 D
ou

bl
e 

W
el

l

At the critical point gc the system will undergo
a phase transition from a superfluid to an 
insulator !
This phase transition occurs even at T=0 and is
driven by quantum fluctuations !
Critical ratio for:  U/J = 5.8
Characteristic for a QPT

• Excitation spectrum is dramatically
modified at the critical point.

• U/J < gc (Superfluid regime)    Excitation
spectrum is gapless

• U/J > gc (Mott-Insulator regime)  
Excitation spectrum is gapped

ilocµ =µ-e

inhomogeneous system
effective local chemical potential

ijE U=Δ
Special case:
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Quantum Phase Transition
M. Greiner et al. Nature 415, p38 (2002)

0 Erecoil

22 Erecoil

Lattice Potential is increased

U/J reaches critical value

Phase Transition to a
Mott-Insulator

Ramping up the Lattice Potential Momentum Distribution for Different Potential Depths

pure BEC
no lattice

superfluid in weak lattice
coherent point sources
interference

Localized atoms 
no phase relation 
between sites
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the ultimate proof for the quantum phase transition:  probing the excitation spectrum
there are many ways to loose and restore coherence:
Dalibard experiments questions Kesvich in 2004 by observing high contrast interference in 30 
independent condensates 
® interference is not neccesarily a proof for coherent / Fock state

If one would apply a pertubation D
to the system (e.g. shaking ) 
for atoms to hopping sites this 
costs interaction energy U
No excitations below threshold 
energy D=U
® gap in excitation spectrum

How can this be measured: apply a 
gradient:

If the gradient corresponds to the 
interaction energy, excitations are 
easily created
(actually, only applying the gradient 
is pertubation enough, tunneling is 
now allowed)

measuring the MI exitation gap

10 Erecoil

16 Erecoil

13 Erecoil

20 Erecoil

excitation gap:
®MI regimeU

2U
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Collapse and Revival of Coherent States
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Measuring the populatipon
adiabatic switching off the lattice

Brillouin Zones in 2D

Momentum distribution of a dephased condensate 
after turning off the lattice potential adiabtically

3D

By adiabatic switching off the lattice: 
Population of nth band is mapped onto nth Brillouin zone !

A. Kastberg et al. PRL 74, 1542 (1995)
M. Greiner et al. PRL 87, 160405 (2001)

Crystal momentum

Single lattice site Energy bands Experiment

Populating higher energy bands
stimulated Raman transitions

2D
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so far, this has been „single particle physics with many particles“, 
it doesn‘t need a BEC, not even bosons:

releasing ground state atoms from the same optical lattice:

difference in momentum is only due to different masses

bosons fermions

Measuring the populatipon
adiabatic switching off the lattice
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Study Order by higher order Correlations
Quantum Noise Interferometry
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Quantum Noise Interferometry
Fermions in a Lattice
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Quantum Gas Microscope
detecting single atoms in lattice

© Waseem S. Bakr, thesis

Markus Greiner‘s group
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Quantum Gas Microscope
detecting single atoms in lattice

evanescent wave magnetic trap

standing wave

W. S. Bakr et al., nature 462, 74 (2009)
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Quantum Gas Microscope
detecting single atoms in lattice

molasses beam

standing wave

lattice beams

hologram

W. S. Bakr et al., nature 462, 74 (2009)
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Quantum Gas Microscope
Mott Insulator

W. S. Bakr et al., Science 329, 547 (2010)

Mott shells

increasing atom number
averaged images
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Quantum Gas Microscope
detecting single atoms in lattice

Christof Weitenberg, thesis
Bloch group @ MPQ

Selection of single 2D plane
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Quantum Gas Microscope
Mott Insulator

J. F. Sherson, nature, 467, 68 (2010)
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l Ground state problems

l Hubbard model, probing 
high-Tc superconductivity

l Many-body localization (1D-2D)

l Cooled to create a magnetic   
state with long-range order l Debated in 2D

Schreiber, Hodgman, Bordia, Lüschen, Fischer, Vosk, 
Altman, Schneider, Bloch, Science 349, 842 (2015)

Mazurenko, Chiu, Ji, Parsons, Kanász-Nagy, Schmidt, Grusdt, 
Demler, Greif, Greiner, Nature 545, 462 (2017) 
Esslinger, Ann Rev Cond Mat Phys 1, 129 2010

What can they probe?
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The Quantum Hall effect

Artificial gauge fields
By rotation

By Raman coupling in latticeBy Raman coupling in bulk
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Digital Quantum Simulation

In 1996 S. Lloyd, showed that quantum simulation can be 
performed with arbitrary precision in polynomial time, using 
a Trotter-Suzuki’s decomposition of the many-body 
evolution operator into sequences of local Hamiltonian 
evolutions. This can be then implemented by sequence of 
elementary quantum gates.

Example:
• Universal digital quantum simulation with trapped ions, 

B. P. Lanyon, et al., Science 334, 57 (2011)
• Real-time dynamics of lattice gauge theories with a few-qubit quantum 

computer,  E. A. Martinez et al. Nature 534, 516 (2016)

What is the error accumulated by the ‘Trotterisation’?
Quantum localization bounds Trotter errors in digital quantum simulation
M. Heyl, P. Hauke, P. Zoller Science Advances 5:eaau8342 (2019)

Lloyd, S. Universal quantum simulators. Science 273, 1073 (1996) 
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Tutorial Lecture 2:

Analog Quantum Simulation of 
‘A cold-atom Fermi–Hubbard antiferromagnet’
Mazurenko et al. Nature 545, 462–466 (2017)
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A cold-atom Fermi–Hubbard 
antiferromagnet

Nature 545, 462–466 (2017)

Exotic phenomena in systems with strongly correlated electrons emerge from the interplay between spin 
and motional degrees of freedom. For example, doping an antiferromagnet is expected to give rise to 
pseudogap states and high-temperature superconductors1. Quantum simulation2,3,4,5,6,7,8 using ultracold 
fermions in optical lattices could help to answer open questions about the doped Hubbard 
Hamiltonian9,10,11,12,13,14, and has recently been advanced by quantum gas microscopy15,16,17,18,19,20. Here 
we report the realization of an antiferromagnet in a repulsively interacting Fermi gas on a two-
dimensional square lattice of about 80 sites at a temperature of 0.25 times the tunnelling energy. The 
antiferromagnetic long-range order manifests through the divergence of the correlation length, which 
reaches the size of the system, the development of a peak in the spin structure factor and a staggered 
magnetization that is close to the ground-state value. We hole-dope the system away from half-filling, 
towards a regime in which complex many-body states are expected, and find that strong magnetic 
correlations persist at the antiferromagnetic ordering vector up to dopings of about 15 per cent. In this 
regime, numerical simulations are challenging21 and so experiments provide a valuable benchmark. Our 
results demonstrate that microscopy of cold atoms in optical lattices can help us to understand the low-
temperature Fermi–Hubbard model.
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Probing antiferromagnetism in the Hubbard 
model with a quantum gas microscope

A Mazurenko et al. Nature 545, 462–466 (2017) 
doi:10.1038/nature22362
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Observing antiferromagnetic 
long-range order

A Mazurenko et al. Nature 545, 462–466 (2017) 
doi:10.1038/nature22362
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Full counting statistics of the 
staggered magnetization operator

A Mazurenko et al. Nature 545, 462–466 (2017) 
doi:10.1038/nature22362
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Doping the antiferromagnet
A Mazurenko et al. Nature 545, 462–466 (2017) 

doi:10.1038/nature22362


