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Phase
transition

WHAT IS IT?
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Source: K. Turbang adapted from LIGO/Virgo collab. arXiv:1612.02029

Stochastic Background of GW

Looks like noise, detected by cross-correlation
Allen Romano gr-qc/9710117 Analog of CMB

 but for GW

AstroPhysical SGWB Cosmological SGWB

SGWB 

energy density

over critical one

Experimental probes
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3 Stochastic Background of GW

★AstroPhysical SGWB

★Cosmological SGWB

✴ Superposition of unresolvable sources

✴ Generated by energetic events during cosmological evolution

arXiv: 1705.01783 D. Weir 

First Order Phase Transitions
Inflation

Cosmic strings

BBH BNS

✴ Predictable after LIGO/Virgo observations

! Most likely measured in next few years !

Alberto Mariotti (VUB) SGWB and SUSY

LIGO/Virgo Phys.Rev.D 100 (2019)

Explore Universe earlier than CMB!

20-05-2021
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Source: K. Turbang adapted from LIGO/Virgo collab. arXiv:1612.02029

Stochastic Background of GW

SGWB 

energy density

over critical one

★CMB, Pulsar timing arrays (NANOgrav)  
★Interferometers (LIGO/Virgo, LISA, ET, CE, BBO ....)

Note: Astrophysical SGWB and cosmological SGWB will superimpose

Alberto Mariotti (VUB) SGWB and SUSY

Experimental probes

LIGO/Virgo arXiv:2101.12130

CMB

Indirect limits

Designed
LIGO/Virgo

ET

LISA
Pulsar

BNS

BBH

Earth's normal modes

Slow-roll inflation

Phase
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5 First order phase transitions
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6 First order phase transitions
✦Discontinuos Transition between symmetric 

to non-symmetric phase (order parameter)

★In the Standard Model

✴QCD Phase Transition (T ~ GeV)? In SM No first order
✴EW Phase Transition (T~ 100 GeV)? In SM No first order

(If very light Higgs it could have been strongly first order)
'81 Witten

Alberto Mariotti (VUB) SGWB and SUSY

✦Characterized by bubble formations

FOPT is signal of BSM physics

★In Beyond the Standard Model
Modify EW or QCD phase transition

New symmetries which undergo PT
PT in dark sectors

✦Bubbles can source GW

20-05-2021
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Transition from metastable minimum to symmetry breaking vacuum

Tc minima are degenerate

nucleation to symmetry breaking 
vacuum occurs through formation of 
bubbles of the true vacuum

Tn

Order parameter

for symmetry breaking

V (x)

hxi ⌘ fa

�V{
Tc

T = 0

Tn

First order phase transitions
Described in terms of potential evolution with temperature

Alberto Mariotti (VUB) SGWB and SUSY

of bubbles. Indeed, bubbles of the true vacuum (broken phase) will expand in a sea
of false vacuum (symmetric phase), converting false vacuum into true vacuum. This is
depicted in Fig. 6.

Figure 6: Illustration of the creation of bubbles. The true vacuum lies inside the bubble,
whereas the false vacuum is outside.

To describe such a process, the tunneling probability per unit volume is introduced:

�

V
= A(T )e�S(T ), (2.27)

where A(T ) is a proportionality constant and S(T ) is the Euclidean action [40–42]. Here,
a few comments need to be made about this action. At zero temperature, one starts with
the Minkowskian action in four dimensions, which, after a Wick rotation, i.e. ⌧ = it,
yields the Euclidean action:

SE =

Z
d4x

✓
1

2
(@µ�)

2 + V (�)

◆
, (2.28)

where (@µ�)2 = (@�/@⌧)2+(@i�)2. It makes sense to look for a solution which possesses
the O(4) symmetry of Euclidean space [14]. Thus, a radial coordinate ⇢ =

p
⌧2 + x2 is

defined and a solution � = �(⇢) is searched for. With this in mind, the action now takes
the form

SE(�) = 2⇡2

Z
d⇢ ⇢3

 
1

2

✓
d�

d⇢

◆
2

+ V (�)

!
, (2.29)

such that the equation of motion reads

d2�

d⇢2
+

3

⇢

d�

d⇢
� @V

@�
(�) = 0. (2.30)

However, when tunneling at finite temperature, a few modifications need to be made.
The potential will now be replaced by the e↵ective potential at finite temperature. With-
out too many details, it is mentioned that the integration over Euclidean time ⌧ in

17

T > Tc

20-05-2021



8

✦Transition rate controlled by bounce action

�(Tn) ' H(Tn)
4

�(T ) ' T 4e�
S3(T )

T

✦Nucleation happens at T such that

S3(T )

T

TcTn

Bounce action

Evaluated on 

Bubble profile

Approximate condition for 
nucleation in RD

150

Alberto Mariotti (VUB) SGWB and SUSY

S3(T ) = 4⇡

Z
dr r2

 
1

2

✓
d�

dr

◆2

+ V (�, T )

!

Figure 35: Illustration of the bounce profile in the thin-wall limit. As can be seen, the
region where the field changes from true to false vacuum around ⇠ ⇠ R is small compared
to R.

�(⇠) where the field � changes from one vacuum to another at ⇠ ⇠ R is small compared
to R. This is illustrated in Fig. 35. In this thin-wall regime, one can split the above
integral over three regions: ⇠ < R, ⇠ ⇠ R and ⇠ > R. The last case corresponds to
the region where the field � sits in the false vacuum, where the potential is zero and
d�
d⇠ = 0. Thus, this region does not contribute to the integral in Eq. (5.29). For the case

⇠ < R, the field sits in the true vacuum, where V (�T ) = �" and d�
d⇠ = 0. Therefore, this

contribution reads Z R

0

d⇠ ⇠N�1 eV (�T ) = �"RN

N
. (5.30)

The last contribution comes from the region where � transitions from true to false
vacuum over �⇠ at ⇠ ⇠ R. Here, it is assumed that R is large enough such that d�/d⇠
can be neglected, yielding

Z

�⇠
d⇠ ⇠N�1

 
1

2

✓
d�

d⇠

◆
2

+ eV (�(⇠))

!
= RN�1S

1

, (5.31)

where the dimensionless one-dimensional action S
1

was defined. In this case, it reads

S
1

=

Z
d⇠ 2V

0

(�) =

Z �
T

�
F

d�
p
2V

0

, (5.32)

extending from false to true vacuum and with the assumption that eV ⇡ V
0

. As this
computation is performed in the case of almost degenerate vacua, this assumption is
valid. The above result is obtained by using d⇠ = d⇠

d�d�, together with the expression for
d⇠
d� obtained from the equation of motion. The above computations allow one to write
BN , given by Eq. (5.29), in the thin-wall limit as

BTW,N = RN�1S
1

� "RN

N
. (5.33)

74
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S3(T )

T

���
T=Tn

' 4 log

MPl

Tn
' C ⇠ O(100� 150)
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S3(T )

T

TcTn

✦Parameters controlling PT properties and SGWBFOPT iii) on the behavior of the bubbles in the cosmic fluid. The two first ingredients can

be easily written in terms of field theory data of the FOPT:

↵(Tn) =
30

⇡2g⇤(Tn)T 4
n

 
�V (Tn) � Tn

d�V (Tn)

dT

����
T=Tn

!
, (2.17)

�H(Tn)
def
=

�(Tn)

H(Tn)
= Tn

d

dT

✓
S3

T

◆����
Tn

, (2.18)

where �V (Tn) is the potential energy di↵erence between the true and the false vacuum at

Tn and ↵ is the latent heat relative to the radiation energy density ⇢R = ⇡2g⇤T 4

30 [54]. �H

is the inverse of the typical timescale of the transition normalized with respect to Hubble,

and it is defined under the assumption that the nucleation rate rises exponentially [51, 52]:

S(t) = e�HH(t)(t�tn). Using the approximate nucleation condition in Eq. (2.14) we can

write

�H(Tn) ' S0(Tn) � C , (2.19)

where S0(Tn) & C in order for the nucleation rate to rise and �H & C ⇠ 100 unless a

fine-tuning between the first and the second term of the above expression is involved. To

evaluate the �H fine-tuning in explicit models we define

��H
= Max{pi}

����
d log �H

d log pi

���� , (2.20)

where pi are the parameters of the theory. As we will discuss in Sec. 3 the parametric

of the fine-tuning above can be derived for our general class of models and the computed

explicitly in the models of Sec. 4. As a result, having �H < 10 would imply a large amount

of fine tuning between the parameters of the theory. This region of parameter space in

Fig. 1 is then theoretically disfavoured. We leave a more careful study of this quantity in

more general scenarios leading to SGWB signals for future work [55].

The dominant production mechanism of gravity waves depends instead on the dynam-

ics of the bubbles in the cosmic fluid which is going to set the bubble velocity vw and the

dominant GW production mode. The bubble wall velocity can be determined by equili-

brating the pressure on the bubble wall induced by the di↵erence in potential energy �V

with the friction forces exerted by the surrounding plasma []. The latter are induced by

states becoming more massive in the true vacuum. The total pressure can be written as

p = �V � �PLO � ��PNLO , PLO =
T 2�m2

24
, PNLO ' 1

16⇡2
�g2�mV T 3 , (2.21)

where � = 1/
p

1 � v2 and at leading order the plasma friction PLO is velocity independent

and depends only on the change in the mass squared of all the states in the thermal bath

while the NLO radiation depending on the change in mass of the vector boson is �-enhanced

for v ! 1 [].

Two cases can be distinguished which result in two separated production modes of

GWs:

• Bubble collisions dominance.

– 9 –

Energy released during
phase transition

Inverse time-scale of
the phase transition

FOPT iii) on the behavior of the bubbles in the cosmic fluid. The two first ingredients can

be easily written in terms of field theory data of the FOPT:
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where �V (Tn) is the potential energy di↵erence between the true and the false vacuum at

Tn and ↵ is the latent heat relative to the radiation energy density ⇢R = ⇡2g⇤T 4

30 [54]. �H

is the inverse of the typical timescale of the transition normalized with respect to Hubble,

and it is defined under the assumption that the nucleation rate rises exponentially [51, 52]:

S(t) = e�HH(t)(t�tn). Using the approximate nucleation condition in Eq. (2.14) we can

write

�H(Tn) ' S0(Tn) � C , (2.19)

where S0(Tn) & C in order for the nucleation rate to rise and �H & C ⇠ 100 unless a

fine-tuning between the first and the second term of the above expression is involved. To

evaluate the �H fine-tuning in explicit models we define
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���� , (2.20)

where pi are the parameters of the theory. As we will discuss in Sec. 3 the parametric

of the fine-tuning above can be derived for our general class of models and the computed

explicitly in the models of Sec. 4. As a result, having �H < 10 would imply a large amount

of fine tuning between the parameters of the theory. This region of parameter space in

Fig. 1 is then theoretically disfavoured. We leave a more careful study of this quantity in

more general scenarios leading to SGWB signals for future work [55].

The dominant production mechanism of gravity waves depends instead on the dynam-

ics of the bubbles in the cosmic fluid which is going to set the bubble velocity vw and the

dominant GW production mode. The bubble wall velocity can be determined by equili-

brating the pressure on the bubble wall induced by the di↵erence in potential energy �V

with the friction forces exerted by the surrounding plasma []. The latter are induced by

states becoming more massive in the true vacuum. The total pressure can be written as

p = �V � �PLO � ��PNLO , PLO =
T 2�m2

24
, PNLO ' 1

16⇡2
�g2�mV T 3 , (2.21)

where � = 1/
p

1 � v2 and at leading order the plasma friction PLO is velocity independent

and depends only on the change in the mass squared of all the states in the thermal bath

while the NLO radiation depending on the change in mass of the vector boson is �-enhanced

for v ! 1 [].

Two cases can be distinguished which result in two separated production modes of

GWs:

• Bubble collisions dominance.
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First order Phase Transition

V (x)

hxi ⌘ fa

�V {
Tc

T = 0

Tn

150

Bubble dynamics in cosmic plasma

Alberto Mariotti (VUB) SGWB and SUSY 20-05-2021
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3 mechanisms to generate SBGW from FOPT
✦Bubble collisions
✦Sound Waves in the plasma
✦Turbulence

Many subtleties in computation of correct GW signal
• Bubble wall velocity/acceleration 
• Correct estimation of friction in plasma
• Energy budget determines production mechanism
• Hydrodynamic simulations

See e.g. LISA W.G. arXiv:1910.13125, 

SGWB from FOPT

GW signal is broken power law

Alberto Mariotti (VUB) SGWB and SUSY

GRAVITATIONAL WAVES FROM FOPT

THREE CONTRIBUTIONS:

• BUBBLE COLLISION

• SOUND WAVES

• TURBULENCE

GW SIGNAL IS BROKEN POWER LAW:

SPECTRUM DEPENDS ON α, β/H, T*, Vw AND 

EFFICIENCY κ Master thesis Kevin Turbang (2020)

Which dominates 

depends on PT 

properties

Designed
LIGO/Virgo

ET

LISA

BNS

BBH

Phase
Transition

10-4 0.01 1 100 104

10-14

10-12

10-10

10-8

f [Hz]

h2
Ω

constants a1, a2,�, f⇤,⌦⇤

⌦⇤

f⇤O3 data of LIGO/Virgo analysed recently in arXiv:2102.01714
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Hindmarsh, Huber, Rummukainen, Weir '13

Bodeker Moore '17

Azatov, Vanvlasselaer '20
Höche, Kozaczuk, Long, Turner, Wang '20

Balaji, Spannowsky, Tamarit '20

Ellis, Lewicki, No, Vaskonen '19



11 Bubble friction
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Can be computed knowing spectrum in false and true vacuum

h�i = 0

h�i 6= 0

�

Bodeker Moore '17

Azatov, Vanvlasselaer '20
Höche, Kozaczuk, Long, Turner, Wang '20

Bubble wall

�

�

True vacuum

False vacuum

20-05-2021



12 Bubble friction

Alberto Mariotti (VUB) SGWB and SUSY

Can be computed knowing spectrum in false and true vacuum

h�i = 0

h�i 6= 0

p = �V ��PLO � ��PNLO

�

�PLO =
�m2T 2

24
�m2 = m2

true �m2
false

Bodeker Moore '17

Azatov, Vanvlasselaer '20
Höche, Kozaczuk, Long, Turner, Wang '20

Bodeker Moore '17

Bubble wall

�

�

True vacuum

False vacuum

20-05-2021



13 Bubble friction
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Can be computed knowing spectrum in false and true vacuum

h�i = 0

h�i 6= 0

p = �V ��PLO � ��PNLO

�

�PLO =
�m2T 2

24
�m2 = m2

true �m2
false

T & mfalse

�T & mtrue

Bodeker Moore '17

Azatov, Vanvlasselaer '20
Höche, Kozaczuk, Long, Turner, Wang '20

Conditions for friction

Bodeker Moore '17

Bubble wall

�

�

True vacuum

False vacuum
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14 Bubble friction
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Can be computed knowing spectrum in false and true vacuum

h�i = 0

h�i 6= 0

p = �V ��PLO � ��PNLO

�

�PLO =
�m2T 2

24
�m2 = m2

true �m2
false

T & mfalse

�T & mtrue

Bodeker Moore '17

Azatov, Vanvlasselaer '20
Höche, Kozaczuk, Long, Turner, Wang '20

Conditions for friction

Bodeker Moore '17

Bubble wall

�

�

True vacuum

False vacuum

★Heavy states can also contribute

�P heavy
LO ⇠ �m2T 2

n

24
e�mfalse/T e�mtrue/�T
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15 Bubble friction
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Can be computed knowing spectrum in false and true vacuum

h�i = 0

h�i 6= 0

p = �V ��PLO � ��PNLO

�

�PLO =
�m2T 2

24
�m2 = m2

true �m2
false

T & mfalse

�T & mtrue

Bodeker Moore '17

Azatov, Vanvlasselaer '20
Höche, Kozaczuk, Long, Turner, Wang '20

Conditions for friction

Bodeker Moore '17

Bubble wall

�

�

True vacuum

False vacuum

★Heavy states can also contribute

�P heavy
LO ⇠ �m2T 2

n

24
e�mfalse/T e�mtrue/�T

★This can stop acceleration in our scenarios at:
�eq ⇠ mtrue/Tn

20-05-2021



16 Sound Waves contribution
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GRAVITATIONAL WAVES FROM SOUND WAVES

GW SPECTRUM AMPLITUDE:

EFFICIENCY:

PEAK FREQUENCY:

⌦⇤ ⇠ 1

�H

✓
sw↵

1 + ↵

◆2

SGWB amplitude

Peak frequency

Efficiency factor 

between 0 and 1. 

✴ If friction is significant dominant production mechanism is sound waves

Precise number 
depends on simulation

f⇤ ⇠ 10 Hz

✓
�H

100

◆✓
Tn

107GeV

◆

Sound Waves contribution
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17 Detectability and beta tuning
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10-4 10-3 10-2 10-1 1
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α

β H
Ωs.w.: Tn=105GeV

fine-tuning: ΔβH>100
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DECIGO

BB
O

LISA

10-4 10-3 10-2 10-1 1
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β H

Ωs.w.: Tn=107GeV

fine-tuning: ΔβH>100

A-LIGO

ET

CE

Figure 2. The reach of future GW interferometers in the (↵,�H) plane for two di↵erent scales of
FOPTs, assuming the signal is dominated by sound waves given by Eq. 2.25. The shaded regions
are obtain by requiring the signal at the peak in Eq. (2.28) to be inside the PLI curve of a given
experiment. Left: Tn = 105 GeV corresponds to LESB scenarios with an ultralight gravitino LSP
and  = 1. Right: Tn = 107 GeV corresponds to LESB scenarios with gravitino DM and  ⌧ 1.
We will exhibit calculable scenarios of this type in Sec. 4.

detectability of a given GW signal. After redshift is taken into account, assuming that the

entropy per comoving volume remains constant [66], the GW spectrum today reads

⌦0
swh

2 =

✓
a⇤
a0

◆4 ✓H⇤
H0

◆2

⌦⇤
sw = 2.8 · 10�5

✓
230

g⇤

◆1/3

⌦⇤
sw , (2.26)

where the peak frequency and the power at the peak frequency scale as

f0
sw = f⇤

sw

✓
a⇤
a0

◆
= 1.1⇥ 102 Hz

⇣ g⇤
230

⌘1/6
✓
�H

50

◆✓
Tn

107GeV

◆✓
1.3

1 + ↵

◆1/4

, (2.27)

⌦sw,0
GWh2 ' 10�10

✓
230

g⇤

◆1/3 ✓ 50

�H

◆2 ⇣sw↵

0.08

⌘3/2
✓

1.3

1 + ↵

◆3/2

. (2.28)

Here we have taken T⇤ ' Tn and normalized the scalings for ↵ = 0.3, �H = 100 and

Tn = 107 GeV, which will be the typical values for FOPTs related to fully calculable

SUSY-breaking hidden sectors explored in the following sections.

Having derived the expected GW spectrum, we can determine the region in the (↵,�H)

plane where we expect the SBGW to be detectable at future interferometers. Given the

fraction of energy density in GWs today in Eq. (2.26), the sensitivity of a given interfer-

ometer is controlled by the time integrated signal-to-noise ratio

⇢2 = tobs

Z f
max

f
min


⌦GW(f,↵,�, vw)

⌦noise(f)

�2

, (2.29)

– 14 –

Model independent Experimental reach on SGWB from PT
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Figure 2. The reach of future GW interferometers in the (↵,�H) plane for two di↵erent scales of
FOPTs, assuming the signal is dominated by sound waves given by Eq. 2.25. The shaded regions
are obtain by requiring the signal at the peak in Eq. (2.28) to be inside the PLI curve of a given
experiment. Left: Tn = 105 GeV corresponds to LESB scenarios with an ultralight gravitino LSP
and  = 1. Right: Tn = 107 GeV corresponds to LESB scenarios with gravitino DM and  ⌧ 1.
We will exhibit calculable scenarios of this type in Sec. 4.

detectability of a given GW signal. After redshift is taken into account, assuming that the

entropy per comoving volume remains constant [66], the GW spectrum today reads
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Here we have taken T⇤ ' Tn and normalized the scalings for ↵ = 0.3, �H = 100 and

Tn = 107 GeV, which will be the typical values for FOPTs related to fully calculable

SUSY-breaking hidden sectors explored in the following sections.

Having derived the expected GW spectrum, we can determine the region in the (↵,�H)

plane where we expect the SBGW to be detectable at future interferometers. Given the

fraction of energy density in GWs today in Eq. (2.26), the sensitivity of a given interfer-

ometer is controlled by the time integrated signal-to-noise ratio
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Z f
max

f
min


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– 14 –

Model independent Experimental reach on SGWB from PT

Using Nucleation Condition one can show that

Unless fine-tuning to 
have cancellation

One can quantify and compute the tuning to get a small �H

��H
⌘ Max{pi}

����
d log �H

d log pi

���� Tuning measure a 

la Giudice-Barbieri

�H(Tn) ' S0
3(Tn)� C ⇠ O(100� 150)
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FOPT in BSM theories19

✦Dark Matter Sectors

✦Sectors solving the Strong CP problem

✦Sector addressing flavour hierarchies

✦Force unification models

What about SUSY?

Many BSM theories includes spontaneously broken new symmetries
Perfect playground for generating SBGW

Can FOPT occur in BSM theories?

Probe of BSM physics up to 10^8 GeV With planned

interferometers

Which kind of BSM can we explore?

Grojean, Servant: arXiv:hep-ph/0607107

Craig: arXiv:0902.1990

Alberto Mariotti (VUB) SGWB and SUSY 20-05-2021
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Negative results in LHC and DM experiments challenge BSM physics
Similar argument applies to SUSY and other BSM scenarios

SUSY beyond TeV could be tested in GW? 

Is there a Desert above the TeV scale?

✴ Address hierarchy problem and naturalness (little fine-tuning)

✴ Included in unified description 

✴ Dark matter candidate (LSP)

✴ Admit a low energy SM limit (including also SM-like BEH boson)

Why SUSY?

Alberto Mariotti (VUB) SGWB and SUSY

(Vintage) SUSY in 2021

20-05-2021
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Scheme of SUSY breaking

Q: can it exhibit a phase transition?

SUSY breaking

scale

V = F 2

Vacuum Energy

Alberto Mariotti (VUB) SGWB and SUSY

SUSY breaking and R-symmetry

20-05-2021
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!!! If R symmetry breaking PT is first 
order it can deliver GW signals !!!

Scheme of SUSY breaking

Q: can it exhibit a phase transition?

SUSY breaking

scale

Actually it is expected!

Spontaneous
SUSY breaking 

(Spontaneously broken)
R-symmetry

Nelson Seiberg '93

V = F 2

Vacuum Energy

Alberto Mariotti (VUB) SGWB and SUSY

SUSY breaking and R-symmetry

20-05-2021

Needed for 

gaugino masses



23 SUSY scales
MPl

p
F

mg̃

mh

F/MPl

SUSY breaking

Super-partners

Standard Model

Gravitino

SUSY breaking sector must be reheated 
and undergoes PT at T⇤ ⇠

p
F

Tre &
p
F

GW frequency peak correlates with 
SUSY breaking scale

Low Energy SUSY breaking
Gravitino is the LSP

Gravitino cosmology shapes 
the parameter space

Alberto Mariotti (VUB) SGWB and SUSY
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Transition
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The gravitino cosmology shapes the parameter space if we require 
<latexit sha1_base64="M5IOzCo0Tz0p6sHuPmWHLUOQjqQ=">AAACGnicbVDLSgMxFM3UV62vqhvBTbAILmSYEVGXRUFcVugLOkPJpGkbmsyMyR2hDOOXuHSrH+FO3LrxG/wJ08fCth4IHM45l5t7glhwDY7zbeWWlldW1/LrhY3Nre2d4u5eXUeJoqxGIxGpZkA0EzxkNeAgWDNWjMhAsEYwuBn5jUemNI/CKgxj5kvSC3mXUwJGahcPqu1U2X0783pgUhJ7+kFBepu1iyXHdsbAi8SdkhKaotIu/nidiCaShUAF0brlOjH4KVHAqWBZwUs0iwkdkB5rGRoSybSfji/I8LFROrgbKfNCwGP170RKpNZDGZikJNDX895I/M9rJdC98lMexgmwkE4WdROBIcKjOnCHK0ZBDA0hVHHzV0z7RBEKprSZLUEgT7U5rM86WcG04853sUjqZ7Z7YTv356Xy9bSnPDpER+gEuegSldEdqqAaougJvaBX9GY9W+/Wh/U5ieas6cw+moH19QsMLKFF</latexit>

Tr.h. &
p
F

Gravitino cosmology

This is known as “gravitino problem”
<latexit sha1_base64="6hXO5tZMrWNWXb1Jndm1hcwvuO4="></latexit>

LG̃ � 1

F
@µG̃Jµ

<latexit sha1_base64="dfcef4ZAMeqvTA31oE42CGGA9Ko=">AAACCXicbVDLSgNBEJz1GeMr6tHLYBA8SNgVUY9BD3qMYB6SLGF2tjcZMjO7zMwKYdkv8OhVP8KbePUr/AZ/wsnjYBILGoqqbrq7goQzbVz321laXlldWy9sFDe3tnd2S3v7DR2nikKdxjxWrYBo4ExC3TDDoZUoICLg0AwGNyO/+QRKs1g+mGECviA9ySJGibHSY8cwHkJ2m3dLZbfijoEXiTclZTRFrVv66YQxTQVIQznRuu25ifEzogyjHPJiJ9WQEDogPWhbKokA7Wfjg3N8bJUQR7GyJQ0eq38nMiK0HorAdgpi+nreG4n/ee3URFd+xmSSGpB0sihKOTYxHn2PQ6aAGj60hFDF7K2Y9oki1NiMZrYEgTjV9rE+hHnRpuPNZ7FIGmcV76Li3p+Xq9fTnAroEB2hE+ShS1RFd6iG6ogigV7QK3pznp1358P5nLQuOdOZAzQD5+sX5h+a1A==</latexit>

G̃

 S. Rychkov, A. Strumia (2007)

ultralight gravitino gravitino DM

 L. Hall, J. Ruderman T.Volansky (2013)

The gravitino production from 

the plasma is enhanced if it is light

<latexit sha1_base64="4CCfTt6DbzGPOfO3FIB5Pvt+tSQ="></latexit>

Y3/2 ⇠ CUV
M2

3T

m2
3/2MPl

This lead generically to problems 

with Gravitino overabundance 

<latexit sha1_base64="MDlrZoBlh2jKO24S/lv4z1pgZz0=">AAACJXicbVC7TgMxEPSFd3gFKGksIiQKFO4CAgqKCBrKICUBlESRz9kkVuy7w95DRKf7AL6EkhY+gg4hUfEB/ATOo+C1kuXRzKx2d/xICoOu++5kpqZnZufmF7KLS8srq7m19ZoJY82hykMZ6iufGZAigCoKlHAVaWDKl3Dp98+G+uUtaCPCoIKDCJqKdQPREZyhpVq5vGol+3vFlF6P/xPqFopHtNJKGgh3mMBNmlqXW3BHRf8CbwLyZFLlVu6z0Q55rCBALpkxdc+NsJkwjYJLSLON2EDEeJ91oW5hwBSYZjI6JqXblmnTTqjtC5CO2O8dCVPGDJRvnYphz/zWhuR/Wj3GznEzEUEUIwR8PKgTS4ohHSZD20IDRzmwgHEt7K6U95hmHG1+P6b4vto19rAetNOsTcf7ncVfUCsWvMOCe3GQL51Ocponm2SL7BCPHJESOSdlUiWc3JNH8kSenQfnxXl13sbWjDPp2SA/yvn4Aph7o/U=</latexit>

m3/2Y3/2 < 0.27Teq

24 Gravitino problem

LG̃ � 1

F
@µG̃Jµ

 Universal gravitino Lagrangian Tre &
p
F

Gravitino production in the plasma enhanced if it is light Y3/2 ⇠ CUV

Tm2
g̃

m2
3/2MPl

Typically leads to Gravitino overabundance for large

Two ways out in LESB 

Ultra light GravitinoThermal
Heavy Gravitino DM

Warm DM constraints

Collider bounds

Model building challenges to 
get superpartners out of LHC

m3/2 < 16 eV ,
p
F . 260 TeV

p
F & TeV

m3/2 ' F0

MPl

Viable DM candidate in window

Hall, Ruderman,Volansky arXiv:1302.2620

NonThermal

105 GeV <
p
F < 108 GeV

Alberto Mariotti (VUB) SGWB and SUSY

Tre

20-05-2021

Rychkov, Strumia '07 

 = F/F0 . 10�2
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F
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SUSY br.
scale

SBGW at 
high frequency

SUSY at reach 
for FCC

{

How we discover LESB
T⇤ '

p
FSUSY breaking sector First Order Phase Transition at

Alberto Mariotti (VUB) SGWB and SUSY 20-05-2021
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SUSY br.
scale

SBGW at 
high frequency

SUSY at reach 
for FCC

{

How we discover LESB

Alberto Mariotti (VUB) SGWB and SUSY

Here live the hidden 
sectors that we explore

ksw ⇠ 1

20-05-2021

T⇤ '
p
FSUSY breaking sector First Order Phase Transition at
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[AM: New section 3]

3 Anatomy of the SUSY-breaking phase transition

In this section we describe the generic features of the R-symmetry phase transition occur-

ring in SUSY breaking hidden sector. The dynamics of the phase transition is described

by the e↵ective field theory for the scalar component of the chiral superfield X as intro-

duced in (2.1). Now X is a dynamical field and the vacuum expectation value of its scalar

component x sets the order parameter for spontaneous R-symmetry breaking fa.

We will show that, given the natural flatness of the scalar potential along x in SUSY

theories, the phase transition happens at very low temperatures compared to the SUSY

mass scale m?, implying that the correct approximation for the study of the thermal poten-

tial is the low-T expansion. 4 This possibility has received little attention in the literature

[AM: check this] since in non-SUSY theories this can be realized only in very fine tuned

scenarios. The observations of this section will find a concrete realization in the working

examples of Section ??.

3.1 The SUSY-breaking pseudomodulus

The existence of flat directions is ubiquitous in hidden sectors with spontaneous SUSY

breaking. The theorem of [15] implies that spontaneous F-term SUSY breaking is accom-

panied with at least one pseudo-flat direction, which is the supersymmetric partner of the

Goldstino (the fermionic SUSY goldstone boson). Such pseudo-flat direction (or pseudo-

modulus) is lifted by quantum corrections whose size is controlled by the SUSY breaking

scale. In addition, the theorem of [13] implies that a global U(1)R symmetry must be

present and spontaneously broken in models which break spontaneously SUSY. 5

In the following we focus on the large class of SUSY breaking sectors where the dynam-

ics of the SUSY and R-symmetry breaking can be embedded in the dynamics of a single

chiral superfield X with R-charge 2, parameterized as in eqn (2.1) 6

X =
xp
2
e2ia/fa +

p
2✓G̃ + ✓2F , (3.1)

where the R-charges of the components are respectively R[x] = 2, R[G̃] = 1, R[F ] = 0. The

scalar component x (the pseudomodulus) tracks the breaking of the R-symmetry, while

hF i sets the SUSY breaking scale. The phase transition occurs along the pseudomodulus

space from a local minimum at the origin x = 0 (where R-symmetry is preserved) to the

T = 0 vacuum of the theory h xp
2
i = fa, where R-symmetry is broken. 7

4[AM: You already introduced m? before but not sure that it has been explained properly. We can just

call it the cuto↵ of the theory at this level?]
5 The U(1)R symmetry is a global symmetry which does not commute with the N = 1 SUSY generators

and which hence distinguishes between di↵erent components of a super-multiplet.
6[AM: Please Diego check the real vs modulus parameterization also in equation (3.2)]
7[AM: We do not consider the case of multiple pseudo-flat directions which can emerge when there is

more than one source of F�term SUSY breaking [49]. ]

– 10 –

SUSY and R breaking in the same chiral superfield

We study EFT and PT along x direction in SUSY br models

SUSY theorems: x is a pseudo-flat direction

✦R-symmetry breaking occurs along x

R-charges:

Goldstino

SUSY breaking
Pseudo-modulus

R[x] = 2 , R[G̃] = 1 , R[F ] = 0

hxi ⌘ fa
R-breaking scale

In typical models

Komargodski and Shih '09

Alberto Mariotti (VUB) SGWB and SUSY

Hidden sector class

20-05-2021

fa &
p
F
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[AM: New section 3]

3 Anatomy of the SUSY-breaking phase transition

In this section we describe the generic features of the R-symmetry phase transition occur-

ring in SUSY breaking hidden sector. The dynamics of the phase transition is described

by the e↵ective field theory for the scalar component of the chiral superfield X as intro-

duced in (2.1). Now X is a dynamical field and the vacuum expectation value of its scalar

component x sets the order parameter for spontaneous R-symmetry breaking fa.

We will show that, given the natural flatness of the scalar potential along x in SUSY

theories, the phase transition happens at very low temperatures compared to the SUSY

mass scale m?, implying that the correct approximation for the study of the thermal poten-

tial is the low-T expansion. 4 This possibility has received little attention in the literature

[AM: check this] since in non-SUSY theories this can be realized only in very fine tuned

scenarios. The observations of this section will find a concrete realization in the working

examples of Section ??.

3.1 The SUSY-breaking pseudomodulus

The existence of flat directions is ubiquitous in hidden sectors with spontaneous SUSY

breaking. The theorem of [15] implies that spontaneous F-term SUSY breaking is accom-

panied with at least one pseudo-flat direction, which is the supersymmetric partner of the

Goldstino (the fermionic SUSY goldstone boson). Such pseudo-flat direction (or pseudo-

modulus) is lifted by quantum corrections whose size is controlled by the SUSY breaking

scale. In addition, the theorem of [13] implies that a global U(1)R symmetry must be

present and spontaneously broken in models which break spontaneously SUSY. 5

In the following we focus on the large class of SUSY breaking sectors where the dynam-

ics of the SUSY and R-symmetry breaking can be embedded in the dynamics of a single

chiral superfield X with R-charge 2, parameterized as in eqn (2.1) 6

X =
xp
2
e2ia/fa +

p
2✓G̃ + ✓2F , (3.1)

where the R-charges of the components are respectively R[x] = 2, R[G̃] = 1, R[F ] = 0. The

scalar component x (the pseudomodulus) tracks the breaking of the R-symmetry, while

hF i sets the SUSY breaking scale. The phase transition occurs along the pseudomodulus

space from a local minimum at the origin x = 0 (where R-symmetry is preserved) to the

T = 0 vacuum of the theory h xp
2
i = fa, where R-symmetry is broken. 7

4[AM: You already introduced m? before but not sure that it has been explained properly. We can just

call it the cuto↵ of the theory at this level?]
5 The U(1)R symmetry is a global symmetry which does not commute with the N = 1 SUSY generators

and which hence distinguishes between di↵erent components of a super-multiplet.
6[AM: Please Diego check the real vs modulus parameterization also in equation (3.2)]
7[AM: We do not consider the case of multiple pseudo-flat directions which can emerge when there is

more than one source of F�term SUSY breaking [49]. ]
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Now I focus on SUSY breaking sector dynamics

★How is R-symmetry breaking PT along pseudomodulus?

★What are properties of typical potential?

Pseudo-modulus

★What are conditions to get GW signal?

★How it compares with known scenarios? (EW PT, supercooling ...)
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Figure 11. Predicted SGWB in the O’Raifeartaigh model with gauge interactions. We show the
prediction for various values of the SUSY-breaking scale

p
F = 1, 10, 30 PeV and choose the theory

parameters such that ↵ ' 0.3 and �H ' 50. As discussed in the text, achieving these values does
not require any tuning in this model. The SUSY-breaking scale correlates with the peak frequency
of the GW spectrum, which is always dominated by sound waves as shown in Eq. (4.28).

This last statement can be checked explicitly with the parametric dependence of the

simple model described here. The heavy state pressure term in Eq. (2.21) scales as

�P heavy
LO ⇠ 4⇡2

3y2
F g

FDe�m
false

/
p

F , (4.27)

where we used the scaling of the true vacuum as a function of the theory parameters in

Eq. (4.22) and approximated Tn ' p
F for simplicity (this approximation is numerically

correct up to an O(1) factor as shown by the dashed contours in Fig. 9). Inside the

exponential, we should take the lightest heavy states in the plasma mfalse ⇠ p
m2 � �F

which are of course less Boltzmann suppressed and dominate the friction. Comparing this

quantity with the energy released in the phase transition �V = D2/2 we can get the range

of the gauge coupling g such that this friction prevents the bubble runaway,

g . 8⇡2

3yF

F

D
e�m

false

/
p

F . (4.28)

Plugging in the typical numbers for our phase transition (F/D ⇠ 1/5, yF ⇠ 3/4 and

mfalse/
p
F .

p
� . 2.5) indicates that the vacuum bubbles are always stopped in the

range of interest for the gauge coupling g for perturbative values of �. The predicted boost

– 40 –

Figure 3. Qualitative features of the pseudomodulus potential relevant to the FOPT in SUSY-
breaking hidden sectors. Left: Sketch of the zero-temperature potential as described in Sec. 3.1,
exhibiting the following features: i) the distance between the two minima is larger than their
potential di↵erence, f4

a & �V , and ii) the height of the peak between the two minima is loop-
suppressed compared to the potential di↵erence, VP ⌧ �V . An explicit realization of this potential
is presented in Sec. 3.4. The tree level potential (dashed blue) generated by explicit R-symmetry
breaking destabilizes the origin, giving rise to a minimum at hxi = fa where the R-symmetry is
further spontaneously broken by the VEV of x. Quantum corrections (dashed red) generate a
local minimum at origin. Right: Behavior of the temperature corrections described in Eq. (3.5)
at T = 0, T = Tc, and T = Tn. The thermal corrections give a contribution to the potential at
the origin which at Tn is typically much smaller than F 2. The barrier and the true vacuum are
essentially unchanged. The approximations in Sec. 3.2 are then justified.

where V0(x) encodes the zero-temperature quantum corrections and VT (x) the thermal

ones.

The zero-temperature part of the e↵ective potential V0(x) is flat at tree level, up to

explicit R-symmetry breaking e↵ects. Along this so-called F -flat direction, the size of the

potential energy is set by supersymmetry breaking, V ⇠ F 2. Interactions that explicitly

violate the R-symmetry typically destabilize the origin and give a slope to the pseudomod-

ulus potential at tree level, but these features are usually small compared to the scale
p
F .

At one loop, quantum corrections lift the pseudomodulus potential; these corrections are

present even in the absence of explicit R-symmetry breaking. The combination of tree-level

explicit R-symmetry breaking and one-loop quantum corrections give rise to the schematic

zero-temperature potential shown in Fig. 3. Assuming the quantum corrections exceed the

R-symmetry breaking e↵ects, at zero temperature this creates a metastable vacuum at the

origin that is separated by a barrier from the true vacuum at hxitrue = fa. The energy

di↵erence between the two vacua �V is proportional to the SUSY-breaking scale. The

barrier is located at a distance xP from the origin; at this point, the barrier height is VP .

The essential features characterizing the zero temperature potential are:

• The potential is flat. This means that the distance fa in field space between the false

vacuum and the true vacuum is larger than the size of the potential energy di↵erence

�V :

f4
a > �V , (3.3)

– 18 –
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Figure 3. Qualitative features of the pseudomodulus potential relevant to the FOPT in SUSY-
breaking hidden sectors. Left: Sketch of the zero-temperature potential as described in Sec. 3.1,
exhibiting the following features: i) the distance between the two minima is larger than their
potential di↵erence, f4

a & �V , and ii) the height of the peak between the two minima is loop-
suppressed compared to the potential di↵erence, VP ⌧ �V . An explicit realization of this potential
is presented in Sec. 3.4. The tree level potential (dashed blue) generated by explicit R-symmetry
breaking destabilizes the origin, giving rise to a minimum at hxi = fa where the R-symmetry is
further spontaneously broken by the VEV of x. Quantum corrections (dashed red) generate a
local minimum at origin. Right: Behavior of the temperature corrections described in Eq. (3.5)
at T = 0, T = Tc, and T = Tn. The thermal corrections give a contribution to the potential at
the origin which at Tn is typically much smaller than F 2. The barrier and the true vacuum are
essentially unchanged. The approximations in Sec. 3.2 are then justified.

where V0(x) encodes the zero-temperature quantum corrections and VT (x) the thermal

ones.

The zero-temperature part of the e↵ective potential V0(x) is flat at tree level, up to

explicit R-symmetry breaking e↵ects. Along this so-called F -flat direction, the size of the

potential energy is set by supersymmetry breaking, V ⇠ F 2. Interactions that explicitly

violate the R-symmetry typically destabilize the origin and give a slope to the pseudomod-

ulus potential at tree level, but these features are usually small compared to the scale
p
F .

At one loop, quantum corrections lift the pseudomodulus potential; these corrections are

present even in the absence of explicit R-symmetry breaking. The combination of tree-level

explicit R-symmetry breaking and one-loop quantum corrections give rise to the schematic

zero-temperature potential shown in Fig. 3. Assuming the quantum corrections exceed the

R-symmetry breaking e↵ects, at zero temperature this creates a metastable vacuum at the

origin that is separated by a barrier from the true vacuum at hxitrue = fa. The energy

di↵erence between the two vacua �V is proportional to the SUSY-breaking scale. The

barrier is located at a distance xP from the origin; at this point, the barrier height is VP .

The essential features characterizing the zero temperature potential are:

• The potential is flat. This means that the distance fa in field space between the false

vacuum and the true vacuum is larger than the size of the potential energy di↵erence

�V :

f4
a > �V , (3.3)
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V0(x)/F
2

Pseudomodulus toy model

Therefore, we approximate ↵ as

↵ ' 30

g⇤(Tn)⇡2

�V

T 4
n

, (3.17)

where the scaling of Tn can obtained by using (3.15). Within this approximation,

�V is temperature-independent and the largest values of ↵ correspond to Tn closer

to Tmin.

• The inverse time scale of the phase transition can be computed explicitly from (3.11),

giving

�H ' C
 
1.1N

C2/5
e�

m⇤
Tn

✓
Tn

m⇤

◆11/10✓fam3
⇤

�V

◆6/5

� 1

!
. (3.18)

One can easily verify that if Tn = Tmin, then �H ' 1 within the small VP expan-

sion. Moreover, the exponential dependence on Tn makes �H very sensitive to the

underlying parameters.

We now use the approximate �H formula in Eq. (3.18) to estimate the �H -tuning defined in

Eq. (2.18). We compute first the tuning with respect to VP , which is encoded in Eq. (3.18)

through the dependence of Tn on VP . At leading order in VP /m4
⇤ ⌧ 1 we obtain

����
d log �H

d log VP

���� =
����

✓
1� �0

�H

◆���� &
����4

C
�H

���� (3.19)

where in the last step we used the fact that

�0 ' C
✓
�1 +

5

2

m⇤
T 0

n

◆
& 4C (3.20)

since T 0
n < 10

21m⇤ and �H . C in the interesting region of parameter space. The tuning

associated with the barrier height is the dominant one, given that the tuning with respect

to vacuum distance fa is suppressed by an extra factor of T 0
n/m⇤. As in Eq. (2.17), we see

that the natural value of �H is �H ' C(Tn) ' 100 for the scales of interest in this study.

Smaller values of �H can be obtained at the price of fine-tuning the barrier height at the

percent level. This might imply an even larger tuning with respect to the fundamental

parameters of a given model, as we will show in a concrete example in Section 4.2.

3.4 A toy example: fine-tuning vs. single SUSY-breaking scale

We now present a simple toy model which captures most of the features of the pseudomod-

ulus potential in the explicit SUSY-breaking hidden sectors we will encounter in Sec. 4.

We take the zero-temperature potential to be

V0(x) = 2
D

�
F � ✏/Rx

2
�2

+
�2

32⇡2
|F |2 log

✓
�2x2 +m2

⇤
m2

⇤

◆
, (3.21)

which reproduces the shape of the potential sketched in Fig. 3. The first term captures

tree-level e↵ects, while the second term captures one-loop quantum corrections. The x
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SUSY Mass of heavy 

states coupled to x

Pure log at x -> infinitySingle scale
SUSY breaking

D = 1 Tree level
explicit R-breaking

potential is flat at tree-level up to R-symmetry breaking operators parametrized by ✏/R.
6

SUSY-breaking corrections induced by heavy fields lift the x potential around the origin,

giving a mass to the pseudomodulus, but ultimately become subdominant for x � p
F

where SUSY is restored in the direction associated to the F -term. This large-field behavior

is a unique characteristic of SUSY models.

As long as the explicit R-symmetry breaking is parametrically small, the position of

the true vacuum and the zero temperature di↵erence energy between the true vacuum and

false vacuum are

hxitrue = fa =

s
F

✏/R
, �V = (DF )2 , (3.22)

where we have introduced the parameter D to allow the scale controlling the di↵erence

in vacuum energy to vary relative to the scale controlling the loop corrections along the

pseudomodulus potential. We will exhibit a concrete realization of such a model in Sec. 4.3.

Requiring the potential to be flat as in Eq. (3.3) requires ✏/R < 1/
p
D.

Following the triangular barrier prescription, we need to find the position of the barrier

and the value of the potential at the barrier; for the toy model these take the form

xP ' �

8⇡D
fa , (3.23)

VP ' �2F 2

32⇡2

✓
2 log

✓
�2fa

8⇡Dm⇤

◆
� 1

◆
. (3.24)

From the last equation we see that the loop suppression of the zero-temperature barrier

VP , as assumed in Eq (3.4), is here an automatic consequence of the fact that the pseudo-

modulus direction is lifted by quantum corrections. For a single-scale model (i.e. D = 1)

the position of the peak xP is fixed in terms of the one of the true vacuum fa, while for a

two-scale model, D � 1 can enhance the hierarchy between xP and fa.

We are now ready to use the triangular barrier approximation in Eq. (3.6) to compute

the bounce action and the features of the FOPT between the origin and the true vacuum.

For ✏/R < 1/
p
D, fa is the largest scale in the problem and the approximation in Eq. (3.11)

is justified. If the general features of the bounce action characterize the FOPT in the low-T

expansion discussed above, this simple toy model allows us to say something more precise

about the scaling of the energy released during the FOPT. From Eq. (3.17) we have
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where we normalized the number of relativistic degrees of freedom at Tn to be close to

the MSSM value and we substituted Tn ⇠ T 0
n ⇠ 0.5m⇤, which is the natural value of the

nucleation temperature unless either VP or fa are tuned to suppress it (see Eq. (3.15)). In a

6As shown in Sec. 4.2, the potential controlled by ✏/R can be obtained from a marginal operator breaking

R-symmetry in the superpotential. Similarly, one could study explicit R-breaking operators of arbitrary

dimension in the superpotential W/R =
✏/RXn

n⇤

n�3 which correspond to tree level potentials of the form V (x) =✓
F � ✏/Rxn�1
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2

. These types of operators would naturally be generated by UV dynamics as in Ref. [87].
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potential is flat at tree-level up to R-symmetry breaking operators parametrized by ✏/R.
6

SUSY-breaking corrections induced by heavy fields lift the x potential around the origin,

giving a mass to the pseudomodulus, but ultimately become subdominant for x � p
F

where SUSY is restored in the direction associated to the F -term. This large-field behavior

is a unique characteristic of SUSY models.

As long as the explicit R-symmetry breaking is parametrically small, the position of

the true vacuum and the zero temperature di↵erence energy between the true vacuum and

false vacuum are
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where we have introduced the parameter D to allow the scale controlling the di↵erence

in vacuum energy to vary relative to the scale controlling the loop corrections along the

pseudomodulus potential. We will exhibit a concrete realization of such a model in Sec. 4.3.

Requiring the potential to be flat as in Eq. (3.3) requires ✏/R < 1/
p
D.

Following the triangular barrier prescription, we need to find the position of the barrier

and the value of the potential at the barrier; for the toy model these take the form
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From the last equation we see that the loop suppression of the zero-temperature barrier

VP , as assumed in Eq (3.4), is here an automatic consequence of the fact that the pseudo-

modulus direction is lifted by quantum corrections. For a single-scale model (i.e. D = 1)

the position of the peak xP is fixed in terms of the one of the true vacuum fa, while for a

two-scale model, D � 1 can enhance the hierarchy between xP and fa.

We are now ready to use the triangular barrier approximation in Eq. (3.6) to compute

the bounce action and the features of the FOPT between the origin and the true vacuum.

For ✏/R < 1/
p
D, fa is the largest scale in the problem and the approximation in Eq. (3.11)

is justified. If the general features of the bounce action characterize the FOPT in the low-T

expansion discussed above, this simple toy model allows us to say something more precise

about the scaling of the energy released during the FOPT. From Eq. (3.17) we have
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where we normalized the number of relativistic degrees of freedom at Tn to be close to

the MSSM value and we substituted Tn ⇠ T 0
n ⇠ 0.5m⇤, which is the natural value of the

nucleation temperature unless either VP or fa are tuned to suppress it (see Eq. (3.15)). In a

6As shown in Sec. 4.2, the potential controlled by ✏/R can be obtained from a marginal operator breaking

R-symmetry in the superpotential. Similarly, one could study explicit R-breaking operators of arbitrary

dimension in the superpotential W/R =
✏/RXn
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Flatness of the potential

potential is flat at tree-level up to R-symmetry breaking operators parametrized by ✏/R.
6

SUSY-breaking corrections induced by heavy fields lift the x potential around the origin,

giving a mass to the pseudomodulus, but ultimately become subdominant for x � p
F

where SUSY is restored in the direction associated to the F -term. This large-field behavior

is a unique characteristic of SUSY models.

As long as the explicit R-symmetry breaking is parametrically small, the position of

the true vacuum and the zero temperature di↵erence energy between the true vacuum and
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where we have introduced the parameter D to allow the scale controlling the di↵erence

in vacuum energy to vary relative to the scale controlling the loop corrections along the

pseudomodulus potential. We will exhibit a concrete realization of such a model in Sec. 4.3.

Requiring the potential to be flat as in Eq. (3.3) requires ✏/R < 1/
p
D.

Following the triangular barrier prescription, we need to find the position of the barrier

and the value of the potential at the barrier; for the toy model these take the form
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From the last equation we see that the loop suppression of the zero-temperature barrier

VP , as assumed in Eq (3.4), is here an automatic consequence of the fact that the pseudo-

modulus direction is lifted by quantum corrections. For a single-scale model (i.e. D = 1)

the position of the peak xP is fixed in terms of the one of the true vacuum fa, while for a

two-scale model, D � 1 can enhance the hierarchy between xP and fa.

We are now ready to use the triangular barrier approximation in Eq. (3.6) to compute

the bounce action and the features of the FOPT between the origin and the true vacuum.

For ✏/R < 1/
p
D, fa is the largest scale in the problem and the approximation in Eq. (3.11)

is justified. If the general features of the bounce action characterize the FOPT in the low-T

expansion discussed above, this simple toy model allows us to say something more precise

about the scaling of the energy released during the FOPT. From Eq. (3.17) we have
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where we normalized the number of relativistic degrees of freedom at Tn to be close to

the MSSM value and we substituted Tn ⇠ T 0
n ⇠ 0.5m⇤, which is the natural value of the

nucleation temperature unless either VP or fa are tuned to suppress it (see Eq. (3.15)). In a

6As shown in Sec. 4.2, the potential controlled by ✏/R can be obtained from a marginal operator breaking

R-symmetry in the superpotential. Similarly, one could study explicit R-breaking operators of arbitrary

dimension in the superpotential W/R =
✏/RXn
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n�3 which correspond to tree level potentials of the form V (x) =✓
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Figure 3. Qualitative features of the pseudomodulus potential relevant to the FOPT in SUSY-
breaking hidden sectors. Left: Sketch of the zero-temperature potential as described in Sec. 3.1,
exhibiting the following features: i) the distance between the two minima is larger than their
potential di↵erence, f4

a & �V , and ii) the height of the peak between the two minima is loop-
suppressed compared to the potential di↵erence, VP ⌧ �V . An explicit realization of this potential
is presented in Sec. 3.4. The tree level potential (dashed blue) generated by explicit R-symmetry
breaking destabilizes the origin, giving rise to a minimum at hxi = fa where the R-symmetry is
further spontaneously broken by the VEV of x. Quantum corrections (dashed red) generate a
local minimum at origin. Right: Behavior of the temperature corrections described in Eq. (3.5)
at T = 0, T = Tc, and T = Tn. The thermal corrections give a contribution to the potential at
the origin which at Tn is typically much smaller than F 2. The barrier and the true vacuum are
essentially unchanged. The approximations in Sec. 3.2 are then justified.

where V0(x) encodes the zero-temperature quantum corrections and VT (x) the thermal

ones.

The zero-temperature part of the e↵ective potential V0(x) is flat at tree level, up to

explicit R-symmetry breaking e↵ects. Along this so-called F -flat direction, the size of the

potential energy is set by supersymmetry breaking, V ⇠ F 2. Interactions that explicitly

violate the R-symmetry typically destabilize the origin and give a slope to the pseudomod-

ulus potential at tree level, but these features are usually small compared to the scale
p
F .

At one loop, quantum corrections lift the pseudomodulus potential; these corrections are

present even in the absence of explicit R-symmetry breaking. The combination of tree-level

explicit R-symmetry breaking and one-loop quantum corrections give rise to the schematic

zero-temperature potential shown in Fig. 3. Assuming the quantum corrections exceed the

R-symmetry breaking e↵ects, at zero temperature this creates a metastable vacuum at the

origin that is separated by a barrier from the true vacuum at hxitrue = fa. The energy

di↵erence between the two vacua �V is proportional to the SUSY-breaking scale. The

barrier is located at a distance xP from the origin; at this point, the barrier height is VP .

The essential features characterizing the zero temperature potential are:

• The potential is flat. This means that the distance fa in field space between the false

vacuum and the true vacuum is larger than the size of the potential energy di↵erence

�V :

f4
a > �V , (3.3)
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Figure 3. Qualitative features of the pseudomodulus potential relevant to the FOPT in SUSY-
breaking hidden sectors. Left: Sketch of the zero-temperature potential as described in Sec. 3.1,
exhibiting the following features: i) the distance between the two minima is larger than their
potential di↵erence, f4

a & �V , and ii) the height of the peak between the two minima is loop-
suppressed compared to the potential di↵erence, VP ⌧ �V . An explicit realization of this potential
is presented in Sec. 3.4. The tree level potential (dashed blue) generated by explicit R-symmetry
breaking destabilizes the origin, giving rise to a minimum at hxi = fa where the R-symmetry is
further spontaneously broken by the VEV of x. Quantum corrections (dashed red) generate a
local minimum at origin. Right: Behavior of the temperature corrections described in Eq. (3.5)
at T = 0, T = Tc, and T = Tn. The thermal corrections give a contribution to the potential at
the origin which at Tn is typically much smaller than F 2. The barrier and the true vacuum are
essentially unchanged. The approximations in Sec. 3.2 are then justified.

where V0(x) encodes the zero-temperature quantum corrections and VT (x) the thermal

ones.

The zero-temperature part of the e↵ective potential V0(x) is flat at tree level, up to

explicit R-symmetry breaking e↵ects. Along this so-called F -flat direction, the size of the

potential energy is set by supersymmetry breaking, V ⇠ F 2. Interactions that explicitly

violate the R-symmetry typically destabilize the origin and give a slope to the pseudomod-

ulus potential at tree level, but these features are usually small compared to the scale
p
F .

At one loop, quantum corrections lift the pseudomodulus potential; these corrections are

present even in the absence of explicit R-symmetry breaking. The combination of tree-level

explicit R-symmetry breaking and one-loop quantum corrections give rise to the schematic

zero-temperature potential shown in Fig. 3. Assuming the quantum corrections exceed the

R-symmetry breaking e↵ects, at zero temperature this creates a metastable vacuum at the

origin that is separated by a barrier from the true vacuum at hxitrue = fa. The energy

di↵erence between the two vacua �V is proportional to the SUSY-breaking scale. The

barrier is located at a distance xP from the origin; at this point, the barrier height is VP .

The essential features characterizing the zero temperature potential are:

• The potential is flat. This means that the distance fa in field space between the false

vacuum and the true vacuum is larger than the size of the potential energy di↵erence

�V :

f4
a > �V , (3.3)

– 18 –

✦Flatness of potential                  low T expansion of VT applies

✴ In non-SUSY theories this could happen only with fine-tuning

✴Main effect of thermal corrections is to pull down the origin

Alberto Mariotti (VUB) SGWB and SUSY

Tn ⇠
p
F . m⇤

VT (x) ' �T

4

 s
�

2
x

2 +m

2
⇤

(2⇡T )2

!3/2

e

�
r

�

2
x

2+m

2⇤
T

2

SUSY protects the flat direction but is broken by thermal corrections

20-05-2021

✦We expect 

Low T 
expansion



33 Pseudomodulus bounce action

Triangular barrier 
approximation (TBA) 

works quite well

✦Full analytic treatment: expand TBA for flat potential + small barrier
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Figure 13. Bounce action computed using di↵erent approximations in the O’Raifeartaigh model
with gauge interactions of Sec. 4.3. The benchmarks on the left and on the right are distinguished
by the size of r�. The black lines are the full numerical computation of the bounce action.
In blue we show the TBA computed using the numerical scalar potential and optimized with the
procedures explained in the text. The red lines are the standard TBA approximations as described
in Appendix B.1. The green line is the standard TBA evaluated on the analytic approximation of
the scalar potential (as detailed in the text) and taking only the zeroth order term in the expansion
for small r� (as in Eq. (3.6)). This last approximation is the one used in Section 3 to derive analytic
estimates.
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Finally, the true vacuum location and energy are given by
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where we set the renormalization scale µ = m. Within our approximation the thermal

e↵ects only enter at the origin, and at the top of the barrier, where they act to lower the

potential relative to the true vacuum, and the potential di↵erence between the top of the

barrier and origin, respectively.

In Figure 13 we consider two benchmarks with very di↵erent r� at Tn and show the

bounce action S3/T as a function of the temperature, computed in di↵erent approximations.

The black line is computed using the fully numerical thermal e↵ective potential and the

mathematica package “FindBounce” [85]. The blue line is obtained with the TBA evaluated

on the full-numerical scalar potential and optimized with the procedure explained above.

The red line is the TBA (as computed in Appendix B.1) evaluated on the full-numerical

scalar potential. Finally, the green is the TBA evaluated on the analytical approximation

of the critical points of the scalar potential as explained above, and moreover keeping only
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treatment, we approximate the thermal potential in Eq. (3.5) by only including thermal

corrections at x = 0, where the exponential suppression is minimized, and neglecting the

temperature dependence of V� and VP . Within this approximation we obtain

V+ = V 0
T , V 0

T
def
= VT (x = 0) , V� = ��V , (3.10)

where we set V+ to be exactly zero at zero temperature so that its (strictly negative) value

is purely controlled by the thermal corrections at the origin. The value of the potential at

the true vacuum is ��V , and independent of temperature in this approximation.

With these approximations, the bounce action becomes simply

S3

T
' 144

p
2⇡

5T

(VP � V 0
T )

5/2f3
a

(�V )3
,

3V 0
T

�V
+ 1 > 0, (3.11)

and we are now ready to describe the shape of S3/T as a function of T . First we define

the critical temperature Tc, where the thermal corrections at the origin balance the zero-

temperature potential di↵erence between the two minima:

|V 0
Tc
| ' �V ) Tc ' 2

5

m⇤

W
✓
0.13

⇣
N m4

⇤
F 2

⌘2/5
◆ , (3.12)

where W(x) is the Lambert function, defined as the solution to the equation W(x)eW(x) =

x. At large x the function W(x) behaves approximately like 3/4 log(1+x), and this simple

approximation can be used for all practical purposes here (see Appendix A for a short

summary of the properties of the Lambert function). Using this, the low-T expansion will

apply in regions of parameter space where

Tc . m⇤ )
p
F . 0.8

✓
N

10

◆5/8

m⇤ , (3.13)

where we have normalized the number of degrees of freedom in the thermal loops to the

typical order of magnitude we will find in the explicit examples of Sec. 4. The low-T ap-

proximation is then valid whenever Eq. (3.13) is satisfied, making it a generic feature of the

pseudomodulus potential where the vacuum energy is protected from quantum corrections

induced by heavy SUSY states.

From the definition of Tc in Eq. (3.12), we can immediately see that the triangular ap-

proximation in Eq. (3.11) breaks down in this regime and should be extended (see Appendix

B). However, the nucleation temperature in our setup is generically very far from Tc, so

that Eq. (3.11) is always a good approximation at the temperatures relevant for the FOPT.

As the temperature decreases below T < Tc, S3/T decreases as long as |V 0
T | > VP , since

|V 0
T | decreases exponentially with the temperature. When the temperature approaches

Tmin defined in Eq. (2.30), then |V 0
T | ' VP and S3/T attains a minimum value. As the

temperature decreases further below Tmin, S3/T grows as 1/T .

Plugging the simplified bounce action in Eq. (3.11) into the Tmin definition in Eq. (2.30),

we can easily obtain an analytic expression for Tmin which reads

Tmin =
2m⇤
3

1

W
✓
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✦Nucleation temperature (by further expanding in small V_P)

where to obtain the first expression we assumed Tmin . 0.48m⇤ and the second inequality

follows from approximating the Lambert function W (x) ' 3/4 log(x + 1), assuming N ⇠
O(10) and using the Eq. (3.4) for the scaling of VP with �e↵ ⇠ O(1) and �V ⇠ F 2. Higher

values of �e↵ or a suppressed value of �V will lead to a reduction of the hierarchy between

Tmin and Tc. The latter cases are less interesting from the point of view of the expected

GW signal.

We are now ready to verify that there exists a nucleation temperature Tn where S3/T

satisfies the nucleation condition Eq. (2.14). As discussed in Eq. (2.30), the nucleation

temperature is always within the interval (Tmin, Tc). Scenarios where Tn is closer to Tmin

have a larger ↵ (see Eq. (2.15)) and a smaller �H (see Eq. (2.16)), favorable for generating

an observable GW signal. Understanding the scaling of Tn with respect to Tmin and Tc

thus provides valuable information about the strength of the FOPT.

Even approximating the nucleation condition in Eq. (2.14) with a constant C, solving
the equation analytically with respect to T using S3/T given by Eq. (3.11) is not possible.

We may, however, expand in VP /|V 0
T | ⌧ 1 and solve for Tn order by order in this expansion.

This is always a good approximation as long as Tn does not approach Tmin too closely. At

first order, writing Tn = T 0
n(1 + �T 1

n) we find

Tn ' T 0
n
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where

T 0
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1

W
✓
0.32

⇣
N5

C2

⌘2/21 ⇣fam3
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�V

⌘4/7
◆ , (3.16)

and we have again assumed T 0
n < 0.48m⇤. Given that the argument of the Lambert function

is much larger than one, T 0
n depends only logarithmically on the parameters N, C, fa,�V ,

and can be taken proportional to m⇤ for simplicity.

The leading scaling of Tn with respect to the parameters shaping the potential is

captured by the leading corrections proportional to VP in (3.15). Indeed, we observe

that by increasing VP (i.e. the height of the barrier), or by increasing fa, the nucleation

temperature decreases, approaching the region of parameter space where nucleation does

not occur. The border between the nucleation and the non-nucleation areas is the portion

of parameter space which is optimal for gravitational waves, since it is where �H is minimal.

This behavior is in good agreement with the numerical results of Sec. 4, and one can verify

that Eq. (3.15) reproduces the behavior of the full numerical result when properly matched

to the models in Sec. 4 up to an overall scaling of the bounce action.

3.3 ↵, �H and fine-tuning

Now we can use our prediction for Tn to compute the parameters characterizing the FOPT:

• Within our analytical approximation, the temperature corrections only a↵ect the

potential at the origin of field space and are exponentially suppressed for T < m⇤.
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SUSY-breaking corrections induced by heavy fields lift the x potential around the origin,

giving a mass to the pseudomodulus, but ultimately become subdominant for x � p
F

where SUSY is restored in the direction associated to the F -term. This large-field behavior

is a unique characteristic of SUSY models.

As long as the explicit R-symmetry breaking is parametrically small, the position of

the true vacuum and the zero temperature di↵erence energy between the true vacuum and

false vacuum are
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s
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where we have introduced the parameter D to allow the scale controlling the di↵erence

in vacuum energy to vary relative to the scale controlling the loop corrections along the

pseudomodulus potential. We will exhibit a concrete realization of such a model in Sec. 4.3.

Requiring the potential to be flat as in Eq. (3.3) requires ✏/R < 1/
p
D.

Following the triangular barrier prescription, we need to find the position of the barrier

and the value of the potential at the barrier; for the toy model these take the form
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From the last equation we see that the loop suppression of the zero-temperature barrier

VP , as assumed in Eq (3.4), is here an automatic consequence of the fact that the pseudo-

modulus direction is lifted by quantum corrections. For a single-scale model (i.e. D = 1)

the position of the peak xP is fixed in terms of the one of the true vacuum fa, while for a

two-scale model, D � 1 can enhance the hierarchy between xP and fa.

We are now ready to use the triangular barrier approximation in Eq. (3.6) to compute

the bounce action and the features of the FOPT between the origin and the true vacuum.

For ✏/R < 1/
p
D, fa is the largest scale in the problem and the approximation in Eq. (3.11)

is justified. If the general features of the bounce action characterize the FOPT in the low-T

expansion discussed above, this simple toy model allows us to say something more precise

about the scaling of the energy released during the FOPT. From Eq. (3.17) we have

↵ =
30

g⇤(Tn)⇡2

✓
DF

T 2
n

◆2

⇠ 10�22
D

✓
F

m2
⇤

◆2 ✓ 230

g⇤(Tn)

◆
, (3.25)

where we normalized the number of relativistic degrees of freedom at Tn to be close to

the MSSM value and we substituted Tn ⇠ T 0
n ⇠ 0.5m⇤, which is the natural value of the

nucleation temperature unless either VP or fa are tuned to suppress it (see Eq. (3.15)). In a

6As shown in Sec. 4.2, the potential controlled by ✏/R can be obtained from a marginal operator breaking

R-symmetry in the superpotential. Similarly, one could study explicit R-breaking operators of arbitrary

dimension in the superpotential W/R =
✏/RXn

n⇤

n�3 which correspond to tree level potentials of the form V (x) =✓
F � ✏/Rxn�1

⇤

n�3

◆
2

. These types of operators would naturally be generated by UV dynamics as in Ref. [87].
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Two scales
of SUSY breaking are

needed to get sizeable alpha

By taking
Tn ⇠ m⇤/2
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35 A working model

O’Raifeartaigh model is the minimal model to break SUSY spontaneously

★It does not break R-symmetry (vacuum is at X=0)
★We deform it to get R-symmetry breaking and another SUSY breaking scale

Vaknin arXiv:1402.5851

★We have then to study thermal properties
★First we study thermal properties of O’Raifeartaigh
★Then we proceed with the deformation and its thermal evolution

The O’Raifeartaigh phase diagram
see also A. Katz (2009)

we stick to this phase to avoid

complications

competition between 

thermal and loop correctionsAlberto Mariotti (VUB) SGWB and SUSY 20-05-2021
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Figure 5. Phase diagram of the O’Raifeartaigh model at fixed F/m2 = 4. For large � the quantum
corrections dominate and the origin is the global minimum at all temperatures. For small �, at
T = T? a new vacuum develops as a consequence of the interplay between the thermal and the
loop corrections as shown in Eq. (4.7). In dark red we show the range of temperatures where a
barrier is present between the origin and the true minimum, in light red we show the range of
temperatures where the barrier disappears. At lower temperatures, the origin again becomes the
global minimum, and the second minimum decays back into the origin. In blue we show the range
of temperatures where a barrier separates the two minima and in light blue the region when the
barrier disappears.

The thermal corrections compete with the loop corrections in the large x region (see

Eq. (4.5)), eventually leading to a minimum of the potential at

x? ' 2
p
2⇡T

�yF
, T? ⇠ 0.23

p
yFm , (4.7)

where x? is obtained using the high-T expansion for the thermal potential up to T 2, as-

suming 2 bosons and 2 fermions with masses-squared ' 2m4

�2x2

, and T? is an estimate of the

temperature where the new minimum can be the global one. The latter is estimated by

requiring the temperature corrections at x? to be comparable to the height of the one loop

potential. If T? is close to m, then the neglected contributions from the states whose masses

grow with x2 lifts again the minimum at x?, which will then never be the global minimum

at any temperature. In conclusion, we expect that depending on the hierarchy between �F

and m2, the minimum at x? could become the global minimum in a certain temperature

range around T?. This complicated phase diagram is well summarized in Fig. 5, where we

have fixed the ratio F
m2

to a representative value and explore the dynamics of the model
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36 The OR phase diagram

Alberto Mariotti (VUB) SGWB and SUSY

The O’Raifeartaigh phase diagram
see also A. Katz (2009)

we stick to this phase to avoid

complications

competition between 

thermal and loop corrections

See also A. Katz 2009
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Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model
as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the
fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line
shows T? for this particular benchmark, where the new vacuum induced by thermal corrections
becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral
superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in
Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

�2x2

4

 
1±

r
1 +

8m2

�2x2

!
=

(
m for x ! 0

⇠ x±2 for x ! 1 , (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2+�F,m2��F}. The behavior of the full spectrum
as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ⇠ �2F 2

16⇡2

. For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ⇠ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model
as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the
fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line
shows T? for this particular benchmark, where the new vacuum induced by thermal corrections
becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral
superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in
Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

�2x2

4

 
1±

r
1 +

8m2

�2x2

!
=

(
m for x ! 0

⇠ x±2 for x ! 1 , (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2+�F,m2��F}. The behavior of the full spectrum
as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ⇠ �2F 2

16⇡2

. For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ⇠ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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We consider vector-like O’Raifeartaigh model

There are eigenvalues 
decreasing for increasing X

One-loop T=0 vacuum is at X=0

Competition between one-loop and 
thermal corrections generate local 
minimum in a temperature range

Figure 5. Phase diagram of the O’Raifeartaigh model at fixed F/m2 = 4. For large � the quantum
corrections dominate and the origin is the global minimum at all temperatures. For small �, at
T = T? a new vacuum develops as a consequence of the interplay between the thermal and the
loop corrections as shown in Eq. (4.7). In dark red we show the range of temperatures where a
barrier is present between the origin and the true minimum, in light red we show the range of
temperatures where the barrier disappears. At lower temperatures, the origin again becomes the
global minimum, and the second minimum decays back into the origin. In blue we show the range
of temperatures where a barrier separates the two minima and in light blue the region when the
barrier disappears.

The thermal corrections compete with the loop corrections in the large x region (see

Eq. (4.5)), eventually leading to a minimum of the potential at

x? ' 2
p
2⇡T

�yF
, T? ⇠ 0.23

p
yFm , (4.7)

where x? is obtained using the high-T expansion for the thermal potential up to T 2, as-

suming 2 bosons and 2 fermions with masses-squared ' 2m4

�2x2

, and T? is an estimate of the

temperature where the new minimum can be the global one. The latter is estimated by

requiring the temperature corrections at x? to be comparable to the height of the one loop

potential. If T? is close to m, then the neglected contributions from the states whose masses

grow with x2 lifts again the minimum at x?, which will then never be the global minimum

at any temperature. In conclusion, we expect that depending on the hierarchy between �F

and m2, the minimum at x? could become the global minimum in a certain temperature

range around T?. This complicated phase diagram is well summarized in Fig. 5, where we

have fixed the ratio F
m2

to a representative value and explore the dynamics of the model
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Figure 5. Phase diagram of the O’Raifeartaigh model at fixed F/m2 = 4. For large � the quantum
corrections dominate and the origin is the global minimum at all temperatures. For small �, at
T = T? a new vacuum develops as a consequence of the interplay between the thermal and the
loop corrections as shown in Eq. (4.7). In dark red we show the range of temperatures where a
barrier is present between the origin and the true minimum, in light red we show the range of
temperatures where the barrier disappears. At lower temperatures, the origin again becomes the
global minimum, and the second minimum decays back into the origin. In blue we show the range
of temperatures where a barrier separates the two minima and in light blue the region when the
barrier disappears.

The thermal corrections compete with the loop corrections in the large x region (see

Eq. (4.5)), eventually leading to a minimum of the potential at

x? ' 2
p
2⇡T

�yF
, T? ⇠ 0.23

p
yFm , (4.7)

where x? is obtained using the high-T expansion for the thermal potential up to T 2, as-

suming 2 bosons and 2 fermions with masses-squared ' 2m4

�2x2

, and T? is an estimate of the

temperature where the new minimum can be the global one. The latter is estimated by

requiring the temperature corrections at x? to be comparable to the height of the one loop

potential. If T? is close to m, then the neglected contributions from the states whose masses

grow with x2 lifts again the minimum at x?, which will then never be the global minimum

at any temperature. In conclusion, we expect that depending on the hierarchy between �F

and m2, the minimum at x? could become the global minimum in a certain temperature

range around T?. This complicated phase diagram is well summarized in Fig. 5, where we

have fixed the ratio F
m2

to a representative value and explore the dynamics of the model
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The O’Raifeartaigh phase diagram
see also A. Katz (2009)

we stick to this phase to avoid

complications

competition between 

thermal and loop corrections

See also A. Katz 2009
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Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model
as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the
fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line
shows T? for this particular benchmark, where the new vacuum induced by thermal corrections
becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral
superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in
Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

�2x2

4

 
1±

r
1 +

8m2

�2x2

!
=

(
m for x ! 0

⇠ x±2 for x ! 1 , (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2+�F,m2��F}. The behavior of the full spectrum
as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ⇠ �2F 2

16⇡2

. For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ⇠ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model
as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the
fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line
shows T? for this particular benchmark, where the new vacuum induced by thermal corrections
becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral
superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in
Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

�2x2

4

 
1±

r
1 +

8m2

�2x2

!
=

(
m for x ! 0

⇠ x±2 for x ! 1 , (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2+�F,m2��F}. The behavior of the full spectrum
as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ⇠ �2F 2

16⇡2

. For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ⇠ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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Figure 5. Phase diagram of the O’Raifeartaigh model at fixed F/m2 = 4. For large � the quantum
corrections dominate and the origin is the global minimum at all temperatures. For small �, at
T = T? a new vacuum develops as a consequence of the interplay between the thermal and the
loop corrections as shown in Eq. (4.7). In dark red we show the range of temperatures where a
barrier is present between the origin and the true minimum, in light red we show the range of
temperatures where the barrier disappears. At lower temperatures, the origin again becomes the
global minimum, and the second minimum decays back into the origin. In blue we show the range
of temperatures where a barrier separates the two minima and in light blue the region when the
barrier disappears.

The thermal corrections compete with the loop corrections in the large x region (see

Eq. (4.5)), eventually leading to a minimum of the potential at

x? ' 2
p
2⇡T

�yF
, T? ⇠ 0.23

p
yFm , (4.7)

where x? is obtained using the high-T expansion for the thermal potential up to T 2, as-

suming 2 bosons and 2 fermions with masses-squared ' 2m4

�2x2

, and T? is an estimate of the

temperature where the new minimum can be the global one. The latter is estimated by

requiring the temperature corrections at x? to be comparable to the height of the one loop

potential. If T? is close to m, then the neglected contributions from the states whose masses

grow with x2 lifts again the minimum at x?, which will then never be the global minimum

at any temperature. In conclusion, we expect that depending on the hierarchy between �F

and m2, the minimum at x? could become the global minimum in a certain temperature

range around T?. This complicated phase diagram is well summarized in Fig. 5, where we

have fixed the ratio F
m2

to a representative value and explore the dynamics of the model
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38 A full model of LESB
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The O’Raifeartaigh phase diagram
see also A. Katz (2009)

we stick to this phase to avoid

complications

competition between 

thermal and loop corrections

X �1 �̃1 �2 �̃2

U(1)R 2 0 2 2 0
U(1)D 0 1 -1 1 -1

1

0 10 20 30 40 50
0.5

1

2

5

X / F

m
/
F

Mass spectrum in O'Raifeartaigh model

T★

�� / � = � � λ = ���

mB- mF-

mB+
mF+

m

Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model
as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the
fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line
shows T? for this particular benchmark, where the new vacuum induced by thermal corrections
becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral
superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in
Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

�2x2

4

 
1±

r
1 +

8m2

�2x2

!
=

(
m for x ! 0

⇠ x±2 for x ! 1 , (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2+�F,m2��F}. The behavior of the full spectrum
as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ⇠ �2F 2

16⇡2

. For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ⇠ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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Same chiral field content than O’Raifeartaigh model

Flavour symmetry is gauged and a Fayet-Iliopoulos term is added

that the phase transition is not genuinely a “SUSY-breaking phase transition”; this sector,

as presented, cannot be responsible for the SUSY breaking transmitted to the MSSM.

However, this is not a fatal obstruction, as the vacuum energy in the true vacuum far from

the origin can be easily lifted by coupling to another source of SUSY breaking, very much in

the spirit of [91]. If we require the new source of SUSY-breaking to not significantly a↵ect

the dynamics of the phase transition, the parametrics of the model will not significantly

deviate from those presented here and the resulting ↵ will be still suppressed. Interestingly,

our analysis seems to point towards SUSY-breaking hidden sectors with multiple dynamical

field directions and scales. In the next section, we will exhibit the simplest model of this

type, leaving a more thorough exploration of the di↵erent possibilities for future study.

4.3 O’Raifeartaigh model with gauge interactions

In the previous subsection we analyzed a simple model displaying a first order phase tran-

sition associated with the breaking of the R-symmetry. However, there were two aspects

that were not completely satisfactory: i) SUSY breaking in the global minimum had to

be added as a further deformation, and ii) the phase transition was generically not strong

enough to generate a sizable signal. Both issues were related to the fact that there was

only one SUSY breaking scale in the problem. In this subsection we resolve these issues

in a hidden sector where the global minimum breaks both SUSY and R-symmetry spon-

taneously and the presence of two SUSY breaking scales leads to a strong FOPT from the

origin to the true minimum.

It is well-known that adding gauge interactions to SUSY breaking models with chiral

superfields modifies the potential and typically leads to a new SUSY- and R-symmetry-

breaking vacuum at large field values (see e.g. [14]). As a prototype of this class of models

we consider the simplest realization, which consists of the vector-like O’Raifeartaigh model

of the previous sections where the anomaly-free U(1)D flavor symmetry defined in the right

panel of Fig. 4 is gauged. The model we consider has been studied at zero temperature

in [92]. The qualitative features that we find here are generic to models where SUSY is

broken through the interplay of F - and D-term e↵ects.

The field content and superpotential are the same as those introduced in (4.2). The

gauging of the U(1)D symmetry contributes new terms in the scalar potential from the

D-term contribution. The F - and D-term contributions to the potential together give

VF + VD = |F � ��1�̃2|2 + |�X�̃2 +m�̃1|2 + |�X�1 +m�2|2 + |m�1|2 + |m�̃2|2 +

+
g2

2

✓
D

g
+ |�1|2 � |�̃1|2 + |�2|2 � |�̃2|2

◆2

, (4.15)

where g is the gauge coupling of the U(1)D symmetry and we have also included a UV

Fayet-Iliopoulos (FI) termD/g. This FI term contributes a second source of SUSY breaking

that will strengthen the GW signal. Note that the model contains, in addition to the

O’Raifeartaigh degrees of freedom, a gauge boson and gaugino associated with the U(1)D

– 34 –

20-05-2021



39 A full model of LESB

Alberto Mariotti (VUB) SGWB and SUSY

The O’Raifeartaigh phase diagram
see also A. Katz (2009)

we stick to this phase to avoid

complications
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thermal and loop corrections
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Figure 4. Left: Behavior of the hidden sector spectrum in the simple O’Raifeartaigh model
as a function of the pseudomodulus direction x. The dashed dark red/blue line indicates the
fermionic eigenvalues growing/going to zero like x±2 (see Eq. (4.6)). The two pink and light blue

solid lines indicate the scalar mass states splitted in pairs around the fermionic ones. The dashed

light magenta line indicates the states that remain independent on x. The dashed peach line
shows T? for this particular benchmark, where the new vacuum induced by thermal corrections
becomes degenerate with the origin (see Eq. (4.7)). Right: Unbroken symmetries of the chiral
superfields in the O’Raifeartaigh model superpotential in Eq. (4.2). The model enjoys a U(1)R
symmetry and an extra U(1)D flavor symmetry. The first will be explicitly broken in the model in
Sec. 4.2 while the second one will be gauged in the model in Sec. 4.3.

The shape of the thermal corrections is set by the x dependence of the mass eigenvalues

for the scalar and fermionic components of the messengers. From (4.2) we can distinguish

two classes of mass-squared eigenvalues: i) the ones growing quadratically with x, and

ii) the ones decreasing as 1/x2 and asymptotically going to zero in the large-x region.

Specifically, the fermionic eigenvalues scale as

m2
± = m2 +

�2x2

4

 
1±

r
1 +

8m2

�2x2

!
=

(
m for x ! 0

⇠ x±2 for x ! 1 , (4.6)

and the bosonic eigenvalues are split in pairs around the fermionic ones, e.g. at the origin

the bosonic eigenvalues are {m2,m2,m2+�F,m2��F}. The behavior of the full spectrum
as a function of x is shown in Figure 4 (right). We also observe that at large x, the spectrum

asymptotes to a supersymmetric one.

For low temperatures (i.e. T < m), the induced thermal corrections are a decreasing

function of x, since they are mainly controlled by the lightest eigenstates. These corrections

are mildly Boltzmann suppressed at large x and modify the pseudo-modulus potential

as soon as T 4 ⇠ �2F 2

16⇡2

. For larger temperatures, the contribution from the other mass

eigenstates and in particular from the ones growing with x become relevant, and the thermal

potential is a growing function of x. Hence at temperatures T ⇠ m we expect the global

minimum to be at the origin of the field space. However, for intermediate temperatures

the thermal corrections can make the origin of the field space unstable, leading to a very

rich evolution of the potential with temperature.
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Same chiral field content than O’Raifeartaigh model

Flavour symmetry is gauged and a Fayet-Iliopoulos term is added

that the phase transition is not genuinely a “SUSY-breaking phase transition”; this sector,

as presented, cannot be responsible for the SUSY breaking transmitted to the MSSM.

However, this is not a fatal obstruction, as the vacuum energy in the true vacuum far from

the origin can be easily lifted by coupling to another source of SUSY breaking, very much in

the spirit of [91]. If we require the new source of SUSY-breaking to not significantly a↵ect

the dynamics of the phase transition, the parametrics of the model will not significantly

deviate from those presented here and the resulting ↵ will be still suppressed. Interestingly,

our analysis seems to point towards SUSY-breaking hidden sectors with multiple dynamical

field directions and scales. In the next section, we will exhibit the simplest model of this

type, leaving a more thorough exploration of the di↵erent possibilities for future study.

4.3 O’Raifeartaigh model with gauge interactions

In the previous subsection we analyzed a simple model displaying a first order phase tran-

sition associated with the breaking of the R-symmetry. However, there were two aspects

that were not completely satisfactory: i) SUSY breaking in the global minimum had to

be added as a further deformation, and ii) the phase transition was generically not strong

enough to generate a sizable signal. Both issues were related to the fact that there was

only one SUSY breaking scale in the problem. In this subsection we resolve these issues

in a hidden sector where the global minimum breaks both SUSY and R-symmetry spon-

taneously and the presence of two SUSY breaking scales leads to a strong FOPT from the

origin to the true minimum.

It is well-known that adding gauge interactions to SUSY breaking models with chiral

superfields modifies the potential and typically leads to a new SUSY- and R-symmetry-

breaking vacuum at large field values (see e.g. [14]). As a prototype of this class of models

we consider the simplest realization, which consists of the vector-like O’Raifeartaigh model

of the previous sections where the anomaly-free U(1)D flavor symmetry defined in the right

panel of Fig. 4 is gauged. The model we consider has been studied at zero temperature

in [92]. The qualitative features that we find here are generic to models where SUSY is

broken through the interplay of F - and D-term e↵ects.

The field content and superpotential are the same as those introduced in (4.2). The

gauging of the U(1)D symmetry contributes new terms in the scalar potential from the

D-term contribution. The F - and D-term contributions to the potential together give

VF + VD = |F � ��1�̃2|2 + |�X�̃2 +m�̃1|2 + |�X�1 +m�2|2 + |m�1|2 + |m�̃2|2 +

+
g2

2

✓
D

g
+ |�1|2 � |�̃1|2 + |�2|2 � |�̃2|2

◆2

, (4.15)

where g is the gauge coupling of the U(1)D symmetry and we have also included a UV

Fayet-Iliopoulos (FI) termD/g. This FI term contributes a second source of SUSY breaking

that will strengthen the GW signal. Note that the model contains, in addition to the

O’Raifeartaigh degrees of freedom, a gauge boson and gaugino associated with the U(1)D
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Figure 8. Left: Tree level and one-loop scalar potential as a function of the pseudomodulus
direction x minimizing the directions �

1

and �̃
2

. The dashed blue line shows the tree level
potential which is flat around the origin and develops a runaway at xP ' x

trans

(see Eq, (4.19)).
Quantum corrections generate a local minimum at the origin as shown by the black solid line in
the small quadrant and a global minimum far away in field space indicated with a green dashed

line. The di↵erence in energy density is �V ' 1

2

D2. Right: The VEVs of the fields �
1

and �̃
2

while moving along the x-direction. Interestingly, both VEVS increase only at the barrier and they
are otherwise quite small compared to

p
F . For reference, the benchmark used in both plots has

(F = 1 ,m = 2 , D = 6 ,� = 2.9 , g = 1).

Figure 9. From the left to the right we show the behavior of Tn/
p
F , �H and ↵ in the

O’Raifeartaigh model with gauge interactions described in Eq. (4.18). We fix F = 30 PeV, yF = 3/4
and yD = 1/5 so that the entire parameter space of the model can be shown in the (�, g) plane. The
black dashed contours in the left plot show Tn/

p
F . The red-to-blue gradients show contours

of tn as defined in Eq. (4.12) (left), of �H as defined in Eq. (2.16) (center) and of ↵ as defined in
Eq. (2.15) (right). The GW signal weakens going from red to blue. In the gray shaded region at
the bottom R

1d/3d > 0.5 and as described in Eq. (B.29) our 1d approximation is expected to break
down. The grey region on the left is excluded by the perturbativity of � below m. In the white

region the nucleation condition in Eq. (2.13) cannot be satisfied.
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�1, �̃2 are smaller than X at the bounce release point (defined as the starting point of the

tunneling set at r = 0, where the kinetic terms of all the fields are exactly zero). In order

to estimate where we expect sizable deviations from the multidimensional contribution,

we borrow some intuition from the triangular barrier approximation, where S3/T scales as

⇠ X3, and define

R1d/3d
def
=

X3(r)
⇣
X2(r) + �2

1(r) + �̃2
2(r)

⌘3/2

�������
r=0

, (4.23)

where X(0), �1(0) and �̃2(0) are the field distances from the origin computed at the release

point r = 0. In Fig. 9 we show the region where R1d/3d > 0.5 and we expect deviations of

50% or more from our one-dimensional estimate of the bounce action. As we can see, this

region is not phenomenologically relevant since it is quite far from the interesting region

for GW signals.
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Figure 10. Same as in Fig. 9 but in the (�, D/F ) plane, fixing F = 30 PeV, yF = 3/4 and g = 0.1.

The parameter space of this model can be explored at fixed F , after fixing the two

ratios

yF
def
=

�F

m2
, yD

def
=

gD

m2
. (4.24)

In Fig. 9 we show the behavior of Tn, ↵, and �H in the (�, g) plane, having fixed
p
F = 30

PeV and yF = 3/4 as in the previous model and set yD = 1/5. Keeping fixed the ratios in

Eq. (4.24), the triangular barrier parameters scale as

fa ⇠ 1

g
p
�

,
�V

F 2
⇠ �2

g2
,

VP

F 2
⇠ �2 ,

m⇤p
F

⇠
p
� . (4.25)

As a consequence of these scalings, using Eq. (3.11) it is straightforward to see that for

fixed � the boundary of the nucleation region is reached for large g, while for fixed g the

boundary lies at small �. The shape of the nucleation temperature Tn can be captured by
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Figure 11. Predicted SGWB in the O’Raifeartaigh model with gauge interactions. We show the
prediction for various values of the SUSY-breaking scale

p
F = 1, 10, 30 PeV and choose the theory

parameters such that ↵ ' 0.3 and �H ' 50. As discussed in the text, achieving these values does
not require any tuning in this model. The SUSY-breaking scale correlates with the peak frequency
of the GW spectrum, which is always dominated by sound waves as shown in Eq. (4.28).

This last statement can be checked explicitly with the parametric dependence of the

simple model described here. The heavy state pressure term in Eq. (2.21) scales as

�P heavy
LO ⇠ 4⇡2

3y2
F g

FDe�m
false

/
p

F , (4.27)

where we used the scaling of the true vacuum as a function of the theory parameters in

Eq. (4.22) and approximated Tn ' p
F for simplicity (this approximation is numerically

correct up to an O(1) factor as shown by the dashed contours in Fig. 9). Inside the

exponential, we should take the lightest heavy states in the plasma mfalse ⇠ p
m2 � �F

which are of course less Boltzmann suppressed and dominate the friction. Comparing this

quantity with the energy released in the phase transition �V = D2/2 we can get the range

of the gauge coupling g such that this friction prevents the bubble runaway,

g . 8⇡2

3yF

F

D
e�m

false

/
p

F . (4.28)

Plugging in the typical numbers for our phase transition (F/D ⇠ 1/5, yF ⇠ 3/4 and

mfalse/
p
F .

p
� . 2.5) indicates that the vacuum bubbles are always stopped in the

range of interest for the gauge coupling g for perturbative values of �. The predicted boost
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★GW spectrum
✴Simplest O'Raifeartaigh model
✴Gauge non-anomalous U(1) + D-term

SUSY and spontaneous R-breaking

★Prediction for Superpartner spectrum

First Order Phase Transition associated 
to SUSY and R-symmetry breaking

Add messenger in 5+bar5

SU(6) � U(1)D ⇥ SU(5)

The mass matrix of the messenger fields is

Mmess =

 
�fap

2
m

m 0

!
, (5.8)

where fa is the VEV of the pseudomodulus given in Eq. (4.22). Integrating out the messen-

gers, one can compute the soft masses for the MSSM following the general formulas in [99].

The scalar masses follow the standard gauge mediation scaling discussed in Eq. (2.9),

while it is worth explicitly writing the parametric dependence of the gluino soft mass in

the notation of Eq. (2.9):

M3 =
↵3

4⇡

p
2F

fa
sM , sM =

y2
F

6
. (5.9)

Here we have expanded in �fa � m & F and identified the gaugino screening factor sM in

this model. Since we typically have yF ⇠ 1 in our scenarios (in order to remain in the green

region of Fig. 5) the gaugino screening factor does not provide significant suppression, but

interestingly it is generic for models like ours where the messengers mass matrix is never

singular along the pseudomodulus direction [15, 51]. Abandoning this requirement, one

could avoid gaugino screening at the price of opening up messenger field directions where

the SM gauge group is spontaneously broken in the UV [100].

Substituting the value of fa in Eq. (4.22) and taking as benchmark values a typical

point with ↵ ⇠ 0.3 and �H ⇠ 100 from Fig. 9, the gaugino pole mass is

mg̃ ' 2 TeV

✓
F

30 PeV

◆1/2 ⇣ yF

0.75

⌘3
✓

F

2.5D

◆1/2✓�

4

◆⇣ g

0.4

⌘
. (5.10)

This shows that the band between the the present exclusion at the LHC and the future

reach of FCC-hh can be populated with simple, concrete models featuring strong SGWB

signals within the reach of future high-frequency interferometers such as A-LIGO, ET and

CE.

6 Conclusions

We began by asking if future gravity wave detectors could provide a new window into

supersymmetry by probing SUSY-breaking hidden sectors in a region not yet excluded by

LHC searches. The answer to this question is well summarized in Fig. 1, which shows

the complementarity of future gravitational wave interferometers and colliders in probing

scenarios of low-energy supersymmetry breaking (LESB). Fortuitously, the cosmological

history of the gravitino – a key degree of freedom in LESB scenarios – bounds the SUSY-

breaking scale from above, so that the viable parameter space lies within reach of both

high-frequency GW interferometers and high-energy colliders.

The underlying assumption in Fig. 1 is that the SUSY-breaking hidden sector ac-

tually undergoes a strong first-order phase transition. The remainder of the paper has

been devoted to demonstrating, on general grounds, the circumstances under which strong
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Gaugino screening
is unavoidable

A signal of SGWB at O(100) Hz correlates to gluino at reach of FCC-hh 

The mass matrix of the messenger fields is
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where fa is the VEV of the pseudomodulus given in Eq. (4.22). Integrating out the messen-

gers, one can compute the soft masses for the MSSM following the general formulas in [99].

The scalar masses follow the standard gauge mediation scaling discussed in Eq. (2.9),

while it is worth explicitly writing the parametric dependence of the gluino soft mass in

the notation of Eq. (2.9):
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Here we have expanded in �fa � m & F and identified the gaugino screening factor sM in

this model. Since we typically have yF ⇠ 1 in our scenarios (in order to remain in the green

region of Fig. 5) the gaugino screening factor does not provide significant suppression, but

interestingly it is generic for models like ours where the messengers mass matrix is never

singular along the pseudomodulus direction [15, 51]. Abandoning this requirement, one

could avoid gaugino screening at the price of opening up messenger field directions where

the SM gauge group is spontaneously broken in the UV [100].

Substituting the value of fa in Eq. (4.22) and taking as benchmark values a typical

point with ↵ ⇠ 0.3 and �H ⇠ 100 from Fig. 9, the gaugino pole mass is
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This shows that the band between the the present exclusion at the LHC and the future

reach of FCC-hh can be populated with simple, concrete models featuring strong SGWB

signals within the reach of future high-frequency interferometers such as A-LIGO, ET and

CE.

6 Conclusions

We began by asking if future gravity wave detectors could provide a new window into

supersymmetry by probing SUSY-breaking hidden sectors in a region not yet excluded by

LHC searches. The answer to this question is well summarized in Fig. 1, which shows

the complementarity of future gravitational wave interferometers and colliders in probing

scenarios of low-energy supersymmetry breaking (LESB). Fortuitously, the cosmological

history of the gravitino – a key degree of freedom in LESB scenarios – bounds the SUSY-

breaking scale from above, so that the viable parameter space lies within reach of both

high-frequency GW interferometers and high-energy colliders.

The underlying assumption in Fig. 1 is that the SUSY-breaking hidden sector ac-

tually undergoes a strong first-order phase transition. The remainder of the paper has

been devoted to demonstrating, on general grounds, the circumstances under which strong
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SBGW can be the first sign of SUSY (breaking)!
Can provide hints for future colliders

✦Interesting interplay with other SUSY probes

✦SBGW from PT provides probe of BSM 
theories at high energy 

✦SUSY breaking hidden sector contains 
naturally R-symmetry PT

✦SBGW frequency point to SUSY br scale

Can deliver SBGW

Alberto Mariotti (VUB) SGWB and SUSY

Conclusions

✦Novel features in 1st order PT (low-T ...)
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