Exploring the $U(1)_{L_{\mu}-L_{\tau}}$ Solution to the Muon's Anomalous Magnetic Moment Using Future Experimental Probes

Based on: arXiv: 2104.03297

Dorian Amaral¹ David Cerdeño² Andrew Cheek³ Patrick Foldenauer¹ June 4, 2021

¹Durham University ²Universidad Autónoma de Madrid ³Université catholique de Louvain

Adapted from: [B. Abi et al. arXiv: 2104.03281]

... And There was (Hidden) Light!

Adding a generic $U(1)_X$ extension to the SM gives us:

$$\mathcal{L}_{\rm BSM} \ni - \frac{\stackrel{\downarrow}{\epsilon_{X}}}{2\cos\theta_{W}} B_{\alpha\beta} X^{\alpha\beta} - g_{X} j^{X}_{\alpha} X^{\alpha} - \frac{M^{2}_{X}}{2} X_{\alpha} X^{\alpha}$$

• Simple $U(1)_{L_{\mu}}$ can explain Δa_{μ} :

• But so can $U(1)_{L_{\mu}-L_{\tau}}$, with no anomalies:

$$j^{\mu-\tau}_{\alpha} \ni \bar{L}_2 \gamma_{\alpha} L_2 - \bar{L}_3 \gamma_{\alpha} L_3$$

Coupling to third gen.

Suppose $(g-2)_{\mu}$ is real and $U(1)_{L_{\mu}-L_{\tau}}$ is responsible for it.

Can we:

- 1. Experimentally observe $U(1)_{L_{\mu}-L_{\tau}}$ signatures?
- 2. Distinguish $U(1)_{L_{\mu}-L_{\tau}}$ signatures from $U(1)_{L_{\mu}}$ signatures?

$$U(1)_{L_{\mu}-L_{\tau}}$$

- \cdot Couples to $(\mu,
 u_{\mu})$ and $(au,
 u_{ au})$
- $\varepsilon_x \simeq -g_x/70$

 $U(1)_{L_{\mu}}$

- + Couples to $(\mu,
 u_\mu)$ only
- $\varepsilon_x \in (-g_x/10, -g_x/100)$

1. Muon Beams: The Coupling Capturers

2. Spallation: The Mixing Managers

3. Direct Dectection: The Tau Tester

[DA DC AC PF. arXiv: 2104.03297, D. Amaral et al. arXiv: 2006.11225]

The Fitting Game

- 1. Generate 'data' from our four $U(1)_{L_{\mu}-L_{\tau}}$ BPs for given experiment.
- 2. Pretend we don't know the underlying model.
- 3. Perform a $(g_x, M_{A'})$ -fit assuming the model is:
 - a $U(1)_{L_{\mu}-L_{\tau}}$ b $U(1)_{L_{\mu}}$
- 4. Hope we can retrieve the BP with model discrimination.

Muon Beams: The Coupling Capturers

The Invisible A' in the Muon Beam

- 1. Muons sent hurtling towards a target
- 2. Kinetic mixing with SM photon \implies Bremsstrahlung production
- 3. A' decays. This can happen via two channels:

$$A'
ightarrow \mu ar{\mu}$$
 $A'
ightarrow
u_{\mu} ar{
u}_{\mu}$

Within $(g-2)_{\mu}$ solution, $M_{A'} < 2m_{\mu}$, so have only invisible decay

4. Missing energy signature gives us spectrum for A' events

Brems. from initial muon state

Brems. from final muon state

NA64 μ at CERN

- Extension of its e⁻ cousin
- Detects missing energy through series of calorimeters
- Characterised by:
 - · Lead target material
 - No. Muons on target (MOT)
 - Target length
 - Detector length

Data Generation: How Many A' Events?

We meet the A' in the brems. production cross section:

Cross section is only sensitive to g_{x} ! Could be either g_{μ} or $g_{\mu\tau}$

This means we can play *The Fitting Game*, but we have no way to distinguish a $U(1)_{L_{\mu}-L_{\tau}}$ from a $U(1)_{L_{\mu}}$.

The Fitting Game: NA64 μ and $U(1)_{L_{\mu}-L_{\tau}}$

The Fitting Game: NA64 μ and $U(1)_{L_{\mu}}$

• NA64 μ gives us the g_{χ} puzzle piece (to good extent)

• NA64 μ has some sensitivity to $M_{A'}$ (better for higher masses)

• But we have no way to discriminate between $U(1)_{L_{\mu}-L_{\tau}}$ and more generic $U(1)_{L_{\mu}}$...

If only we had sensitivity to the kinetic mixing...

Spallation: The Mixing Managers

$CE\nu NS$ with Spallation

- 1. Spallation: Protons collide with a target to produce π^+
- 2. π^+ decays, allowing for two neutrino production channels:

$$\pi^+ \to \mu^+ \nu_\mu \qquad \qquad \mu^+ \to e^+ \nu_e \bar{\nu}_\mu$$

- 3. Neutrinos coherently scatter off nuclei, which recoil at energy E_R
- 4. Distribution of events in E_R tells us about $CE\nu NS$ physics!

A Spallation Smorgasbord

Experiment	Mass [ton]	$E_{ m th} [m keV_{ m nr}]$	NPOT $[10^{23}/yr]$	r	<i>L</i> [m]	$\sigma_{\rm sys}$
CENNS610	0.61	~ 20	1.5	0.08	28.4	8.5%
ESS10	0.01	0.1	2.8	0.3	20	5%
CCM	7	10	0.177	0.0425	20	5%
ESS	1	20	2.8	0.3	20	5%

Data Generation: How Much $CE\nu NS$?

Our hidden photon makes an appearance in cross section:

$$\frac{\mathrm{d}\sigma_{\nu_{\alpha N}}}{\mathrm{d}E_{R}} \propto c_{\mathrm{SM}} + \underbrace{(g_{\mathbf{x}}\varepsilon_{\mathbf{x}}Q'_{\nu_{\alpha}})}_{\mathrm{Product!}} \underbrace{(g_{\mathbf{x}}\varepsilon_{\mathbf{x}}Q'_{\nu_{\alpha}})}_{>0} \underbrace{(g_{\mathbf{x}}\varepsilon_{\mathbf{x}}Q'_{\nu_{\alpha}})}_{>0} + \underbrace{(g_{\mathbf{x}}\varepsilon_{\mathbf{x}}Q'_{\nu_{\alpha}})}_{>0}^{2} c_{\mathrm{BSM}}(E_{R}, M_{A'})$$

$$Q'_{\nu_{\alpha}} = \begin{cases} 0 & \text{if } \alpha = e \\ +1 & \text{if } \alpha = \mu \\ -1 & \text{if } \alpha = \tau \end{cases} \qquad \text{We only get negative interference!}$$

CE*v***NS Spectra**

[DA DC AC PF. arXiv: 2104.03297]

The Fitting Game: Spallation Experiments

- We now have sensitivity to ε_x
- What happens when we assume the wrong value of ε_x in $U(1)_{L_{\mu}}$?
 - Say, $\varepsilon_x = -g_x/10$ instead of underlying $\varepsilon_x = -g_x/70$?
- Expect g_x fit will be lower to compensate.
 - Remember, spallation only sensitive to the product $g_x \varepsilon_x$!
- But NA64 μ already has stakes on g_{χ} . There's going to be tension.

The Fitting Game: Spallation and The Wrong Shoe ($\varepsilon_x = -g_x/10$)

[DA DC AC PF. arXiv: 2104.03297]

The Fitting Game: Spallation and The Shoe Fits! ($\varepsilon_x = -g_x/70$)

- Spallation sources are sensitive to the product $g_x \varepsilon_x$
- In order to fit g_x , must assume a value for ε_x
- If we make the wrong assumption, have tension with a g_x -measurer (NA64 μ)
- + So NA64 μ + Spallation gives us the $\varepsilon_{\rm X}$ puzzle piece

Direct Dectection: The Tau Tester

How it Works: The Cosmic Punching Bag

- Dark matter detectors by trade
- But branching out to **solar** ν 's!
- Bad for DM detection (irreducible bkg)...
- But good for ν detection (irreducible signal)!

[Jianglai Liu, Xun Chen, and Xiangdong Ji. arXiv: 1709.00688]

DARWIN: Our Best Hope

- Previous work: Xe-based detectors best for $(g-2)_{\mu}$
- DARWIN biggest one proposed

- + BIG exposure: 200 $\mathrm{ton} \cdot \mathrm{yr}$
- Light/charge signal can be used to tell if NR or ER
- + High WIMP threshold ($E_{\rm th} \sim 5 \, {\rm keV}$), but precedent for $E_{\rm th} \sim 1 \, {\rm keV}$ (LUX)

Data Generation: ν_{τ} Appears

Same as for spallation but with some important differences:

The NR Killer: A Deficit vs. An Excess

NRs die off quickly and ERs drowning in background! Difficult...

What $E_{\rm th}$ and ε do we need to observe an overall 5σ excess over SM?

Note: For ERs, $|c_{\rm int}| \ll |c_{\rm BSM}| \implies$ Get an excess in both models

Discovering the Excess

[DA DC AC PF. arXiv: 2104.03297]

Discovering the Excess

[DA DC AC PF. arXiv: 2104.03297]

The Fitting Game: Putting it All Together...

DM Direct Detection: The Key Takeaways

- DM direct detectors are also sensitive to the product $g_x \varepsilon_x$
- Direct detectors sensitive to $\nu_{ au}$'s
- DARWIN modified to 1 keV could discover $U(1)_{L_{\mu}-L_{\tau}}$ excess at 5 σ
- Direct detectors would see excess in $U(1)_{L_{\mu}-L_{\tau}}$ and deficit in $U(1)_{L_{\mu}}$ for CE ν NS
- · DARWIN tells us what puzzle we're solving!

Conclusions and a Path to the Nobel Prize?

- 1. FNAL $(g-2)_{\mu}$ results hint at exciting new physics
- $U(1)_{L_{\mu}-L_{\tau}}$ very elegant explanation, but difficult to disentangle from $U(1)_{L_{\mu}}$
- 2. Muon beam experiments could tightly constrain g_x
 - Spallation experiments could give us valuable information about $\varepsilon_{\rm x}$
 - DD experiments could be model tie-breaker
- 3. Together, form powerful probes of $U(1)_{l_{\mu}-l_{\tau}}!$

