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Digital Quantum Simulators:
Trotter-Suzuki's decomposition of the many-body evolution operator

into sequences of of elementary quantum gates.

Example:  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
E. A. Martinez et al. Nature 534, 516 (2016)

Analog Quantum Simulators:
Build the desired Hamiltonian directly in the Lab and prepare the

ground state, observe time evolution. ) oo,
. Quantum simulation with ultracold atomic gases,
Example: Hubbard Model, ... I. Bloch, et al. Nature Phys. 8, 267 (2012),

Emergent Quantum Simulators (lecture I1T)
The complexity of the many body wave function does not allow to
‘observe’ all the details. Every measurement we do is a ‘coarse
graining’ which leads to an emerging effective description that is
very different from the microscopic physics.
Example: Sine-Gordon model <-> two tunnel coupled superfluids

Schweigler , et al. Nature 545, 323 (2017)
Zache et al. arXiv:1909.12815. 4
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1. Quantum materials

cience and Technology

St
Quantum simulators: Architectures and Opportunities,
E. Altman et al., PRX-Quantum 2, 017003 (2021).

correlated electronic materials, high temperature superconductors,

frustrated quantum magnets, spin ice, spin glass

Bose-Hubbard, Fermi-Hubbard model QuSim: -> explore exotic phases

2. Quantum chemistry

calculation excitation rates, modelling catalysis ... , nitrogen fixation, light harvesting

emulating models of reactions and molecules

3. Quantum devices and transport

calculation quantum properties of (nanoscale) electronic devices
transport of spin, current, heat, information, .. quantum networks of devices

Gravity, particle physics and cosmology

lattice gauge theories, color superconductivity, defect formation, curved space time, horizons,
Unruh radiation, ... many body quantum chaos and scrambling

Non equilibrium many body dynamics

spans all scales, really hard problems that can not be traced on classical computers
from relaxation and thermalization -> emergence of classical world
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Platforms for Quantum Simulation
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Quantum simulators: Architectures and Opportunities,
E. Altman et al., PRX-Quantum 2, 017003 (2021)

Cold and ultracold molecules
Color centers

Dopants in semi conductors

Gate defined quantum dots
Photons in nano structures
Photons and atoms in cavities
Rydberg atom arrays
Superconducting quantum circuits
Trapped atomic ions

Ultra cold neutral atoms

Van der Waals heterostructures,
Moire materials, Exciton - Polariton,
quantum fluids of light

Science and Technology

* rich internal structure,

‘long range’ dipole-dipole interactions for polar molecules

 Very many incarnations, NV-center in diamond, ‘artificial’ atoms, long

coherence time, fixed in solid but inhomogeneous broadening

+ Very many incarnations, ‘artificial’ atoms, fixed in solid but

inhomogeneous broadening

* Flexible design, coherence time is an issue of material purity,

recently big breakthroughs due t spin-0 hosts (?8Si)

* Mature technology, but problem with loss and detection that needs to

be overcome, mostly probabilistic

« Light in cavity mediates long range interaction, exciting developments

when combining with singles site detection/manipulation

« controllable strong inferaction, fast loading and operation time,

reusable samples, easily scalable, arbitrary arrangements

+ Designed nodes (qubits) and designed connections. very fast (ns

operation time), need exquisite fine tuning, ideal for disorder physics

+ System with the best and most robust control, long coherence,

difficult to scale up, digital quantum gate based quantum simulation

+ Best isolation from environment, 100 thousand's identical nodes, wel

Ideveloped techniques to cool, control, measure, bosons <-> fermions

* Many new possibilities. Excitons and quantum fluids of light allow to

simulate driven dissipative systems
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Quantum simulators: Architectures and Opportunities,
E. Altman et al., PRX-Quantum 2, 017003 (2021).

1. Scalability and complexity
variability of the constituents <-> control
connectivity <-> complexity
operation speed <-> isolation and coherence

2. State preparation and control
how to prepare the initial states: complexity <-> cooling
error propagation <-> engineered baths
optimal quantum control ...

3. Verification of simulators
how can I know if my simulator does what it is supposed to do?

4. Readout

how to read a simulator, how to read a complex wave function
one can not do tomography (exponential difficult)
correlation functions become very hard to analyse for non frivial (correlated) systems
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U Verifying Quantum Simulation VCQ

Vienna Center for Quantum
Science and Technology

Quantum simulators: Architectures and Opportunities,
. . . E. Al t al., PRX- tum 2, 017003 (2021).
Validating analog quantum simulators mam et el PRCQuantum (2020

systems contain contributions to Hamiltonian that are not related to the model to be simulated
universality of low energy physics may save the simulation
quantification of the different perturbations and their effect on the simulation is mostly unknown

Validating digital quantum simulators
digitization errors, Trotter step errors, control errors on gates ... de-coherence
tools exist for small scale systems (<10 qubits) ... need benchmarking tools that work for large systems

Comparison to classical calculation
limited to cases where there are classical algorithms for some parameter space of the simulation

Verification of simulators
run simulation a different systems, self verification, ... new methods in the works

Error correction and mitigation
identify and correct for unwanted interactions ... especially important for analog QuSim

Mesoscopic metric for quantum complexity
models based on asymptotic limits ... but real systems are finite and mesoscopic
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Build the desired Hamiltonian directly =~ Main platforms:

in the Lab and prepare the ground . Ultra cold atoms

state, observe time evolution, ... . « Bosons <-> Fermions
* Lattices <-> continouse systems
. » Atoms are identical ©
Example. * Slow (fop ~mMS) Teon / top ~ 102

* Hubbard Model

 Lieb-Lininger Model
Fermi-Hubbard antiferromagnet

+ Disorder physics,

+ Experiment cycle time >seconds

* Rydberg atoms in optical tweezers
+ Atoms are identical © Bosons <-> Fermions,
* Arbitrary designed configurations

* MBL * Not only next neighbor interactions
- * Faster (o, ~ ps) teon / top ~ 10°
+ Experiment cycle time > 103 seconds
Question: « Superconducting circuits
* how good does one need to * Designed nodes and connectivity
control the parameters? * Local control of node and connections
. i * Needs fine tuning
how to verify the results « Fast (foy ~ ns) oo / op ~ 10°
* * Experiment cycle time > 10-¢ seconds
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Build the desired Hamiltonian directly in the Lab and Quantum simulation with U.’fm“’d W’”?W?@S
I. Bloch, J. Dalibard, S. Nascimbéne,

prepare the ground state, observe time evolution, ... . Nature Phys. 8, 267 (2012).
Example:
* Hubbard Model Analog Quantum Simulation

* Lieb-Lininger Model with ultracold atoms
Fermi-Hubbard antiferromagnet
+ Disorder physics,
MBL

Question:
* how good does one need to
control the parameters?
* how tfo verify the results Hubbard Model

J. Schmiedmayer: Quantum Simulation 10
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Optical Lattices

periodic potentials to trap and manipulate atoms

Trapping Atoms in Light Fields
Optical Dipole Potentials

Energy of a dipole in an electric field: U, =-d-E
electric field induces a dipole moment: d =a E
Dipole potential: 1/, o —a(w)/(F)
2
QRabi

Complex optical potetnial: Vp,, =h
omplex optical potetnial: Vo, .

couppling hQp . =d E
detuning A =® 40 — @ g1om
decay rate T

excited » —

state [\

e

11>
> A
Blue detuning: Red detuning:
Atoms repelled¢ | :/' Atoms trapped
from intensity T ininfensity
maxima maxima

For a review see R. Grimm et al.
Adv. At. Mol. Opt. Phys. 42, 95-170 (2000).
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1D mirror
For large detuning
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4 beam lattice

Crystalline solids

How to build a lattice The Bose-Hubbard model
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Optical Lattices

1D:

-—
Ar2

i

V(r)="Vy, cos” (kyx)+Vp, cos’ (k,y)+ V. cos? (k,z)

+ weak harmonic confinement

the resulting potential is a simple cubic lattice

the lattice potential is perfect: no defects, no slips
the BEC coherently spreads over more than 100.000
lattice sites

filling per site: 1-3 atoms

potential depth can be adjusted between 0..50 E,.,;;
trap frequency per site ~ 2 x 50 kHz

272
energy scale: E ” :ﬁ
m

or = V4V0Ercwil ao = Vl/wT

confinement
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Optical Dipole Forces
Optical lattice:

4 um polystyrol particles on
water surface
conservative light force for

macroscopic particles — optical
tweezers

VCQ =

Vienna Center for Quantum
Science and Technology

optical tweezers do amazing things in biology

(measure the force of a ribosome)

Optical Lattices

1D:

-—
A2

e

V(F) =Vy, cos” (kx) +V,, cos® (k,y) +V, cos” (k.z)

+ weak harmonic confinement

the resulting potential is a simple cubic lattice

the lattice potential is perfect: no defects, no slips
the BEC coherently spreads over more than 100.000
lattice sites

filling per site: 1-3 atoms

potential depth can be adjusted between 0..50 E,...;
trap frequency per site ~ 2t x 50 kHz

272
energy scale: E . = ﬁ
2m
@r = \I4V0Ereuoi[ ap = Vl/a)T

confinement
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Energy [kHz]
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Rubidium 87 in optical lattices

For example, 410 nm period, 260 kHz lattice depth
Eg =57 kHz x h = 3 pK
= hx 1.5 kHz

250

200f

150F

100F

50¢

ol— N M
=200 -100 0 100 200

Position [nm]

Energy in units of Er:
1 Ep = 3.6 kHz
=0.17 uK
= 14 peV
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TU lattice physics: /\/WK— .
WIEN bloch bands K-35
Ansatz: periodic Bloch waves \Pq (x) — ”q (x)eiQx/h

with u (x)=u, (x+d) so that Y(x+d)=Y¥(x)e"

q is called quasimomentum and gives the phase difference between lattice sites

. T . _ inKx decomposition
uq(x) is periodic in K, it can be expressed as u, (%)= ZCn,qe in plain waves

— i(g/m+nK)x| ¥ (x) has discrete moméntum komponents g +nhK
\Pq (x) o ch,qe seqparated by the reciprocal lattice vector
n band structure

d is lifted
double well \ h / e o e
Ept) —

EyJ

many wells L — I ~J
AE
Uepvivivivill T I

! , _For a quasi infinite lattice, we expect the appearence of a band structure
J. Schmiedmayer: Quantum Simulation

TU lattice physics: bloch bands

WIEN first Brillouin zone representation
V=0 V=1FE, =20F,
E E E
] q
. 5 . \/
Lr§ ; R
% Erecoil 10
2
E’ 2 -125 h(()tmp
a q -15
0 q
-1 -05 0.5 lq/hK -1 -05§ oS 1 gk -1 -05 05 lq/hK
free particle parabola gapped excitation spectrum vibrational states in the lattice
2
p v
H= %JfECOSKx looking for E(q) such that HY, =E(q)Y,
solving the Hamiltonian for each (q+nnK) 14 14
quasimomentum using the |¢+nBK> basis: om +ZC"+‘ +ZC"-1 =E(q)e,

which has to be solved numerically for each n and ¢
Result: Bloch bands
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...the ,Greiner / Bloch machine®...
now working on more than 10 labs

A typical lattice experiment

VCQ <

Vienna Center for Quantum

Polarization

Atomic Species 8TRb
Wavelength 830-850 nm
Waist (1/e?) 125 pm

. Orthogonal between

standing wave pairs

Intensity control

All beams intensity

stabilized
Lattice geometry Simple cubic
Lattice spacing 425 nm

Science and Technology
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BEC in an Optical Lattice

Matter Wave Interference

BEC in

. lP(x):ZA(xj)'W(x_xj)'€i¢(xj)
lattice:

J  Number of Localized wave  Phase of wave
. atoms on j*h  function on function on jth 2ms 6ms
start with a pure condensate lattice sife  Jth lattice site  lattice site
in a magnetic trap ® &

- .

turn on lattice potential adiabatically, so
that the wave function remains in the
many body ground state of the system!

[T\

Momentum Distributions

17

VCQ

Vienna Center for Quantum
Science and Technology

Time of flight experiment 3D lattice

10ms

L

14 ms 18ms

1D diffraction
Adjusting the phase difference between
o=N15 Ap=0 neighboring lattice sites
| |
| lattice potential «+
.4 — 2__. 0 2 4- w[ \/\/\/\/\M]\/ potential gradient
o=N15 Adp=m/2 z

o =Et/h

7 2 p—
=015 Ad=Rt 3
(1] i '
* 2 0 2 % ’
p (hk)
=0 Ab=x

Phase difference
between neighboring
lattice sites

Ap;=(V'2s2)-t/h

Individual co
interfere with
distribution of 1l

J. Schmiedmayer: Quantum Simulation
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Bose-Hubbard Model

take into account interactions between particles ocupying the same site

H

SOITIRR) WA
i,j

Tunneling term: Interaction term:

J: tunneling matrix el U : on-site interaction matrix element X
f}]' if}J : tunneling from site j to site i i1, (n, —1) : n atoms collide with 102 IO_I
n-| atoms on same site Ua
Foas | N VEg
N -2
§ A & Ut' 10" . 10
the ratio between tunelling J and interaction U can be 0 10°
varied by changing the depth of the 3D lattice potential 10 5 15 25
Vo/Eg

In 1998, D. Jaksch and P. Zoller proposed to observe the superfluid — Mott insulator
transition using bosons in optical lattices (never observed in solid state system)

J. Schmiedmayer: Quantum Simulation
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Bose-Hubbard Model

VCQ .

Vienna Center for Quantum
Science and Technology
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MP.A. Fisher et al, PRB 40, 546 (1989)

Expanding the field operator in the Wannier basis of . A
P I P W(x):zaiw(x_xi)

localized wave functions on each lattice site, yields :

Iyl +Y e,
(

ij) i
Tunnelmatrix element/Hopping element

Bose-Hubbard Hamiltonian H +1Uzﬁ . -1)
PR

On-site interaction matrix element

D. Jaksch et al., PRL 81, 3108 (1998)

[ ) dnh’a 4
J= i[djx w(x— x,,)Lf —V+ V,“,(x)J w(x—x;) U= 7J.d3x‘w(x)‘4
2m m
Wl o Mott-Insulator
03| T
" [ Interaction energy dominsates
o . . % 02 |
.S'uper'f Juid Limit £ | | Atoms are completely localized to lattice sites !
o1} i M
Tunneling matrix element dominates | o [\ o) H(af) |0) <a,>: v
o - o — H =
Atoms are delocalized over the entire lattice ! o 1z 3 4 5 Fock states with vanishing atom number fluctuations
Macroscopic wave function describes this state very well.
z Y | i I
ro)<(35a) 10 (a)20 ” " | )
Poissonian atom number distribution per lattice site g 918 %o :
01 { {
£ ||| [ |
[ __ — a 3 --— |
0 1 2 3 4 5 6 o
n n
I.s

20
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The Bose-Hubbard model

superfluid limit

Atoms are delocalized over the entire lattice !

Macroscopic wave function ; describes this state very well.

|T.1F.r r{:iaJ

=

)

o \ 3 ,3."_’ (p"
AL I b Ll Z—’ n
[ r g BT | ;)r = f‘ |

Atom number
distribution after
a measurement

L\

.—"'\_}v‘\
\: A
AIALY, \:n. \
‘Q\/‘. C YR WA Y Coherent state with well defined
( %ﬂ/mﬂ:ﬂéﬂ\ macroscopic phase o; and poissonian atom
A i % number distribution at each lattice site
y Q
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The Bose-Hubbard model

Mott-insulator limit

MI ground state: Atoms are completely localized to lattice sites !

Fock states with vanishing atom-
number fluctuation are formed.

Proposal: Mott with BEC in 3D lattice:
D. Jaksch et al., PRL &I, 3108 (1998)

J. Schmiedmayer: Quantum Simulation
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2 Atoms in a Double Well

e

The Simplest Possible “"Lattice™:

Quantum Phase Transition

Jaksch et al. PRL 81, 3108 (1998)

VCQ

B

fSuper‘fluid SfuTe\

(Mot Ins. State )

Vienna Center for Quantum
Science and Technology

i

4

ﬁ(¢l+¢y)®ﬁ(¢l+¢y)
0.25 x

+

0.25 x

05x

1 1
ﬁ‘b/@‘t’,*‘ﬁ‘b, ®¢,

\
\
\
\
\

’
/

’
Quantum  /

‘\‘ Critical ’/'
= ‘\Region/'
Ul & \\ /l
Superfluid ./ Mott-Insulator
— v’ > Ul

Long Range Order

9

At the critical point gc the system will undergo
a phase transition from a superfluid to an
insulator !

This phase transition occurs even at T=0 and is
driven by quantum fluctuations !

Critical ratio for: U/J =5.8

Characteristic for a QPT
+ Excitation spectrum is dramatically
modified at the critical point.
+ U/J < gc (Superfluid regime) Excitation
spectrum is gapless
/3 > gc (Mott-Insulator regime)

prvg =1 Excitation spectrum is gapped
\ ‘Eim> = % V) J \ (Eint) =0 ‘
R inhomogeneous system
effective local chemical potential
wu
30
" " . M
Without gradient potential (w3} =3
20 SF
Min=2) } 2 — —
10 SF f f
Special case: M (nat) i el
i AE, =U i
v :
£ w
J. Schmiedmayer: Quantum Simulatrorr
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Quantum Phase Transition

M. Greiner et al. Nature 415, p38 (2002)

Ramping up the Lattice Potential

VCQ

B

Vienna Center for Quantum
Science and Technology

Momentum Distribution for Different Potential Depths

Lattice Potential is increased ]

p
U/J reaches critical value ]
|
-
Phase Transition to a
Mott-Insulator
L

Vo (E)

22 Erecoil

0 Erecoit - ° il o
® @ @0 e @ e o oo S o
. . ° . . P,
ok i e
.eo e*f»o
R e &
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superfluid in weak lattice
ﬂ“'ﬂleﬁgc g:oRer‘em‘ point sources
0 latTice 11 interference

Localized atoms
no phase relation
between sites

24



measuring the MI exitation gap

the ultimate proof for the quantum phase transition: probing the excitation spectrum

there are many ways to loose and restore coherence:

Dalibard experiments questions Kesvich in 2004 by observing high contrast interference in 30
independent condensates
— interference is not neccesarily a proof for coherent / Fock state

J. Schmiedmayer: Quantum Simulation

If one would apply a pertubation A
to the system (e.g. shaking )

for atoms to hopping sites this
costs interaction energy

No excitations below threshold
energy A=U

— gap in excitation spectrum

How can this be measured: apply a
gradient:

If the gradient corresponds to the
interaction energy, excitations are
easily created

(actually, only applying the gradient
is pertubation enough, tunneling is
now allowed)

Width (px)

Wit ()

}y et
++¢+i+ bttty t

- Ll
++ g " R .k
t bt (L
.
o 10 E,coi e 13 Eecoit
L] 1 2 a 4 5 a 1 2 3 4 5
A (kHz) AEM {kHz)
excitation gap]
& — Ml regime
L
g 5
L w
™~ 16 E ool # 20 E,ecoir
o 1 2 3 4 5 o 1 F] 3 4 5
AEM (kHz) AEM (kHZ)

Collapse and Revival of Coherent States

lal? o i
|C¢)(E)Z e |e|*/2 £ . SUn(n l)J/ﬁln)
>

I[e I[d

] I A
o @ o 1

[ e

o @ o ‘ g

0 . i :

Y
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a, 0ps; b, 100 ps; €, 150 ps; d, 250 us; €, 350 ps: 1, 400 ps; and g, 550 ps

Column density (a.u.)

Nw‘r’N t

Ty (M)

0.4+

0.2-

—
3,000

0.8

0.6

0.5+

0.4+

0sf |
15 20

P .
25 30 35 40

Vg (E)

VCQ <
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Science and Technology
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Measuring ’rheg opulatipon

adiabaticswitching o

the lattice

Crystal momentum

20 E, 4E Free Particle
"L
—— K
-hk +hk -hk +hk -hk +hk
q q q

By adiabatic switching off the lattice:
Population of n band is mapped onto n™ Brillouin zone !

> p

-3hk -2hk -hk +hk +2hk +3hk

A. Kastberg et al. PRL 74, 1542 (1995)
M. Greiner et al. PRL 87, 160405 (2001)

J. Schmiedmayer: Quantum Simulation

Momentum distribution of a dephased condensate
after turning of f the lattice potential adiabtically

Brillouin Zones in 2D

2D

Wz

2 hk

Populating higher energy bands
stimulated Raman transitions

Single lattice site Energy bands

le) — \

w
flm,I l _—

19>

Experiment

Measuring the gopula’rupon

adiabatic squchmg o

the lattice

so far, this has been ,single particle physics with many particles®,
it doesn‘t need a BEC, not even bosons:

releasing ground state atoms from the same optical lattice:

87Rb

bosons

40K

fermions

difference in momentum is only due to different masses

J. Schmiedmayer: Quantum Simulation
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Study Order by higher order Correlations

Quantum

oise Interferometry

" . 1
=2 =1 [ 1 1
Datector sepasation, d )

J. Schmiedmayer: Quantum Simulation

WIEN

normalized density—density correlation function:

Column density (a.u)

. [{ntx+d/2): nix— d,!'Z}}dEx
If(u[x { d;'2}><u{x - d,-’2])d2x

I.m"
6

C(d)

b

amp. (x10~)

Quantum Noise Interferometry
Fermions in a Lattice

D

r Reduced zone 4

Figure 1] Origin of anticorrelations in a Fermi gas released from an optical
lattice. Each occupiced Bloch state, labelled by a crystal momentum #ig, is
represented by a dot in the reduced zone scheme (w region). The full
occupation of the lowest energy band opposed to the empty second band
describes the fermionic band insulating state. The periodically extended
zone scheme (extension shown as green shaded region) shows that cach
Bloch state is a superposition of states with momenta equally spaced by 27k,
After the lattice is switched offabruptly, an atom with crystal momentum fig
propagates freely during a time of flight ¢ and can reach detectors equally
spaced by a distance (. If for example, detector number 3 detects a particle
(yellow dot above detector), then owing to the single occupancy of cach
Bloch state dictated by the Pauli principle, detectors 1, 2 and 4 will not detect
a particle (white dots above detectors).

J. Schmiedmayer: Quantum Simulation

Column density (a.u.)

0zfp d 4aF
Bt
0.1 0 %
. =21
: = I3
-a00 200 0 200 400 P00 0 200 =

X [pm) X (pm)

Figure 2 | Single shot absorption images and correlation analysis. a, Single
absorption image of a fermionic “’K atom cloud after 10ms of free
expansion. The t shows a Brillouin zonc mapping of the cloud,
demonstrating that the Fermi gas is in a band insulating state. b, One-
dimensional cut through a together with a gaussian fit (red). ¢, Spatial noise
correlations obtained from an analysis of 158 independent ges, showing
an array of cight dark dots, d, A horizontal profile through the centre of the
image shows that these dots correspond to correlation dips, with the
characteristic spacing (. The profile has been high-pass filtered to suppress a
broad gaussian backg d that we attribute to shot to shot fluctuations in
the atom number.
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10U Quantum Gas Microscope VCQ

WIEN detecting single atoms in lattice

Markus Greiner's group

© Waseem S. Bakr, thesis

J. Schmiedmayer: Quantum Simulation 31

1U) Quantum Gas Microscope VCQ

WIEN detecting single atoms in lattice

W. S. Bakr et al., nature 462, 74 (2009)

Imaging long working distance
(a) EW Beam L e microscope objective
AT\ ]

Bew
\ _—_—Exit Facet

hemispheric
lens

30
27| ) o ©
T 2
= 200 200
K
% 10 ke _ 100 -~ 100
o

T Sl il

0 2 40 60z(pm) 0o 3 Z(um)

evanescent wave .
maghetic trap
32
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10U Quantum Gas Microscope VCQ

WIEN detecting single atoms in lattice o S

W. S. Bakr et al., nature 462, 74 (2009)

—/ CCD

i)
<o |

hologram E 1

> oy ;
lattice beams

standing wave = 7
molasses beam Z’
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uantum Gas Microscope
Q e @

Mott Insulator

Llf(
nd Techn lgy

W. S. Bakr et al., Science 329 547 (2010)

C 12, D 16E- ~680nm Mott shells

x1000 counts

o

(X X JoX X X )
(XX JoX X X X )
( A XXX XXX J
(XXX XX X J
00000GOOGS
( A X XX XXX

increasing atom number
averaged images

34
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TU Quantum Gas Microscope R

e detecting single atoms in lattice VCQ

Vienna Center for Quantum
Science and Technology

Christof Weitenberg, thesis
Bloch group @ MPQ

Selection of single 2D plane

e o

e a b c d R
Optical lattice - g
d laser beams —— —— —_— %)
—— — ) — —— =
——— — —— 5’
/ ~— —e— — s
Mirror 1,064 nm €
Window 780 nm
' clicoc IRE
High-resolution e pushout __ g . tv;o slices -
objective - [F=2, m =-2> ' 'y oOF . :‘?
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uantum Gas Microscope
Q Mott Insulator P VCQ $
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J. F. Sherson, nature, 467, 68 (2010)
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What can they probe?

. Ground state problems

« Hubbard model, probing
high-Tc superconductivity

~ w
« Cooled to create a magnetic
state with long-range order
Mazurenko, Chiu, Ji, Parsons, Kanasz-Nagy, Schmidt, Grusdt,
Demler, Greif, Greiner, Nature 545, 462 (2017)
Esslinger, Ann Rev Cond Mat Phys 1, 129 2010
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« Many-body localization (1D-2D)
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« Debated in 2D

Schreiber, Hodgman, Bordia, Lischen, Fischer, Vosk,
Altman, Schneider, Bloch, Science 349, 842 (2015)

Artificial gauge fields

By rotation
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The Quantum Hall effect
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U Digital Quantum Simulation VCQ
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Lloyd, S. Universal quantum simulators. Science 273 1073 (1996)
In 1996 S. Lloyd, showed that quantum simulation can be
performed with arbitrary precision in polynomial time, using
a Trotter-Suzuki's decomposition of the many-body
evolution operator into sequences of local Hamiltonian
evolutions. This can be then implemented by sequence of
elementary quantum gates.

Example:
*  Universal digital guantum simulation with trapped ions,
B. P. Lanyon, et al., Science 334, 57 (2011)
* Real-time dynamics of lattice gauge theories with a few-qubit gquantum
computer, E. A. Martinez et al. Nature 534, 516 (2016)

What is the error accumulated by the "Trotterisation?
Quantum localization bounds Trotter errors in digital guantum simulation
M. Heyl, P. Hauke, P. Zoller Science Advances 5:eaau8342 (2019)
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A cold-atom Fermi-Hubbard &R
antiferromagnet vcQ

Vienna Center for Quantum
Science and Technology

Nature 545, 462-466 (2017)

Exotic phenomena in systems with strongly correlated electrons emerge from the interplay between spin
and motional degrees of freedom. For example, doping an antiferromagnet is expected to give rise to
pseudogap states and high-temperature superconductors. Quantum simulation?3258.2.8 ysing ultracold
fermions in optical lattices could help to answer open questions about the doped Hubbard
Hamiltonian21211121314 and has recently been advanced by quantum gas microscopyt?2617.18.19.20 Here
we report the realization of an antiferromagnet in a repulsively interacting Fermi gas on a two-
dimensional square lattice of about 80 sites at a temperature of 0.25 times the tunnelling energy. The
antiferromagnetic long-range order manifests through the divergence of the correlation length, which
reaches the size of the system, the development of a peak in the spin structure factor and a staggered
magnetization that is close to the ground-state value. We hole-dope the system away from half-filling,
towards a regime in which complex many-body states are expected, and find that strong magnetic
correlations persist at the antiferromagnetic ordering vector up to dopings of about 15 per cent. In this
regime, numerical simulations are challenging?! and so experiments provide a valuable benchmark. Our
results demonstrate that microscopy of cold atoms in optical lattices can help us to understand the low-

temperature Fermi—Hubbard model.
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gIL¥) | Probing antiferromagnetism in the Hubbard R
e model with a quantum gas microscope vCQ

Vienna Center for Quantum
Science and Technology

b A Mazurenko et al. Nature 545, 462-466 (2017)
doi:10.1038/nature22362

Anticonfining
potential
(650-nm Figure 1 | Probing antiferromagnetism in the Hubbard model with a

fight) quantum gas microscope. a, Schematic of the two-dimensional Hubbard
phase diagram, including predicted phases. We explore the trajectories
Dichroic traced by the red arrows for a Hubbard model with U/t = 7.2(2). The
mirror strongest antiferromagnetic order is observed at the starred point.
b, Experimental set-up. We trap 5Li atoms in a two-dimensional square
optical lattice. We use the combined potential of the optical lattice and
the anticonfinement that is generated by the digital micromirror device
(DMD) to trap the atoms in a central sample 2 of homogeneous density,
surrounded by a dilute reservoir, as shown in the plot. The system is
imaged with 671-nm light along the same beam path as the projected
650-nm potential, and separated from it by a dichroic mirror. ¢, Exemplary
raw (left) and processed (right) images of the atomic distribution of single
experimental realizations, with both spin components present (upper;
corresponding to the starred point in a) and with one spin component
removed (lower). The observed chequerboard pattern in the spin-removed
images indicates the presence of an antiferromagnet.

Temperature

Sample, Q2
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- Observing antiferromagnetic
v! .H long-range or'der'9 vcaQ &
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£
/.

Vienna Center for Quantum
Science and Technology

A Mazurenko et al. Nature 545, 462-466 (2017)
doi:10.1038/nature22362

ez d Hoid time (s) Figure 2 | Observing antiferromagnetic long-range order. a, The spin
000125 025 L5 correlator Cy is plotted for different displacements d = (d,, d,) ranging
across the entire sample for five temperatures T/1. We record more than
200 images for each temperature (Methods). Correlations extend across
the entire sample for the coldest temperatures, whereas for the hottest
temperature only nearest-neighbour correlations remain. b, The sign-
corrected correlation function (—1)'Cy is obtained through an azimuthal
average. The exponential fits to the data (|d| = d > 2 sites) are shown in
blue, from which we determine the correlation length &; the fit of the

_ coldest sample is plotted in grey in the other panels for comparison.

- ¢, The measured spin structure factor $%(q) — $%(0) obtained from Fourier
transformations of single images. A peak at momentum qapy = (w/a, w/a)
signals the presence of an antiferromagnet. d, The measured correlation
length £ (data), fitted to equation (2) (curve), diverges exponentially as a
function of temperature T/t and is comparable to the system size for the
lowest temperature. The temperature is varied by holding the atoms in the
trap for a variable time. The inset is a semi-logarithmic plot of the same
quantity versus inverse temperature. e, The measured corrected staggered
magnetization mj (large blue circles) increases markedly below
temperatures T/t~ 0.4. We find good agreement with quantum Monte

- Carlo calculations of the Hubbard model (small grey circles). The
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025 032 035 038 064 04 08 "‘:‘3 10 2 trajectory followed in this figure is shown schematically in the phase

diagram in the inset. Error bars in d and e are standard deviations of the
sampled mean; error bars in b (smaller than the markers) are computed as
in Methods. The figure is based on 2,282 experimental realizations.
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Full counting statistics of the
staggered magnetization operator
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Science and Technology

A Mazurenko et al. Nature 545, 462-466 (2017)
doi:10.1038/nature22362

Figure 3 | Full counting statistics of the staggered magnetization
operator. a, Selected images with one spin component removed
(chequerboard overlaid to guide the eye) show a large variation in ordering
strength at the coldest temperature. This variation is a consequence of the
SU(2) symmetry of the underlying Hamiltonian, which leads to different
orientations of the staggered spin-ordering vector #it relative to the
measurement axis z, as shown schematically by the spin vectors (red and
blue arrows) relative to the axis defined by $"(black arrows). b, Measured
distributions of the staggered magnetization operator, p(r1.), are plotted at
different temperatures T/t (histograms). We find excellent agreement with
quantum Monte Carlo simulations of the Heisenberg model with no free
fitting parameters (black lines). The figure is based on 2,282 experimental
realizations.
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Doping the antiferromagnet

VCQ <

Vienna Center for Quantum

a Single-particle density, n, b Single-particle density, n,
0.90 0.85 0.80 0.75 0.90 0.85 0.80 0.75
0.30 + ®d=10
03 @® d=386
025 g ©
o i v
020 o
02
e LI ; .
t o1 ¢ ) @
Density T °,
0.10 + 0.1 °
¢ ¢ i
0.05 » o
0.0 e .00 @
0.00
000 005 010 0.15 020 025 000 005 0.10 0.15 020 025
Doping, & Doping, &
c
2x
3
E - o
o
0
0 x 2z 0 R 2x 0 R 2x 0 x 2x 0 x 2x
q, (Va) q, (1a) q, (1a) q, (va) q, (Va)
0.000(5) 0.019(6) 0.075(6) 0.124(6) 0.189{5)
Doping, &

J. Schmiedmayer: Quantum Simulation

o
S'lq) - S10)

(-]

Science and Technology

A Mazurenko et al. Nature 545, 462-466 (2017)
doi:10.1038/nature22362

Figure 4 | Doping the antiferromagnet. a, We
dope the system with holes and reduce the
density from half-filling, with 0.0 < § <0.25
(corresponding to 0.95 > n, > 0.73). The
corrected staggered magnetization m settles at
the critical hole doping 8.~ 0.15. The trajectory
followed in this figure is shown schematically in
the phase diagram in the inset. b, The relative
strength of the sign-corrected spin correlations
(—1)'Cy decreases less rapidly with hole doping at
smaller distances (d = 1.0) than at larger
distances (d = 3.6). For large doping, only the
nearest-neighbour correlator is appreciable, so
this correlation is predominantly responsible for
the non-zero staggered magnetization away from
the antiferromagnetic phase. ¢, We show the spin
structure factor $%(q) — $7(0), as in Fig. 2¢, for
each doping value. Error bars in a are standard
deviations of the sampled mean; those in b are
computed as in Methods. The figure is based on
1,470 experimental realizations.
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