Electroweak precisin calculations for future lepton colliders

A. Freitas

University of Pittsburgh

- 1. Electroweak precision observables
- 2. Real observables vs. pseudo-observables
- 3. Theoretical predictions in the SM
- **4.** Electroweak precision physics with future e^+e^- colliders
- 5. New physics reach: Effective theory
- 6. New physics reach: Models

(from xkcd.com)

Electroweak precision observables

Status of electroweak Standard Model

Structure of SU(2) \times U(1) interactions well understood

Open questions of the Standard Model:

- Is the Higgs boson part of a more complex sector?
- Is there an extended/unified symmetry group?
- What is dark matter?
- Why is there more matter than anti-matter in the universe?

ightarrow Physics beyond the Standard Model

- \rightarrow Direct searches at high-energy colliders (LHC)
- → Astro-physics searches (e.g. DM direct / indirect detection)
- \rightarrow Indirect evidence from precision measurements

 \rightarrow lecture by S. Heinemeyer

Quantum effects

Quantum fluctuations in Quantum Field Theory: Virtual emission and re-absorption of **all** physical particles

 $\rightarrow\,$ Inference of information about heavy SM particles and new physics from precision measurements without direct observation

Fermi constant / W mass

3/57

W mass

Although $m_{\mu} \ll m_{\rm t}, M_{\rm H}, ...,$ the muon decay rate is sensitive to $m_{\rm t}, M_{\rm H}, ...$ through **quantum** corrections

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8s_w^2 M_W^2} \left(1 + \Delta r(M_Z, M_H, m_t, \dots)\right)$$

electroweak corrections (few %)

Can solve for

 $M_{\mathsf{W}} = M_{\mathsf{W}}(G_F, M_{\mathsf{Z}}, M_{\mathsf{H}}, m_{\mathsf{t}}, \dots)$

 $e^+e^- \rightarrow f\bar{f}$ for $E_{\rm CM} \sim M_{\rm Z}$:

- Mass M_Z
- Width $\Gamma_Z = \sum_f \Gamma_{ff}$
- Braching ratio $R_f = \Gamma_{ff} / \Gamma_Z$

•
$$\sigma^0 \approx \frac{12\pi\Gamma_{ee}\Gamma_{ff}}{(s-M_Z^2)^2 + M_Z^2\Gamma_Z^2} = \frac{12\pi}{M_Z^2}R_eR_f$$

$$\Gamma_{ff} = C \left[(g_{\mathsf{L}}^f)^2 + (g_{\mathsf{R}}^f)^2 \right]$$

 $e^+e^- \rightarrow f\bar{f}$ for $E_{\rm CM} \sim M_{\rm Z}$:

- Mass M_Z
- Width $\Gamma_Z = \sum_f \Gamma_{ff}$
- Braching ratio $R_f = \Gamma_{ff} / \Gamma_Z$

•
$$\sigma^0 \approx \frac{12\pi\Gamma_{ee}\Gamma_{ff}}{(s-M_Z^2)^2 + M_Z^2\Gamma_Z^2} = \frac{12\pi}{M_Z^2}R_eR_f$$

$$\Gamma_{ff} = C \left[(g_{\mathsf{L}}^f)^2 + (g_{\mathsf{R}}^f)^2 \right]$$

Comparison with experiment: $\Gamma_{ll} = 83.984(86) \text{ MeV}$ $R_b = 0.2163(7)$

210

Particle Data Group '18

Z-pole asymmetries

Parity violation in $Zf\bar{f}$ couplings: $g^f_L \neq g^f_R$

Left-right asymmetry:

$$A_{LR} \equiv \frac{1}{P_{e^-}} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \mathcal{A}_e$$
$$\mathcal{A}_f = \frac{2(1 - 4\sin^2\theta_{eff}^f)}{1 + (1 - 4\sin^2\theta_{eff}^f)^2}$$
$$\sin^2\theta_{eff}^f = \frac{g_R^f}{2|Q_f|(g_R^f - g_L^f)}$$

Z-pole asymmetries

Forward-backward asymmetry:

$$A_{\mathsf{FB}} \equiv \frac{\sigma_{\mathsf{F}} - \sigma_{\mathsf{B}}}{\sigma_{\mathsf{F}} + \sigma_{\mathsf{B}}} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$

Polarization asymmetry: Average τ pol. in $e^+e^- \rightarrow \tau^+\tau^-$

$$\langle \mathcal{P}_{\tau} \rangle = -\mathcal{A}_{\tau}$$

Z-pole asymmetries

Forward-backward asymmetry:

$$A_{\mathsf{FB}} \equiv \frac{\sigma_{\mathsf{F}} - \sigma_{\mathsf{B}}}{\sigma_{\mathsf{F}} + \sigma_{\mathsf{B}}} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$

Polarization asymmetry:

Average
$$\tau$$
 pol. in $e^+e^- \rightarrow \tau^+\tau^-$

$$\langle \mathcal{P}_{\tau}
angle = -\mathcal{A}_{\tau}$$

Comparison with experiment: $A_l = 0.1475(10)$

Combination and SM fit

Constraints from fit of SM to *all* electroweak precision observables:

Real observables vs. pseudo-observables

Real observables vs. pseudo-observables

Kureav, Fadin '85 Berends, Burgers, v. Neerven '88 Kniehl, Krawczyk, Kühn, Stuart '88 Beenakker, Berends, v. Neerven '89 Bardin et al. '91; Skrzypek '92 Montagna, Nicrosini, Piccinini '97 Ablinger, Blümlein, De Freitas, Schönwald '20

Soft photons (resummed) + collinear photons

$$\mathcal{R}_{\text{ini}} = \frac{\zeta (1 - s'/s)^{\zeta - 1}}{\Gamma(1 - \zeta)} e^{-\gamma_{\mathsf{E}}\zeta + 3\alpha L/2\pi}$$
$$-\frac{\alpha}{\pi} L \left(1 + \frac{s'}{s}\right) + \alpha^2 L^2 \dots + \alpha^3 L^3 \dots$$
$$\zeta = \frac{2\alpha}{\pi} (L - 1)$$
$$L = \log \frac{s}{m_{\mathsf{e}}^2}$$

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s,s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

computed in SM $\sigma_{\rm Z} = \frac{R}{(s - \overline{M}_{\rm Z}^2)^2 + \overline{M}_{\rm Z}^2 \overline{\Gamma}_{\rm Z}^2} + \sigma_{\rm non-res}^{\bullet}$

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

In experimental analyses:

$$\sigma \sim \frac{1}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$$

$$\overline{M}_{Z} = M_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx M_{Z} - 34 \text{ MeV}$$

$$\overline{\Gamma}_{Z} = \Gamma_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx \Gamma_{Z} - 0.9 \text{ MeV}$$

QED radiation in Z asymmetries

QED radiation in principle cancels in asymmetries, e.g. $A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$

Some effects from detector acceptance and cuts

Typical indfluence $< 10^{-3}$

Implementation of QED effects:

a) Analytical formulae, e.g. ZFITTER, TOPAZ0

Arbuzov, Bardin, Christova, Kalinovskaya, Riemann, Riemann, ... Montagna, Nicrosini, Passarino, Piccinini, ...

b) Monte Carlo event generator, e.g. KORALZ

Jadach, Ward, ...

Theoretical predictions in the SM

Renormalization

- Loop integrals are divergent
- Cancel divergencies by matching input parameters to observable quantities (renormalization)

For EWPOs:

- At Born level three inputs, e.g. α , G_{F} , M_{Z}
- **Inside loops** additional inputs: $M_{\rm H}, m_{\rm t}, \alpha_{\rm s}, \dots$
- Predictions: M_{W} , Γ_{ff} , $\sin^2 \theta_{eff}^{f}$

Could choose different set of Born inputs, e.g. α , M_W , M_Z

Mass renormalization

Mass renormalization

Peak in cross-section / invariant mass
$$\rightarrow$$
 pole of propagator

$$\begin{array}{c} = & -i \\ = & -i \\ \hline q^2 - M_W^2 + \Sigma_T^W(q^2) - \delta M_W^2 \\ \end{array}$$
Naive approach: denominator = 0 for $q^2 \rightarrow M_W^2 \\ \rightarrow \delta M_W^2 = \operatorname{Re} \Sigma_T^W(M_W^2) \\ \end{array}$
For $q^2 \approx M_W^2$: Expand real part of denom. in $q^2 - M_W^2$:

$$\begin{array}{c} = & \frac{-i}{Q^2 - M_W^2} + (q^2 - M_W^2) \\ \hline Q = & \frac{-i}{Q(q^2 - M_W^2) + i \underbrace{\operatorname{Im} \Sigma_T^W(q^2)}_{\propto q^2}} \\ \end{array}$$

$$\begin{array}{c} = & \frac{|\mathcal{M}|^2}{Q(q^2 - M_W^2)^2 + q^2 \frac{\Gamma_W^2}{M_W^2}} \\ \hline Q = & \frac{-i}{Q(q^2 - M_W^2) + i \underbrace{\operatorname{Im} \Sigma_T^W(q^2)}_{\propto q^2}} \\ \end{array}$$

Mass renormalization

Correct approach: physical (and gauge-invariant) pole is complex! $q^2 - \overline{M}_W^2 + \Sigma_T^W(q^2) - \delta \overline{M}_W^2 = 0$ for $q^2 \to \mu_W^2 \equiv \overline{M}_W^2 - i \overline{M}_W \overline{\Gamma}_W$ $\rightarrow \delta \overline{M}_{W}^{2} = \text{Re } \Sigma_{T}^{W}(\mu_{Z}^{2})$ $\approx \text{Re} \Sigma_T^W(\overline{M}_W^2) + \overline{M}_W\overline{\Gamma}_W \ln \Sigma_T^W'(\overline{M}_W^2)$ $\overline{M}_{W}\overline{\Gamma}_{W} = \text{Im }\Sigma_{T}^{W}(\mu_{7}^{2})$ Expand denom. in $q^2 - \mu_z^2$: $\underbrace{\operatorname{Re} \Sigma_T^{\mathsf{W}}(\mu_{\mathsf{W}}^2) - \delta M_{\mathsf{W}}^2}_{0} + \underbrace{i \operatorname{Im} \Sigma_T^{\mathsf{W}}(\mu_{\mathsf{W}}^2) - i \overline{M}_{\mathsf{W}} \overline{\Gamma}_{\mathsf{Z}}}_{0} + (q^2 - \mu_{\mathsf{W}}^2) \underbrace{(1 + \Sigma_T^{\mathsf{W}'}(\mu_{\mathsf{W}}^2))}_{= \mathbb{Z}} + \dots$ $\frac{-i}{Z(q^2 - \mu_{W}^2)} \xrightarrow{|\mathcal{M}|^2} \frac{Z^{-2}}{(q^2 - \overline{M}_{VA}^2)^2 + \overline{M}_{VA}^2 \overline{\Gamma}_{VA}^2}$

Counterterm for el. charge related to photon vacuum pol. П through Ward id.:

At 1-loop:
$$\delta e = \frac{e}{2} \Pi(k^2=0) \qquad \left[\Pi(k^2) = \frac{\sum_T^{\gamma}(k^2)}{k^2} \right]$$

$$\Pi(0) = \sum_f N_c^f Q_f^2 \frac{\alpha}{3\pi} \left(\frac{2}{4-d} - \gamma_E - \ln \frac{m_f^2}{4\pi\mu^2} \right)$$

$$\mathbf{m}_f \text{ not well-defined for } f = u, d, s, (c)$$

$$\mathbf{At } k^2 = 0 \text{ we have hadrons, not quarks}$$

Use dispersion relation:

$$\operatorname{Re}\Pi(s) = \frac{1}{\pi} \int_0^\infty ds' \, \frac{\operatorname{Im}\Pi(s')}{s' - s - i\epsilon}$$

$$Im \Pi_{had}(s') = \frac{1}{e^2} Im \mathcal{M} \left\{ \stackrel{e}{} \longrightarrow \stackrel{e}{} \stackrel{e}{} \right\}_{\theta=0}$$

$$= \frac{s'}{e^2} \sum_{q} \sigma[e^+e^- \to q\bar{q}] \qquad \text{[optical theorem]}$$

$$= \frac{s'}{e^2} R(s') \underbrace{\sigma[e^+e^- \to \mu^+\mu^-]}_{4\pi\alpha^2/(3s')}$$

$$R(s) = \frac{\sigma[e^+e^- \to hadrons]}{\sigma[e^+e^- \to \mu^+\mu^-]} \qquad \text{[from data]}$$

Finite combination

$$\Delta \alpha_{\text{had}} \equiv \Pi_{\text{had}}(0) - \Pi_{\text{had}}(M_Z^2) = -\frac{\alpha}{3\pi} \int_0^\infty ds' \, \frac{R(s')}{s'(s' - M_Z^2 - i\epsilon)}$$

$$\delta e = \frac{e}{2} \Big[\Pi(M_Z^2) + \Delta \alpha \Big]$$

can be computed in perturb. theory

- a) $\Delta \alpha_{had}$ from $e^+e^- \rightarrow had$. using dispersion relation
 - New data from BaBar, VEPP, BES, KLOE

- a) $\Delta \alpha_{had}$ from $e^+e^- \rightarrow had$. using dispersion relation
 - New data from BaBar, VEPP, BES, KLOE
 - Discrep. between BaBar & KLOE has small impact

 \rightarrow Consistent results $\Delta \alpha_{had} \approx 0.0276 \pm 0.0001$

Davier et al. '19; Jegerlehner '19; Keshavarzi, Nomura, Teubner '19

- a) $\Delta \alpha_{had}$ from $e^+e^- \rightarrow had$. using dispersion relation
 - New data from BaBar, VEPP, BES, KLOE
 - Discrep. between BaBar & KLOE has small impact
 - \rightarrow Consistent results $\Delta \alpha_{had} \approx 0.0276 \pm 0.0001$

Davier et al. '19; Jegerlehner '19; Keshavarzi, Nomura, Teubner '19

b) $\Delta \alpha_{had}$ from Lattice QCD (work in progress)

Burger et al. '15 Cè et al. '19

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR
- $m_{\rm t}$: Most precise measurement at LHC: $\delta m_{\rm t} \sim 0.3~{\rm GeV}$ PDG '20

Theoretical ambiguity in mass def.: Hoang, Plätzer, Samitz '18

 $m_{t}^{CB}(Q_{0}) - m_{t}^{\text{pole}}$ $= -\frac{2}{3}\alpha_{s}(Q_{0}) Q_{0} + \mathcal{O}(\alpha_{s}^{2}Q_{0})$ $\approx 0.5 \pm 0.2_{\text{pert.}} \pm 0.2_{\text{np.}}\text{GeV}$

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR
- $m_{
 m t}$: Most precise measurement at LHC: $\delta m_{
 m t} \sim 0.3~{
 m GeV}$

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV:

Impact of theory modelling:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def.}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

Reviews: 1906.05379, 2012.11642

- M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape; δM_Z , $\delta \Gamma_Z \sim 0.1$ MeV at FCC-ee \rightarrow Main theory uncertainties: QED ISR
- $m_{
 m t}$: Most precise measurement at LHC: $\delta m_{
 m t} \sim 0.3~{
 m GeV}$

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV:

Impact of theory modelling:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{\text{exp}}$$

$$\oplus [50 \text{ MeV}]_{\text{QCD}}$$

$$\oplus [10 \text{ MeV}]_{\text{mass def.}}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

future improvements:

 $[20 \text{ MeV}]_{exp}$ $\oplus [30 \text{ MeV}]_{QCD} \quad (h.o. \text{ resummation})$ $\oplus [10 \text{ MeV}]_{mass def.}$ $\oplus [15 \text{ MeV}]_{\alpha_s} \quad (\delta \alpha_s \lesssim 0.0002)$

 \lesssim 50 MeV

• m_t:

→ Impact on EWPOs:

$$\begin{split} \delta m_{\rm t} &= 0.5 \; {\rm GeV} \qquad \Rightarrow \qquad \delta M_{\rm W} \approx 3 \; {\rm MeV} \\ \delta \sin^2 \theta_{\rm eff}^\ell &\approx 1.5 \times 10^{-5} \end{split}$$

• α_{s} : \rightarrow lecture by P. Skands Many methods, e.g. Lattice QCD ($\alpha_{s} \sim 0.118$), $e^{+}e^{-}$ event shapes and DIS prefer ($\alpha_{s} \sim 0.114$) \rightarrow Impact on EWPOs: $\delta \alpha_{s} = 0.004 \Rightarrow \delta M_{W} \approx 3 \text{ MeV}$ $\delta \sin^{2} \theta_{eff}^{\ell} \approx 1.5 \times 10^{-5}$

Currently not dominant, but also not negligible error

SM input parameters

22/57

Janot '15

140 √s (GeV)

130

 $\Delta \alpha_{had}$: a) From $e^+e^- \rightarrow$ had. using dispersion relation Current: $\delta(\Delta \alpha_{had}) \sim 10^{-4}$ Improvement to $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ likely Jegerlehner '19 b) Direct determination from $e^+e^- \rightarrow \mu^+\mu^-$ off the Z peak Janot '15 $|\mathcal{M}_{ij}|^2 \propto |g_i^{\ell}|^2 |g_j^{\ell}|^2 + \frac{s - M_Z^2}{s} \alpha(M_Z) |g_{i,j}^{\ell}|^2 + \dots$ \rightarrow Use $A_{\sf FB}^{\mu\mu}$ and two cms energies determined from Z pole to reduce systematics Requires theory input: \rightarrow Sensitivity maximized for 2-/3-loop corrections for $\sqrt{s_1}$ ~ 88 GeV, $\sqrt{s_2}$ ~ 95 GeV) $e^+e^- \rightarrow \mu^+\mu^ \rightarrow \delta(\Delta \alpha_{had}) \sim 3 \times 10^{-5}$ for $\mathcal{L}_{int} = 85 \text{ ab}^{-1}$

Objective: Comparison of EWPO measurements with SM theory predictions						
	$\delta M_{\sf W}$ [MeV]	$\delta \sin heta_{ extsf{eff}}^{ extsf{lept}}$ [10 ⁻⁵]	Experimental precision sensitive to 2-/3-loop effects			
now	± 12	± 16				
LHC	± 10	± 15				
ILC	± 2.5	± 1.3				
1-loop	± 450	± 1000	Marciano, Sirlin '80			
2-/3-loop QCD	± 70	± 45	Chetyrkin, Kühn, Steinhauser '95			
ferm. 2-loop EW	± 50	± 90	Freitas et al. '00 Awramik, Czakon '03 Awramik, Czakon, Freitas, Weiglein '04			
bos. 2-loop EW	± 2	± 1	Awramik, Czakon, Freitas '06			
leading 3-loop	\pm 5	± 25	Faisst, Kühn, Seidensticker, Veretin '03			

Theory calculations: Status

Many seminal works on 1-loop and leading 2-loop corrections Veltman, Passarino, Sirlin, Marciano, Bardin, Hollik, Riemann, Degrassi, Kniehl, ...

Full 2-loop results for M_W , Z-pole observables

Freitas, Hollik, Walter, Weiglein '00	Awramik, Czakon, Freitas '06
Awramik, Czakon '02	Hollik, Meier, Uccirati '05,07
Onishchenko, Veretin '02	Awramik, Czakon, Freitas, Kniehl '08
Awramik, Czakon, Freitas, Weiglein '04	Freitas, Huang '12

• Approximate 3- and 4-loop results (to ρ parameter)

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05 Chetyrkin et al. '06 Boughezal, Czakon '06

Leading terms in SM prediction

$$\begin{split} \frac{G_F}{\sqrt{2}} &= \frac{e^2}{8(1 - \frac{M_W^2}{M_Z^2})M_W^2} (1 + \Delta r) \qquad \Delta r = \Delta \alpha - \frac{c_w^2}{s_w^2} \Delta \rho + \Delta r_{\text{rem}} \\ \sin^2 \theta_{\text{eff}}^f &= \left(1 - \frac{M_W^2}{M_Z^2}\right) (1 + \Delta \kappa) \qquad \Delta \kappa = \frac{c_w^2}{s_w^2} \Delta \rho + \Delta \kappa_{\text{rem}} \\ \\ \Delta \rho \propto \alpha_t \qquad (1 \text{ loop}) \\ &\propto \alpha_t^2, \, \alpha_t \alpha_s \qquad (2\text{-loop}) \\ &\propto \alpha_t^3, \, \alpha_t^2 \alpha_s, \, \alpha_t \alpha_s^2 \qquad (3\text{-loop}) \end{split}$$

$$egin{array}{lll} \Deltalphapprox 6\% \ rac{c_{
m w}^2}{s_{
m w}^2}\Delta
hopprox 3\% \ \Delta r_{
m rem},\ \Delta\kappa_{
m rem}\lesssim 1\% \end{array}$$

Leading terms in SM prediction

$$\begin{split} \frac{G_F}{\sqrt{2}} &= \frac{e^2}{8(1 - \frac{M_W^2}{M_Z^2})M_W^2} (1 + \Delta r) & \Delta r = \Delta \alpha - \frac{c_w^2}{s_w^2} \Delta \rho + \Delta r_{\text{rem}} \\ & \uparrow \\ & \text{depends on } \log M_H \\ \sin^2 \theta_{\text{eff}}^f &= \left(1 - \frac{M_W^2}{M_Z^2}\right) (1 + \Delta \kappa) & \Delta \kappa = \frac{c_w^2}{s_w^2} \Delta \rho + \Delta \kappa_{\text{rem}} \\ & \swarrow \\ & \Delta \rho \propto \alpha_t & (1 \text{ loop}) \\ & \propto \alpha_t^2, \, \alpha_t \alpha_s & (2 \text{-loop}) \\ & \propto \alpha_t^3, \, \alpha_t^2 \alpha_s, \, \alpha_t \alpha_s^2 & (3 \text{-loop}) \\ & \propto \alpha_t^3, \, \alpha_t^2 \alpha_s, \, \alpha_t \alpha_s^2 & (3 \text{-loop}) \\ & & \\$$

$$egin{array}{lll} \Deltalphapprox 6\% \ rac{c_{
m w}^2}{s_{
m w}^2}\Delta
hopprox 3\% \ \Delta r_{
m rem},\ \Delta\kappa_{
m rem}\lesssim 1\% \end{array}$$

Leading terms in SM prediction

Quadratic dependence on m_t , but logarithmic dependence on M_H (at 1-loop)

Higgs doublet
$$\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$
 has 4 indep. components, e.g. $\Omega = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix}$

• Higgs potential $V = -\mu^2(\phi^{\dagger}\phi) + \frac{\lambda}{4}(\phi^{\dagger}\phi)^2 = -\frac{\mu^2}{2}\operatorname{Tr}\{\Omega^{\dagger}\Omega\} + \frac{\lambda}{16}(\operatorname{Tr}\{\Omega^{\dagger}\Omega\})^2$ is invariant under $\Omega \to L\Omega R^{\dagger}, \quad L \in \operatorname{SU}(2)_{\mathsf{L}} \quad R \in \operatorname{SU}(2)_{\mathsf{R}}$

[also gauge couplings, except hypercharge]

• Higgs vev
$$\langle \Omega \rangle = \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}$$
 in invariant under $\Omega \to V \Omega V^{\dagger}$, $V \in SU(2)_{diag}$
"custodial symmetry"

• Yukawa couplings for $y_{t} = y_{b} = y$: $\mathcal{L}_{Y} = -y_{t}\overline{Q}_{3L}\tilde{\phi} t_{R} - y_{b}\overline{Q}_{3L}\phi b_{R} = -y\overline{Q}_{3L}\Omega Q_{3R}$ $Q_{3L} = \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} Q_{3R} = \begin{pmatrix} t_{R} \\ b_{R} \end{pmatrix}$ invariant under SU(2)_{diag} $(Q_{L,R} \rightarrow VQ_{L,R})$

• $SU(2)_{diag}$ broken for $y_t \neq y_b \rightarrow$ large corrections in $\Delta \rho$

	Experiment	Theory error	Main source
M_{W}	$80.379\pm0.012~{ m MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_s$
Γ_Z	2495.2 \pm 2.3 MeV	0.4 MeV	$\alpha^{3}, \alpha^{2} \alpha_{s}, \alpha \alpha_{s}^{2}$
$\sigma_{\sf had}^{\sf 0}$	$41540\pm37~{ m pb}$	6 pb	$\alpha^3, \alpha^2 \alpha_s$
$R_b\equiv\Gamma^b_{ m Z}/\Gamma^{ m had}_{ m Z}$	0.21629 ± 0.00066	0.0001	$\alpha^3, \alpha^2 \alpha_s$
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	$4.5 imes10^{-5}$	$\alpha^3, \alpha^2 \alpha_s$

Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods: Count prefactors (α , N_c , N_f , ...)
 - Extrapolation of perturbative series
 - Renormalization scale dependence
 - Renormalization scheme dependence

Goemetric perturbative series

$$\alpha_{\rm t} = y_{\rm t}^2/(4\pi)$$

$$\begin{split} \mathcal{O}(\alpha^{3}) &- \mathcal{O}(\alpha_{t}^{3}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha^{2}) \sim 0.26 \text{ MeV} \\ \mathcal{O}(\alpha^{2}\alpha_{s}) &- \mathcal{O}(\alpha_{t}^{2}\alpha_{s}) \sim \frac{\mathcal{O}(\alpha^{2}) - \mathcal{O}(\alpha_{t}^{2})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.21 \text{ MeV} \\ \mathcal{O}(\alpha\alpha_{s}^{2}) &- \mathcal{O}(\alpha_{t}\alpha_{s}^{2}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}) \sim 0.23 \text{ MeV} \\ \mathcal{O}(\alpha\alpha_{s}^{3}) &- \mathcal{O}(\alpha_{t}\alpha_{s}^{3}) \sim \frac{\mathcal{O}(\alpha\alpha_{s}) - \mathcal{O}(\alpha_{t}\alpha_{s})}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha\alpha_{s}^{2}) \sim 0.035 \text{ MeV} \end{split}$$

Parametric prefactors:

$$\mathcal{O}(\alpha \alpha_{s}^{2}) - \mathcal{O}(\alpha_{t} \alpha_{s}^{2}) \sim \frac{\alpha n_{\mathsf{Iq}}}{\pi} \alpha_{s}^{2} \sim 0.29 \mathsf{ MeV}$$

Total: $\delta \Gamma_Z \approx 0.5 \text{ MeV}$

Electroweak precision physics with future e^+e^- colliders 30/57

circular colliders: high-lumi run at $\sqrt{s} \sim M_Z$ linear colliders: radiative return $e^+e^- \rightarrow \gamma Z$

\sqrt{s}	M_Z	$2M_W$	240–250 GeV	350–380 GeV
ILC	100 fb $^{-1}$	500 fb $^{-1}$	2 ab $^{-1}$	200 fb $^{-1}$ (10 pts.)
CLIC	—	—	—	1 ab $^{-1}$
FCC-ee	230 ab^{-1}	10 ab $^{-1}$ (2 pts.)	irrel. for EW phys.	200 fb $^{-1}$ (8 pts.)
CEPC	$45 \mathrm{~ab}^{-1}$	2.6 ab^{-1} (3 pts.)	irrel. for EW phys.	_

 \rightarrow lecture by P. Azzi

Anticipated precison for EWPOs:

Quantity	current	ILC	CLIC	FCC-ee	CEPC
M_Z [MeV]	2.1	_	-	0.1	0.5
Γ_Z [MeV]	2.3	—	—	0.1	0.5
M_W [MeV]	12	2.5	?	0.7	1.0
$\sin^2 heta_{ ext{eff}}^\ell$ [10 $^{-5}$]	14	2	7.8	0.5	2.3
$R_b = \Gamma_Z^b / \Gamma_Z^{had} [10^{-5}]$	66	23	38	6	4.3

Can be optimized with different run scenarios

Polarized beams at ILC (
$$P_{e^-}=0.8$$
, $P_{e^+}=0.3$) and CLIC ($P_{e^-}=0.8$)

Electroweak precision at $\sqrt{s} = 250 \text{ GeV}$

EWPOs accessible through radiative return $e^+e^- \rightarrow \gamma Z$

- $\blacksquare \ \gamma$ mostly collinear with beam
- Reduction in cross-section by $\sim \frac{\alpha}{\pi} \ln \frac{s}{m_{\rm P}^2} \sim 0.06$
- Precise det. of m_{ff} from measured angles:

$$m_{ff}^2 = s \frac{1-\beta}{1+\beta}, \quad \beta = \frac{|\sin(\theta_1 + \theta_2)|}{\sin\theta_1 + \sin\theta_2}$$

Additional backgrounds from $e^+e^- \rightarrow WW, ZZ$ that are not flat in m_{ff} Ueno '19

- $A_{LR} \rightarrow \sin^2 \theta_{eff}^{\ell}$ (limited by sys. err. on beam polarization)
- $A_{\mathsf{FB}}^{\mu,\tau,b}$ (statistics limited)
- R_{ℓ} , R_c , R_b (limited by sys. err. on flavor tag)
- No competitive measurements on M_Z , Γ_Z , σ^0 (need to use LEP values)

$Z\gamma$ electroweak precision: theory input

$$\mathcal{R}_{\text{ini}} = \sum_{n} \left(\frac{\alpha}{\pi}\right)^{n} \sum_{m=0}^{n} h_{nm} \ln^{m} \left(\frac{s}{m_{e}^{2}}\right)$$

Universal (m=n) logs known to n = 6, also some sub-leading terms Ablinger, Blümlein, De Freitas, Schönwald '20

Exclusive description: MC tools

Subleading effects: Radiative corrections to $e^+e^- \rightarrow f\bar{f}\gamma (+n\gamma)$

 Some corrections cancel for A_{LR}, A_{FB}, BRs

• NLO for
$$ee \to f\bar{f}\gamma$$

+ NNLO for $ee \to Z\gamma$,

 $Z \to f \bar{f}$ could be sufficient

<u>W mass</u>

W mass measurement from $e^+e^- \to WW$:Baak et al. '13 $\ell \nu_{\ell} \ell' \nu_{\ell'}$: Endpoints of E_{ℓ} or other distributions $\ell \nu_{\ell} j j$: Kinematic reconstructionj j j j: Systematic uncertainty from color reconnectionExpected precision with $\mathcal{L}_{int} = 2 \text{ ab}^{-1}$ at $\sqrt{s} = 250 \text{ GeV}$: $\Delta M_W \approx 2.5 \text{ MeV}$ Theory needs: Small impact of loop corrections, but accurate decription of FSR QED effects needed

To test SM and probe new physics:

Compare measurements of EWPOs with SM theory predictions

Quantity	FCC-ee	CEPC	current theory*
M_W [MeV]	0.7	1.0	4
Γ_Z [MeV]	0.1	0.5	0.4
$R_b = \Gamma_Z^b / \Gamma_Z^{had} [10^{-5}]$	6	4.3	11
$\sin^2 heta_{ ext{eff}}^\ell$ [10 $^{-5}$]	0.5	2.3	4.5

* Current state-of-art: full two-loop + leading 3-loop

To test SM and probe new physics:

Compare measurements of EWPOs with SM theory predictions

			,	
Quantity	FCC-ee	CEPC	current theory*	projected theory [†]
M_W [MeV]	0.7	1.0	4	1
Γ_Z [MeV]	0.1	0.5	0.4	0.15
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	6	4.3	11	5
$\sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$	0.5	2.3	4.5	1.5

* Current state-of-art: full two-loop + leading 3-loop

[†] Future scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^3)$ + leading 4-loop ($N_f^n = \text{at least } n \text{ closed fermion loops}$)

Freitas, Heinemeyer, et al. '19

	CEPC	FCC-ee	Param. error CEPC [†]	Param. error FCC-ee*
M_{W} [MeV]	1	0.7	2.1	0.6
Γ_Z [MeV]	0.5	0.1	0.15	0.1
$R_b [10^{-5}]$	4.3	6	< 1	< 1
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	2.3	0.5	2	1

Parametric inputs from theory prediction in SM:

[†]**CEPC:**
$$\delta m_t = 600 \text{ MeV}, \ \delta \alpha_s = 0.0002, \ \delta M_Z = 0.5 \text{ MeV}, \ \delta(\Delta \alpha) = 5 \times 10^{-5}$$

*FCC-ee: $\delta m_t = 50 \text{ MeV}, \delta \alpha_s = 0.0002, \delta M_Z = 0.1 \text{ MeV}, \delta(\Delta \alpha) = 3 \times 10^{-5}$

Theory calculations

Experimental precision requires inclusion of **multi-loop corrections** in theory

Integrals over loop momenta:

$$d^{4}q_{1}d^{4}q_{2} f(q_{1}, q_{2}, p_{1}, k_{1}, ..., m_{1}, m_{2}, ...)$$

Computer algebra tools:

- Generation of diagrams, $\mathcal{O}(1000) \mathcal{O}(10000)$
- Lorentz and Dirac algebra
- Integral simplification (e.g. symmetries)

Evaluation of loop integrals:

- Analytical
- Approximate (expansions)
- Numerical

not a limiting factor

Analytical calculations

Challenge 1: reduce 1000s of integrals to a small set of *master integrals* Simple 1-loop example:

$$\begin{split} &\int d^4q \; \frac{q \cdot p}{[q^2 - m_1^2][(q + p)^2 - m_2^2]} \\ &= \int d^4q \; \frac{\frac{1}{2}(q + p)^2 - \frac{1}{2}q^2 - \frac{1}{2}p^2}{[q^2 - m_1^2][(q + p)^2 - m_2^2]} \\ &= \frac{1}{2} \int \frac{d^4q}{q^2 - m_1^2} - \frac{1}{2} \int \frac{d^4q}{q^2 - m_2^2} + \frac{m_2^2 - m_1^2 - p^2}{2} \int \frac{d^4q}{[q^2 - m_1^2][(q + p)^2 - m_2^2]} \end{split}$$

Simple cancellations do not work beyond 1-loop:

e.g. diagram to the right with $(q_1 \cdot p_1)$ in numerator

Challenge 1: reduce 1000s of integrals to a small set of *master integrals* Integration-by-parts (IBP) relations:

1-dim. example:
$$\int_{-\infty}^{\infty} dx \, \frac{d}{dx} \, \frac{1+2x}{1+x^2} = f(\infty) - f(-\infty) = 0$$
$$\frac{d}{dx} f(x) = \frac{2}{1+x^2} - \frac{2x(1+2x)}{(1+x^2)^2}$$
$$\Rightarrow \quad \int_{-\infty}^{\infty} dx \, \frac{2x(1+2x)}{(1+x^2)^2} = \int_{-\infty}^{\infty} dx \, \frac{2}{1+x^2}$$

 \rightarrow Similar for $\int d^4q$ integrals

- Individual eqs. may contain integrals not in original problem
- Large enough eq. system can be fully solved

Laporta '01

- Public programs: Reduze, FIRE, LiteRed, KIRA von Manteuffel, Studerus '12; Smirnov '13,14; Lee '13; Maierhoefer, Usovitsch, Uwer '17
- Requires large computing time and memory

 Challenge 2: find solutions for master integrals
 Many methods, e.g. differential equations or Mellin-Barnes representations Kotikov '91; Remiddi '97; Smirnov '00,01
 → Special form of diff. eq. system ("canonical basis") to solve it Henn '13
 → Complicated functions needed: Goncharov polylogs, iterated elliptic integrals, hypergeometric functions, ...

Asymptotic expansions

- Exploit large mass/momentum ratios, $e. g. M_Z^2/m_t^2 \approx 1/4$
- Evaluate coeff. integrals analytically
- Fast numerical evaluation
- \rightarrow Public programs:
 - exp Harlander, Seidensticker, Steinhauser '97 asy Pak, Smirnov '10
- → Possible limitations:
 - no appropriate mass/momentum ratios
 - bad convergence
 - impractical if too many mass/mom. scales

Numerical integration

Challenge 1: presence of UV/IR divergencies

Remove through subtraction terms

$$\int d^4q_1 d^4q_2 \left(f - f_{sub} \right) + \int d^4q_1 d^4q_2 f_{sub}$$

finite

ર

solve analytically

Cvitanovic, Kinoshita '74 Levine, Park, Roskies '82 Bauberger '97 Nagy, Soper '03 Awramik, Czakon, Freitas '06 Becker, Reuschle, Weinzierl '10 Sborlini et al. '16

Remove through variable transformations:

a) Sector decomposition

Public programs:(py) SecDecCarter, HeFIESTASmirnov, T

Carter, Heinrich '10; Borowka et al. '12,15,17 Smirnov, Tentyukov '08; Smirnov '13,15

b) Mellin-Barnes representations

Public programs: MB/MBresolve AMBRE/MBnumerics

Czakon '06; Smirnov, Smirnov '09 Gluza, Kajda, Riemann '07 Dubovyk, Gluza, Riemann '15 Usovitsch, Dubovyk, Riemann '18

Numerical integration

Challenge 2: stability and convergence

- Integration in momentum space: 4*L* dimensions (L = # of loops)
- Integration in Feynman parameters: P 1 dimensions (P = # of propagators)
- → Multi-dim. integrals need large computing resources and converge slowly
- Variable transformations to avoid singularities and peaks

Integrals blow up when props. become on-shell:

$$\int \frac{d^4q}{[q^2 - m_1^2 + i\epsilon][(q+p)^2 - m_2^2 + i\epsilon]}$$

→ complex contour integration can help v.d. Bij, Ghinculov '94; Nagy, Soper '06

Loop calculations: Summary

Analytical techniques and expansions:

Complexity increases with ...

- ... more loops;
- ... more external particles;
- ... more different masses

Numerical techniques:

Complexity increases with ...

... more loops;

... more external particles;

... fewer masses

Rad. corr. produce complex final states, $e^+e^- \rightarrow f\bar{f} + n\gamma (+f'\bar{f}')$

- Account for detector acceptance + selection cuts \rightarrow MC tools
- For EWPOs:
 - a) Fixed-order (loop corrected) matrix elements for $e^+e^- \rightarrow f\bar{f} + n\gamma$
 - b) Parton shower for extra γ (+ $f'\bar{f}'$)
 - \rightarrow Matching procedure to avoid double counting
- QCD parton showers: leading log + leading color \rightarrow lecture by P. Skands
 neglect terms suppressed by $1/N_c = 1/3$
- QED parton showers: no "leading color" → full coherent treatment desirable (in particular large initial-final interference)

$$\begin{bmatrix} e^+ & f \\ e^- & \gamma & f \end{bmatrix} \times \begin{bmatrix} e^+ & f \\ e^- & \gamma & f \end{bmatrix}$$

Jadach, Ward, Was '13; Jadach, Yost '18 Hamilton, Richardson '06 Schoenherr, Krauss '08 Kleiss, Verheyen '17; Frixione, Webber '21

New physics reach

Open questions of the Standard Model:

- Is the Higgs boson part of a more complex sector?
- Is there an extended/unified symmetry group?
- What is dark matter?
- Why is there more matter than anti-matter in the universe?

...

- Many models, introducing few (minimal DM, 2HDM, ...) or many (SUSY, extra dim., clockwork, ...) new particles
- Model independent approaches:
 - **Simplified models:** only consider particles contributing to a particular observable or phenonemon
 - Effective field theories: low-energy description of heavy new particles

Low-energy effective theory

"SM Effective Field Theory" (SMEFT)

Extension of SM by higher-dimensional operators:

Wilson '69 Weinberg '79

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d=5}^{\infty} \frac{1}{\Lambda^{d-4}} \sum_{i} c_i \mathcal{O}_i^{(d)}$$

• $\mathcal{O}_i^{(d)}$ depend on all SM fields (including Higgs doublet)

- Operators must satisfy SM gauge invariance
- Valid description for energies $E \ll \Lambda$ ($\Lambda \sim$ mass of heavy particles)
- Operators ranked by suppression power Λ^{4-d}

Examples:

• $(\partial_{\mu}\phi)^{\dagger}\phi\phi^{\dagger}(\partial^{\mu}\phi)$ not allowed, but $(D_{\mu}\phi)^{\dagger}\phi\phi^{\dagger}(D^{\mu}\phi)$ is $[D_{\mu} = \partial_{\mu} - ig'YB_{\mu} - ig\frac{\sigma^{a}}{2}W^{a}_{\mu}]$

• $(\phi^{\dagger}\phi)(\overline{\psi} \not\!\!\!D\psi)$ and $(\phi^{\dagger}\phi)(\overline{\psi}\phi\psi)$ are related by e.o.m.: $\not\!\!\!D\psi_f = \underbrace{y_f \phi}_{\downarrow} \psi_f$ (Dirac eq.) $\downarrow_{\downarrow} y_f v/\sqrt{2} = m_f$

SMEFT operators for electroweak precision

Leading dim-6 contribution: $\mathcal{L} = \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i + \mathcal{O}(\Lambda^{-3}) \qquad (\Lambda \gg M_Z)$

$$\begin{aligned} \mathcal{O}_{\phi 1} &= \frac{1}{4} |\phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \phi|^{2} & \alpha \Delta T = -\frac{v^{2}}{2} \frac{c_{\phi 1}}{\Lambda^{2}} \\ \mathcal{O}_{\mathsf{BW}} &= \phi^{\dagger} B_{\mu \nu} W^{\mu \nu} \phi & \alpha \Delta S = -e^{2} v^{2} \frac{c_{\mathsf{BW}}}{\Lambda^{2}} \\ \mathcal{O}_{\mathsf{LL}}^{(3)\mu e} &= (\bar{L}_{\mathsf{L}}^{\mu} \sigma^{a} \gamma_{\mu} L_{\mathsf{L}}^{\mu}) (\bar{L}_{\mathsf{L}}^{e} \sigma^{a} \gamma^{\mu} L_{\mathsf{L}}^{e}) & \Delta G_{F} = -\sqrt{2} \frac{c_{\mathsf{LL}}^{(3)\mu e}}{\Lambda^{2}} \\ \mathcal{O}_{\mathsf{R}}^{f} &= i (\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{f}_{\mathsf{R}} \gamma^{\mu} f_{\mathsf{R}}) & f = e, \mu \tau, b, lq \\ \mathcal{O}_{\mathsf{L}}^{F} &= i (\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{F}_{\mathsf{L}} \gamma^{\mu} F_{\mathsf{L}}) & F = \binom{\nu_{e}}{e}, \binom{\nu_{\mu}}{\mu}, \binom{\nu_{\tau}}{\tau}, \binom{u, c}{d, s}, \binom{t}{b} \\ \mathcal{O}_{\mathsf{L}}^{(3)F} &= i (\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu}^{a} \phi) (\bar{F}_{\mathsf{L}} \sigma_{a} \gamma^{\mu} F_{\mathsf{L}}) \end{aligned}$$

More operators than EWPOs \rightarrow need assumptions:

- Family universality, e.g. $c_{\mathsf{R}}^e = c_{\mathsf{R}}^\mu = c_{\mathsf{R}}^\tau$
- U(2)×U(1) flavor symmetry, e.g. $c_{\rm R}^e = c_{\rm R}^\mu \neq c_{\rm R}^\tau$

SMEFT analysis

Assuming family universality:

- Electroweak precision tests put constraints on new physics at **TeV scale** → Complementary to LHC
- Significant correlation/ degeneracy between different operators

Pomaral, Riva '13 Ellis, Sanz, You '14

SMEFT analysis: future colliders

SMEFT dim-6 operators provide framework for comparing experiments

- Correlations between sectors (e.g. Higgs and EW):
 - \rightarrow Improved Z-pole measurements needed for Higgs physics and aGC

SMEFT and custodial symmetry

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad \Omega = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{pmatrix}$$

Many SMEFT appearing in EWPOs violate custodial symmetry:

$$\phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \phi \equiv \phi^{\dagger} D_{\mu} \phi - (D_{\mu} \phi)^{\dagger} \phi = -\operatorname{Tr} \{ \Omega^{\dagger} D_{\mu} \Omega \sigma_{3} \}$$

 \rightarrow not invariant under $\Omega \rightarrow V \Omega V^{\dagger}$, because $V \sigma_3 \neq \sigma_3 V$

Kribs, Lu, Martin, Tong '20

New physics with custodial symmetry violation generate large coefficients:

Example: 4th quark generation T, B with $y_{T} \neq y_{B}$ $\mathcal{L}_{4} = -y_{T}\overline{Q}_{4L}\tilde{\phi} T_{R} - y_{R}\overline{Q}_{4L}\phi B_{R}$ $\rightarrow \frac{c_{\phi 1}}{\Lambda} = -\frac{3(y_{T}^{2} - y_{B}^{2})}{4\pi^{2}v^{2}} = -\frac{3(m_{T}^{2} - m_{B}^{2})}{2\pi^{2}v^{4}}$ not suppressed even for $m_{T,B} \gg v$
New physics reach: Models

Neutrino counting and mixing

Total Z width from line-shape:
$$\Gamma_{Z} = 3\Gamma_{\ell} + \underbrace{\Gamma_{Z \to inv}}_{N_{\nu}\Gamma_{\nu}} + \Gamma_{had}$$

$$N_{\nu} = \left[\left(\frac{12\pi}{M_{Z}^{2}} \frac{R_{\ell}}{\sigma_{had}^{0}} \right)^{2} - R_{\ell} - 3 \right] \frac{\Gamma_{\ell}}{\Gamma_{\nu}} \qquad \begin{array}{c} \text{from measurement} \\ \text{computed in SM} \end{array}$$
Current data (LEP): $N_{\nu} = 2.996 \pm 0.007 \qquad \qquad \text{Janot, Jadach '20} \\ \text{FCC-ee:} \qquad \pm 0.001 \end{array}$

Mixing with sterile neutrino:

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{g^2}{8M_W^2} (1 + \Delta r)(1 - \theta_e^2)(1 - \theta_{\mu}^2)$$
$$\Gamma_{Z \to \text{inv}} = \Gamma_{\nu}^{\text{SM}} \left(N_{\nu} - \sum_{\alpha, \beta} \theta_{\alpha} \theta_{\beta} \right)$$

 $heta_{lpha}$: mixing of sterile neutrino with u_{lpha} ($heta_{lpha} \ll 1$)

Neutrino mixing

Estimated sensitivity from electroweak precision tests:

Dark photon

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{M_{Z'}^2}{2} Z'_{\mu} Z'^{\mu} + \overline{\chi} (i\partial \!\!\!/ + g_D Z' - m_\chi) \chi + \frac{\epsilon}{2c_w} Z'_{\mu\nu} B^{\mu\nu}$$

Mass mixing between B_0^{μ} , W_0^{μ} and $Z_{D,0}^{\mu}$ modifies $M_W - M_Z$ relation and Zffcouplings (compared to SM)

Curtin, Essig, Gori, Shelton '14