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Newton potential from amplitudes

e Extract from two-to-two scattering of heavy particles

»  Connection to amplitudes suggested by Iwasaki in 1971
»  Classical + quantum correction at O(G?) from one-loop Feynman diagrams

» lwasaki pointed out the “erroneous belief” that only tree diagrams

contribute to the classical potential
(e.g.in R.P. Feynman, Acta Phys. Polon. 24 (1963), 697)

» He also noted that “it is unclear whether one can obtain finite physically
meaningful results from fourth-order Feynman diagrams since the quantum
theory of gravity is unrenormalisable”

» However,“it will be shown that in spite of the unrenormalisability we can
obtain a finite physically meaningful potential”



The potential at tree level
and one loop



Kinematic setup

e Elastic scattering of two massive scalars (COM frame):

/ Py =—(Ev,p—q/2), py=—(Bs,—P+q/2) \
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e Definition of the potential:

(F1S18) = 87i + 2m)* 8D (py — pi) Afi(q. D) = —i(2m)6(Es — Ei){f|V i)

. o dq  iaz Ap(QP)
Vi) = Z/(2W)3 " T4E.E,

» Note: potential is not uniquely defined!
» Depends on the choice of coordinates

» Observables (e.g. deflection angles) better quantities to compute

e Next, compute four-point scattering amplitude in GR



Tree level is Newton’s law

e Feynman rules
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e In the static limit:
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What’s next?

® Correctionsin G andin 7

» Relevant/irrelevant for experiments
» Long history of calculations, usually in disagreement

—  First attempt at O(G?) by Iwasaki (1971)
— Definitive calculation at 2PM:
Bjerrum-Bohr, Donoghue, Holstein (2003)
G G 41 Gh
<‘/Static - S 1+3 (ml +m2) T 2 ] * O(G3)>
r r 107 r

» Rederived from amplitudes by Bjerrum-Bohr, Donoghue,Vanhove
(classical + quantum) and Neill & Rothstein (classical)

» Amplitude derivations free of potential mistakes due to evaluation of a
large set of (separately non gauge-invariant) Feynman diagrams



Gravity as an effective field theory

e Start with Einstein-Hilbert Lagrangian + matter...

2
[z - V=g| - %R + %Z(D“@-Dm - m?cb?)]}

=

e ...+ higher-derivative corrections. Appear already...

» ...in the effective action for closed strings (Tseytlin 1986)

» quadratic terms in the curvature appear as one-loop counterterms in
gravity coupled to matter (pure gravity renormalisable at one loop)

[ Aﬁg'lt)' ~ 1R2 } ('t Hooft & Veltman 1974)
€

» At two loops, cubic counterterms also appear

1
{Aﬁfg. ~ R Raﬁp,\RpiW } (Goroff & Sagnotti 1985)




e Treat GR as an effective theory

2
[ L = ,/—_g[_ SR+ aR? + bRR,, + cR*PRagaRP, + ] }

» must include all higher-derivative interactions (modulo field
redefinitions)

»  what about non-renormalisability?

e Focus on low energy
» Low-energy predictions reliable even if theory is non-renormalisable

»  Original application to phenomenological Lagrangians for the
pion S-matrix (Weinberg 1979)

»  Applied to gravity by Donoghue (1994)



Key points

e Shift attention away from the UV to the IR

»  UV:we don’t know what is the ultimate theory...
» IR:we know gravitons and their interactions
» low-energy gravitons propagate long distances
»  Signature of long-range effects is non-analyticity
—  Typical one-loop terms: 1/1/—¢2 and log ( — ¢2) (in Fourier space)

» long-range effects dominate over analytic contributions from
propagation of massive modes

— analytic terms give rise to localised (short-range) contributions

e Summary: find non-analytic terms in the amplitudes

— unitarity cuts!



Classical physics from loops!??

(Donoghue & Holstein; Iwasaki...; Kosower, Maybee, O’Connell)

e Loop expansion is not an 7 expansion

»

»

ltykson-Zuber, chapter 6.2.1:

“The loopwise perturbative expansion, i.e. the expansion according to
the increasing number of independent loops of connected Feynman
diagrams, may be identified with an expansion in powers of 7...

...we leave aside the factor of 7 that gives the mass term a correct
dimension. In other words, the Klein-Gordon equation should read

oo (5] -

....indicating that the mass is of quantum origin. This phenomenon is
disregarded in the sequel.”



e Need also 7 from masses

» counting powers of 7 from propagators and vertices not enough

e Propagator: E’E

<O\T(q§(x)</ﬁ(0))|0> - /(;lw];‘l et 12 _ (Zf 1 e

» kis the wave four-vector, so that the loop momentumis £ =k

e Classical effects from quantum loops:

m?2 1 m

»  Consider the combination: 2 Wk

» may cancel 72 from the loop expansion, giving a classical effect!

» it appears in familiar integral functions



e Triangle with one internal mass

p,
d*k 1
p1="Nhke —(p+p) . = Is(s;m) _/ me
p2 = h ko
B log(—k3%y/(mc/h)?) 5
p, = [(mc/h _k2 w +O( k12)
e Note: &

»  The two terms have different powers of 7

» Second term is O(7) compared to the first one: classical and quantum
(when combined with everything)

e General (one-loop) rule:

.

s: classical




Summarising:

® Use amplitudes to compute the potential

® Focus on non-analytic terms

» From long-range propagation of two or more massless particles

» at low energy, this dominates over the analytic terms from the
propagation of massive modes

» Need to look only at the discontinuity in the g?-channel
— reconstructed from the cut diagrams in the corresponding channel
— massless particles in the cut

- 1/4/—¢> classical; log ( — ¢?) quantum

» ldeal calculation for amplitudeologists — don’t need even to reconstruct
the amplitude from different cuts!



. —2
® One loop:cutinthe s = — g~ channel

+/- 0',<
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“singlet”

»  Massless gravitons in the loop

—/+

X
2 T i 3
my : ma
1 B | N 4
“non-singlet”

» Two cases: singlet and non-singlet (two internal helicity assignments)

»  Can use four-dimensional amplitudes since any rational terms
do not produce terms with discontinuities

» Tree amplitudes can be generated with BCJ, KLT, Feynman diagrams...



® Static potential: result of reduction & static limit

» s—0, t— (m+m)
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® Limits on functions:
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® The potential:

»  Multiply amplitude by i/(4mm,)

» Reinstate one-loop prefactor of (k/2)* = 64 7°G*

» Tree level: vO = A, classical
static S
6’ mm,(m; + m,) 41
1 — 2 1A 2
» From one loop: Vs(ta)ﬁc =G [ \/_ + h?m1m210g(—5)
—S
one loop, classical one loop, quantum

® Final result: (Iwasaki 1971, Bjerrum-Bohr, Donoghue, Holstein 2003)

41 Gh
v - _Gmams i L 3Glmitms) 41 Gh] | 0(G*
r r 107 r2




Scales in the problem

Gm1m2

3(7“51+7“52) 41 £2P 3
o — 1 ’ ’ __}
Recast V(r) ; [ + > T O(G?)
e Planck length (p = VRG/c3 ~3 x 107 m
. . . 2GM
e Schwarzschild radius of a classical source: TS = T3
»  Human body (~ 70 kg): 107 m
» Earth (6 x1024 kg) : 1072 m
»  Sun (2 x103 kg): 3x10°m
»  Cygnus X-1 (~148 M, ) 41 %X 10°m

»  Sagittarius A* SMBH (8 x1036 kg): 1010 m



Higher-derivative modifications



Cubic corrections to Newton’s potential

(Brandhuber, GT; Emond, Moynihan)

e Add terms to EH action cubic in curvature:

2 . &/2 CV/Q

> @ — Raﬂ’uVR,uupaRpGaﬁ G3 = Il _ ZRMV(I'BR,BVUGRGM/D

»  Only two independent combinations to consider (Metsaev & Tseytlin)

» Added with coefficient from bosonic strings, but treated separately

e Special features of these couplings:

» [;:generates three-point all-plus/all-minus amplitudes: (Dixon, Broedel)

Q’1(1++’2++’3++) __ i<§)<%>z([12][23][31])§

»  Gj: vanishing three- & four-point graviton amplitudes, topological in 6D

e Next: compute the potential from cuts



2Pmq 3¢m2 2bm 3¢m2

e Two diagrams:

1¢m1 4¢m2

» note absence of non-singlet channel since 2 +

e Relevant four-point amplitudes:

o 2 (01 0)? i i
A 1¢m1’2¢m17€ ’g _ E 4 \t1 2 \
f EH( 1 = ) (2> ™M [fl 62]2 [(El —|—p1)2 — m% . (€1 +p2)2 - m%]

_ypHt Tt a9dmy gPma) — E2z2£ 4 . .
Ap (€77, —€37,3%m2,4%m2) (2) (4) 812[5152] (41 - p3) (L2 - p3)

bt gt admg 4may — L (ENP (XN, ) 4 2
\dartctt it avmaenn = {(0)'(§) et s 20

e Proceed as before




e Result for [ :

/Vcl("?aﬁ) =

(o/G)? 3(my + mo)

It

t —mi] —m5
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) — 4m%m§] \

7”6 32E1E4
('G)* [3 (M1 +ma)° ~2]

o~ 5 — D «

r 8  mims
L (@G [ 15 [(t=mi —m3)® — 2mims]
Vaul?sP) = 7 ir 7 E,
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e Comments:
» V=V, + hV,,, keepalso“post-Newtonian” corrections

> Q/ r® (classical) and 1/77 (quantum) corrections to Newton’s potential>

»  V, vanishes in the static limit p" — 0 (with E; ; — m,; )



e Result for Gj:

/ 2 2
(&'Gn)” (mime) (my + ma) — h10

Vo, = 12
G 7”6 E1E4 r T

e Comment:

»  Curiously non-vanishing in the static limit (£, — m, E; — m,)



Observables

e Deflection angle of massless scalars, photons and
gravitons passing by a heavy scalar of mass m

» In EH: classical part universal, but not the quantum part
(Bjerrum-Bohr, Donoghue, Holstein, Planté,Vanhove; Chi)

» particles follow geodesics regardless of their species

»  For cubic couplings: we find universality of the quantum parts
for scalars and photons (Brandhuber, GT)

»  More delicate discussion for gravitons
(Accettulli Huber, Brandhuber, De Angelis, GT)

e Strategy of the calculation

» compute amplitude discontinuities due to low-energy gravitons

»  find the deflection angle using standard techniques:
from eikonal phase matrix or from the potential

» no need to assume that helicity of bent particle stays unchanged!



S-matrix in the eikonal approximation

Amati, Ciafaloni & Veneziano (1987); Kabat & Ortiz (1992); ....Weinberg (1965)...

e Work in the limit: Qn > WS> /q 7 >

» @ = energy of massless scattered particle

e S-matrix in impact parameter space:

S = O 1y 4O 4 A AD 4

~ 1 dD_2q Z(Tg
»  A() = 4mLU/(27T)D_2€ A(q) b = impact parameter
e Eikonal phases: §,= —iAY 5 = —iAWD
. 1 " 8)*
y Consistency condition: ASZ) = E(Ag))))2 or Agz) =— ( g)

» At each order in G and large w, terms growing faster than @ simply
exponentiate divergent-in-energy terms from lower loops orders



Deflection angle & time delay

e Deflection angle from eikonal phase (matrix):

(Amati, Ciafaloni,Veneziano; ...Bjerrum-Bohr, Donoghue, Holstein, Planté,Vanhove)

10

e Deflection angle from the potential:
(Donoghue & Holstein 1985)

a__b J+°°du VOV +u?)
@ —00 V 1 o I/t2

» Results are identical (Bjerrum-Bohr, Donoghue, Holstein, Planté,Vanhove)

e Shapiro time delay (shapiro 1964)

Ct -~ %(50+51+---)>

» Time advance leads to violation of causality




e In Einstein-Hilbert theory:

» Deflection angle: (tree level: Einstein 1911, up to a famous factor of 2)

4G'm 15T m

e Shapiro time delay (shapiro 1964)

bp 1
teg = 4Gm (log?OleigGTm—{—'--)

»  As usual, the time delay is defined as the difference between the time
delays measured by an observer at b and one at b, > b



e Amplitude result for [,

g @(1) =D [(m23 w)?I3(s;m) + g(ms w)%ﬂs@

»  Same for photons and massless scalars (gravitons discussed later)

» up to irrelevant phases (contained in D)

e Amplitude result for G5 : zero!

e Comments

» Integrands and PV reductions look completely different

»  Only after eikonal limit is taken miracles occur and the two
expressions coincide!

»  Would be nice to find a way to get the eikonal result directly!



On to the bending angle

e Compute deflection angle

»  From eikonal phase or from potential

e Result is: (Brandhuber, GT)

1024m

e Comments:

»  suppressed by a factor of (a’)?/b* compared to GR:

B 4m g 15w srg\?
Pem = (GT+ * ) (%*W(?)* )

» universality of classical and quantum parts

» in EH only classical part is universal; quantum corrections differentiate



Graviton bending

(Accettulli Huber, Brandhuber, De Angelis, GT)

e The story is more delicate/interesting

»

at tree level the amplitude where the helicity of the scattered graviton
flips dominates in energy due to the nature of R> coupling

Eikonal phase matrix appears already at tree level!

(A<¢,¢,h++,h> A<¢,¢,h++,h++>)
5 ~

A(¢7¢7 h__ah__) A(¢7¢7 h_—’h++)

~

A = amplitude in impact parameter space

closely related to earlier work of Camanho, Edelstein, Maldacena and
Zhiboedov (CEMZ) on tree-level four-point graviton scattering



e Leading eikonal matrix

e

» Eigenvalues:

)
g b “) s by + ib b, — ib
5 2w | 26 L) b bjlzz b=
0o — (5) % <a/ ) ; ' (b -2=0)
SARE RN B
\ 4) b 2¢ /
/43)2mw 1 log 5] + o' \? 48}
2 T 2€ 2 4 b4




e Exponentiation checked: Agg = — (8y)*/2

e Subleading eikonal matrix

NEOEEE

1\ = = — | = _

; B (5)4 1 miw . b]* . bt 01_1565

LR 2/ 256w \5’| o zc2 o\2 1 02:W
(Z> oo (Z) [HE

e Result for deflection:

4Gm 157 Gm o/\?192 5r o \? Gm
o2 — 0y L P () 22 94 =) ==
( s |1 T 16 2 7) 3 TeIEBH) T ) 3




e Result for time delay / advance:

b 157 Gm o'\ 2 1 T Gm
112 = 4Gm dlog 2 4+ 2T L (2} 1 pag— 4+ T (L9+1365)
( Gm | log , + 6 b + 1 8b4 + 16( 94+1365) o5

» CEMZ argued that causality violation occurs for small enough b

» time advance overrides Shapiro’s time delay, leading to
superluminal effects / causality violations

» In their approach, theory treated as fundamental — causality restored
by adding an infinite tower of massive particles: string theory!

» Inan EFT approach, breakdown occurs near where we stop trusting
1
our predictions: b < (o)~ A

»  Superluminality effects unresolvable within the regime of validity of the
EFT (De Rham & Tolley; Accettulli Huber, Brandhuber, De Angelis, GT)

» No causality issues for photons or scalars, nor from the G5 interaction



Comments, and more results

e Quadratic terms in the curvature do not contribute

» in bosonic strings (Tseytlin; Deser & Redlich)...
» ...plus scalars (Accettulli-Huber, Brandhuber, De Angelis, GT)

» Field redefinitions, amplitude techniques

e Bending in bosonic string theory (erandhuber, GT)

/

_ 2 4 2 —2® 12 _—4P /3
CSB_ = d:v\/—[R 2(0D)? ——|dB| Ze Ga+ o' 2e (4811+ Gg)—I—O(a )]

»  Gyi= R¥¥™R

afuv 4R“ﬂRaﬂ + R? GauB-Bonnet combination

» I:=R% ,R",,R" 5 Gy:= I, — 2R**4RP" ,, R, o

» Two insertions of GG, can produce a new four-graviton amplitude by
contracting the two dilatons



e Result and comparison to R? case:

2. , 1575 ™ m? 64 2291 m = (yere)]
(Gz) . < (o G)2{ ~ 61 e -+ h? [ — 21log (b/(QTO)) + T} ND ry = (ne’)

2
R _ (G2 S (1™ _ g0
( @6 g (7 — h=— )

»  (G,)” classical (quantum) deflection larger by a factor of ~30 (~80)

' 211 : 1
Masswe 0= (o/G)? wQ[ 575mm* 5 536 @]
dilaton: M¢ 64 b T b’

» large suppression factor a)z/Mz




Heavy-mass effective theory

(Brandhuber, Chen, GT, Wen)

e Use EFT language from the beginning!

» Momenta exchanged between particles much smaller than particles’ masses

e Goal: construct compact HEFT tree amplitudes with
two heavy scalars plus many gluons/gravitons

» Enter the unitarity cuts, e.g.

»  Similar to heavy-quark effective theory

e lool: gauge-invariant formulation of the double-copy



Basics of HEFT

e Momentum of a particle in heavy-mass effective theory:
» Incoming: pf = mv#
»  After the interaction with a soft particle:  p* = mv* + k*

» In QCD, one would take k of order Agcp K< m

»  For classical gravitational physics:  k# = A k", with k" fixedas A — 0

e Three-point amplitudes (with scalars):

€2

»  Yang-Mills: A3YM_M o % =mey-v
D1 p3

» o Gravity:  APRM = (AMMY2 = (e, - v)? quadratic in m

» Squaring from KLT relations...or the double copy



e Apply double copy to HEFT

»  Standard double copy studied by Haddad & Helset

»  We propose a novel double-copy based on work developed in YM
(Chen, Johansson, Teng & Wang ’19)

»  Advantages:
- manifestly gauge invariant numerators (=term by term)
— compact expressions, fewer diagrams

— easier loop integrations



Colour/kinematics duality in one slide

(Bern, Carrasco, Johansson)

e Compton amplitude in gauge theory:

b j
:z[ — ;’@( = ;ﬂw< (T (T} = (T7),, (T} = i f™ (T,
a l

e Relations between triplets of colour factors: ¢, — ¢;; = ¢y

» Jacobi identity, from colour algebra

. . C;n;
e Write amplitudesas A,=) —

ier ¢
» I = setof all cubic graphs

e Numerators satisfy n, — n; = ny;

» manifestation of an underlying kinematic algebra ? Colour/Kinematics duality

»  For self-dual YM: area-preserving diffeomorphisms (Monteiro & O’ Connell)



Double copy to gravity

C: N
o AYM — 171
Gauge theory amplitude A4, h

el 1
n:-n:

Obtain a gravity amplitude as  A," = #

iel’ L

Compton amplltude in grawty
P2 Pp3 D2

AGRM _ N,(1234)° N N,(1324)* N N4(1[2,3]4)2
2p-; 2p1-p3 8§23

Numerators satisfy N,(1[2,3]4) = N,(1234) — N,(1324)

» Drawback: numerators are not gauge invariant, leading to potentially
very large expressions

» Improve on this!



e Gauge-invariant double copy from algebraic
numerators fOI’ HEFT (Brandhuber, Chen, GT, Wen)

» Introduce vector and tensor currents representing the generators of the
kinematic algebra

»  Construct a fusion rule among them

o Key features:

»  Sum over a subset of cubic diagrams where the two massive particles
always connect via a single cubic vertex

»  Diagrams contain only massless propagators

»  Much fewer terms, compact expressions, easy to integrate!



Example

e Five-point amplitude with new double copy

ASYM—M(12345) — '/VS([[2’3],4]’ V) n /Vs([Z,[3,4]],v) \
8234523 8234534
2 2 )
W <([[2,3],4], N <([[2,4],3], W <([[3,4],2],
AGRM(12345) = (#2314 0] [FsA24131 0] [ 5134121 0)
5234523 5234524 534534 /

Particles | and 5 are the massive scalars

v

VF2'F3V’;F4V
(vV-p3)(v:py)

LGy, by, --nni) 1= [” - P(iziO] [” - P(iaizil)] [” - ”:D(ir...izio]

N5([[2,31,4],v) = L(2,3,4) » [m } nested numerator VI =vkpy

v

v

v

P, ij... ) denotes the cyclic permutation j; — j, = jz = =+ = j, = Jj



e Term by term gauge invariant!

»  kinematic numerators expressed in terms of field strengths

»  results from standard double copy / Feynman diagrams considerably more complicated!

e Jacobi relations automatically satisfied!
»  Numerators with “nested commutators”
y W S([2,314],0) = H(234,v) — H'(324,v) — N (423,v) + N 5(432,v) and s0 on

»  We have automatically

@5([2,[3,4]], v) = Ns([12,31,4], v) — #5([[2,4],3], V)]

e Just an example, can obtain higher-point amplitudes

»  e.g.six-point amplitudes for three-loop potential calculation



One loop

e Expansion of the one-loop amplitude in the masses:

3, 3
/ i)

D2

h

y2Z

ml mz

pP1 —»— H —— P4

ml mz

b2 —»— H —»— D3

Classical

)
mym, \

b2 »— H —»— D3

_________________ = unitarity cut
— = cut

Pr >— H —»— P4

Quantum /

» Power of mass is power of 1/7

» Nice diagrammatic decomposition! (possibly reminiscent of the non-abelian
exponentiation theorem for the Wilson loop...)

»  Hyperclassical term exponentiates tree level in impact parameter space

® TO Iead|ng Ol”der in q — p3 — pz . (Kabat & Ortiz; Akhouri, Saotome & Sterman)

P2 —PE—PE—VP?) D2 —»—ﬁ—»pia
_|_ ~

i

l 1

2m2(v2 . fl) +ie

=270(2 ) ~ —
—2m2(V2'lzﬂ1)+l‘8 d ( m2(V2 1)) my



Two loops

e Done already a number of times

»  First computation by Bern, Cheung, Roiban, Shen, Solon, Zeng (2019)
» More recently: Cheung & Solon (2020), Bjerrum-Bohr et al (2021)

e Our goal: simplify the calculation, preparlng the way to
higher loops

» Compactness of our expressions p1

H D4
»  HEFT amplitudes contain linear propagatorsWre simple(r) to integrate!



e One-loop done

e Two loops: almost completed

» Integrations performed with Henn’s differential equation method

» Boundary conditions easy to impose

e Conjecture for the probe limit at any loops




Conclusions & open problems

® On-shell methods applied to problems in classical GR

» Newton potential, particle deflection...

»  powerful applications of amplitude methods

® General relativity regarded as an effective theory

»  We focused on cubic corrections to curvature

® Heavy-mass effective theory and its double copy

» Compact trees for better loop integrations

® (Some) open issues

» computation of higher PM terms in the potential

_ » Radiation, and connection to wave forms for gravitational waves! )

and many more...



