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1 Relativistic Quantum Mechanics

In order to describe the dynamics of particles involved in high-energy collisions we must
be able to combine the theory of phenomena occurring at the smallest scales, i.e. quantum
mechanics, with the description of particles moving close to the speed of light, i.e. special
relativity. To do this we must develop wave equations which are relativistically invariant
(i.e. invariant under Lorentz transformations). In this section we will derive relativistic
equations of motion for scalar particles (spin-0) and particles with spin-1/2.

1.1 The Klein-Gordon Equation

Consider first the Hamiltonian for a particle in classical (non-relativistic) mechanics:

E =
p2

2m
+ V (x) . (1)

To convert this into a wave equation for quantum wave mechanics, we use the identifica-
tions E → i∂t and p→ −i∇, so that a plane-wave solution

φ(t,x) ∝ e−i(Et−p·x) = e−ip·x (2)

has the energy-momentum relation given in eq. (1). Applied to a general wavefunction φ,
a linear superposition of plane waves, this gives

i∂tφ(t,x) =

(
− 1

2m
∇2 + V (x)

)
φ(t,x) = H φ(t,x) , (3)

where H is the so-called Hamiltonian. We recognise this as the Schrödinger Equation, the
cornerstone of Quantum Mechanics. Eq. (3) cannot be relativistically invariant because
time appears only through a first-order derivative on the left-hand side while space appears
as a second-order derivative on the right-hand side. Yet we know that if we make a Lorentz
transformation in the x direction for example, this would mix the x and t components and
therefore their derivatives will arise with the same orders.

The problem with the Schrödinger Equation arose because we started from a non-relativistic
energy-momentum relation. Let us then start from the relativistic equation for energy.
For a particle with 4-momentum pµ = (E,p) and mass m,

E2 = m2 + p2. (4)

Again we convert this to an operator equation by setting pµ = i∂µ so that the corresponding
wave equation for an arbitrary scalar wavefunction φ(x, t) gives(

∂2t −∇2 +m2
)
φ(t,x) =

(
∂µ∂

µ +m2
)
φ(x) = (� +m2)φ(x) = 0 , (5)
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where we have introduced the four-vector xµ = (t,x). This is the “Klein-Gordon equation”
which is the equation of motion for a free scalar field. We can explicitly check that this is
indeed Lorentz invariant. Under a Lorentz transformation

xµ → x
′µ = Λµ

νx
ν ⇒ ∂µ → ∂′µ = (Λ−1)ρµ∂ρ , (6)

The field φ is a scalar, i.e. it has the transformation property

φ(x)→ φ′(x′) = φ′(Λx) = φ(x) . (7)

Therefore, in the primed system,(
∂′µ∂

′µ +m2
)
φ′(x′) =

[
(Λ−1)ρµ∂ρ(Λ

−1)σν∂σg
µν +m2

]
φ′(Λx)

=
[
∂ρ∂σg

ρσ +m2
]
φ(x) = 0 ,

(8)

and the equation still holds.

1.2 The Dirac Equation

The Klein-Gordon equation admits negative-energy solutions, because the energy E ap-
pearing in the plane-wave in eq. (2) can have the two values ±

√
p2 +m2. Dirac sought to

find an alternative relativistic equation which was linear in ∂t like the Schrödinger equation
(this was an attempt to solve the problem of negative-energy solutions to eq. (5) – in fact
he didn’t solve this problem, but a different one). If the equation is linear in ∂t, it must
also be linear in ∇ if it is to be invariant under Lorentz transformations. We therefore
start with the general form

i∂tψ(t,x) = (−iα · ∇+ β m)ψ(t,x) . (9)

Dirac also required that the solutions of his equation would be a solution of the Klein-
Gordon equation as well, or equivalently, the energy relation eq. (4) was the correct energy-
momentum relation for plane wave solutions e−ip·x of the Dirac equation. To see what
constraints this imposes, we must square eq. (9):

−∂2t ψ(t,x) = i∂t (−iα · ∇+ β m)ψ(t,x)

= (−iα · ∇+ β m)2 ψ(t,x)

=
[
−αiαj∂i∂j − i(βαi + αiβ)m∂i + β2m2

]
ψ(t,x) .

(10)

However, the Klein-Gordon equation requires that the right-hand side is equal to [−∇2 +
m2]ψ(t,x) and therefore α and β must satisfy

αiαj + αjαi = {αi, αj} = 2δij, βαi + αiβ = {αi, β} = 0, β2 = 1 . (11)

If αi and β are just numbers, these equations cannot be solved. Dirac solved them by
instead taking αi and β to be n × n matrices, and ψ(t,x) to be a column vector. Even
now, the solution is not immediate. One can show that the conditions in eq. (11) require

Tr αi = 0 = Tr β, (12)
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and further that the eigenvalues of the above matrices are ±1. This in turn means that
n must be even (do you understand why?). In 2-dimensions, there are still not enough
linearly independent matrices to satisfy eq. (11) (for non-zero masses m). There do exist
solutions in four dimensions. One such solution is

αi =

(
0 σi

σi 0

)
, β =

(
12 0
0 −12

)
, (13)

where σ is the vector of the usual 2×2 Pauli matrices and 12 represents the 2×2 identity
matrix.

Now we have formed an equation which may be thought of as a square-root of the Klein-
Gordon equation; we now want to check if this equation is Lorentz covariant. To show
that it is, we first define the new matrices

γ0 = β, γ = βα . (14)

Then we form γµ = (γ0,γ) where the µ is a Lorentz index. Each component is a 4 × 4
matrix. In terms of the γ-matrices, one can write the conditions in eq. (11) in a Lorentz
covariant form

{γµ, γν} = γµγν + γνγµ = 2gµν . (15)

This is an example of a Clifford algebra. Any set of matrices satisfying this condition in
eq. (15) may be used to construct the Dirac equation. The representation in eqs. (13) and
(14) is just one example, known as the Dirac representation. Note, for example, that any
other matrices satisfying

α′i = UαiU
−1, and β′ = UβU−1 , (16)

where U is a unitary matrix, will also be suitable.

Multiplying through by γ0, we may rewrite the eq. (9) in a covariant form as

(iγµ∂µ −m14)ψ(t,x) = (i∂/−m)ψ(x) = 0 , (17)

where �a, a vector with a slash, is a short-hand notation for γµaµ. The equation above
is known as the Dirac equation. In momentum space, i.e. after a Fourier transformation,
∂µ → −ipµ, and the Dirac equation becomes

(γµpµ −m14)ψ̃(p) = (�p−m)ψ̃(p) = 0 , (18)

where ψ̃(p) is the Fourier transform of a solution of the Dirac equation ψ(x).

We mentioned in passing that ψ(t,x) is a column vector rather than a scalar. This
means that it contains more than one degree of freedom. Dirac exploited this property to
interpret his equation as the wave equation for spin-1/2 particles, fermions, which can be
either spin-up or spin-down. The column vector ψ is known as a Dirac spinor, and the
matrices γµ operate on these Dirac spinors.
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Figure 1: The energy levels in the Dirac sea picture. They must satisfy |E| > m, but
negative-energy states are allowed. The vacuum is the state in which all negative-energy
levels are filled.

1.2.1 Negative-Energy Solutions and Anti-Particles

Comparing eq. (9) to the Schrödinger equation in eq. (3) gives the Hamiltonian for a free
spin-1/2 particle:

HDirac = −iα · ∇+ β m . (19)

The trace of the Hamiltonian gives the sum of the energy eigenvalues. The condition
that the matrices α and β are traceless therefore means that the eigenvalues of HDirac

must sum to zero. Therefore, like the Klein-Gordon equation, also the Dirac equation has
negative-energy solutions.

Dirac himself proposed a solution for this problem which became known as the “Dirac
sea”. He accepted the existence of negative-energy states, but took the vacuum as the
state in which all these states are filled, see fig. 1. There is a conceptual problem with
this in that the vacuum has infinite negative charge and energy. However, any observation
relies only on energy differences, so this picture can give an acceptable theory.

As the negative-energy states are already full, the Pauli exclusion principle forbids any
positive-energy electron to fall into one of the negative-energy states. If instead energy
is supplied, an electron is excited from a negative-energy state to a positive-energy state
and an “electron-hole” pair is created. The absence of the negative-energy electron, the
hole, is interpreted as the presence of of state with positive energy and positive charge,
i.e. the anti-electron called the positron. Dirac predicted the existence of the positron in
1927 and this particle was discovered five years later.

However, Dirac’s argument only holds for spin-1/2 particles which obey the Pauli exclusion
principle. A consistent solution for particles of any spin is provided by Quantum Field
Theory in a picture developed by Feynman and Stückelberg, in which positive-energy par-
tices travel only forward in time, whereas negative-energy particles travel only backwards
in time. In this way, a negative-energy particle with momentum pµ, travelling backward
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Figure 2: A pictorial representation of the scattering e−µ− → e−µ− in non-relativistic
quantum mechanics (left) and in Quantum Field Theory (right).

in time, is re-interpreted as a positive energy anti-particle with momentum −pµ travelling
forward in time. Let us see how this picture naturally arises by considering two processes,
the scattering e−µ− → e−µ−, and Compton scattering e−γ → e−γ. In non-relativistic
quantum mechanics, the scattering e−µ− → e−µ− corresponds to the scattering of an
electron from an external Coulomb potential. This is represented on the left-hand side of
fig. 2. The horizontal axis represents the time at which a give elementary process occurs.
In non-relativistic quantum mechanics, scattering happens instantaneously, so that the
time t1 at which a photon is emitted by the incoming electron coincides with the time t2
in which it is absorbed by a muon, which stays at rest as a source of a static potential. In
quantum field theory the scattering cannot occur instantaneously, because we need to take
into account the fact that the photon mediating the scattering travels at the speed of light.
The corresponding scattering amplitude is given by the sum of the contributions of the
two diagrams on the right-hand side of fig. 2. It is clear that, in the limit in which c can be
taken to be infinite, the two diagrams coincide and give the non-relativistic contribution.
From the point of view of the electron, the first diagram can be interpreted as the emission
of a positive-energy photon at t = t1 that travels forward in time, and is later absorbed by
a muon at t = t2. The second diagram has an awkward interpretation from the point of
view of the electron, because it corresponds to the emission of a negative-energy photon
at t = t2 that travels backwards in time. However, the graph makes perfectly sense if one
considers that it is the muon that emits a photon a time t1, which is later reabsorbed by the
electron at a time t2. A similar interpretation can be applied to the Compton scattering
diagrams in Fig. 3, and clarifies the Feynman and Stückelberg interpretation of negative-
energy states. In the left diagram, an electron emits a photon at time t1 and later, at
time t2 absorbs another one. In the right-hand diagram it appears as if an electron emits
a photon and then travels backwards in time to absorb another photon. Feynman and
Stückelberg reasoned instead that the incoming photon split into an electron-positron pair
and then at a later time, the positron annihilates the other electron, emitting a photon.

Relativistic quantum field theory accounts for the effects of both time-orderings. Indeed,
we will often use the Feynman Rules in the (energy,momentum)-representation rather
than position space in order to calculate the probability of a scattering, and the plane
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Figure 3: Diagrams illustrating the Feynman-Stückelberg interpretation of negative-energy
particles, which correspond to those travelling backwards in time, as in the right-hand
diagram. They interpreted a negative-energy particle travelling backwards as a positive-
energy anti-particle travelling forwards in time, see text.

wave solutions in momentum space are not located in (time,position)-space to even ask
the question of the time-ordering. Time-ordering is undesirable, since the time-ordering
of two spatially separated events is not even Lorentz-invariant.

2 Spin

In the previous section, we introduced a Dirac spinor as a solution to the Dirac equation
in the form of a column vector. In this section, we will discuss the explicit form of
the solutions to the Dirac equation, and verify that they indeed correspond to the wave
functions for particles with spin-1/2.

2.1 Plane-Wave Solutions of the Dirac Equation

We begin by seeking plane-wave solutions to the Dirac Equation. Given the 2 × 2 block
nature of the γ-matrices, we will start with the form

ψ(x) =

(
χ(p)
φ(p)

)
e−ip·x, (20)

where χ and φ are two-component spinors. Substituting this into eq. (18) and using
eqs. (13) and (14), we find

p0
(
χ
φ

)
=

(
m σ ·p
σ ·p −m

)(
χ
φ

)
, (21)
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or equivalently

(σ ·p) φ = (p0 −m)χ

(σ ·p) χ = (p0 +m)φ.
(22)

From the identity (σ ·p)2 = p2, these equations are only consistent for particles with
p0 = ±

√
p2 +m2 (consistent with having solutions of the Klein-Gordon equation).

For a massive fermion at rest (p = 0), we have

p0χ = mχ and p0φ = −mφ. (23)

Positive-energy solutions ψp=0
+ must therefore have φ = 0 and negative energy solutions

ψp=0
− have χ = 0, as follows:

ψp=0
+ =

(
χ
0

)
e−imt, and ψp=0

− =

(
0
φ

)
eimt . (24)

For particles which are not at rest (p 6= 0), the solution is then dictated by eq. (22), with
the requirement that it reduces to eq. (24) for p = 0. For positive-energy solutions, we
therefore write

ψ+,r(x) = N
(

χr
σ·p
E+m

χr

)
e−ip·x ≡ ur(p) e−ip·x , p0 = E ≡

√
p2 +m2 , (25)

where space of solutions is spanned by χr, r = 1, 2 and N is a normalisation conventionally
chosen such that u†r(p)us(p) = 2E δrs, which gives N =

√
E +m. The spinors χ1 and χ2

cover the two (spin) degrees of freedom:

χ1 =

(
1
0

)
, and χ2 =

(
0
1

)
. (26)

Similarly, negative-energy solutions are conventionally written as

ψ−,r(x) = N
( σ·p

E+m
φr

φr

)
eip·x ≡ vr(p) eip·x , p0 = E , (27)

with the spinors φ1 and φ2 again covering the two (spin) degrees of freedom:

φ1 =

(
1
0

)
, and φ2 =

(
0
1

)
. (28)

The spinors u(p) and v(p) therefore represent particle and anti-particle solutions with
momentum p and energy E =

√
p2 +m2.
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2.2 Spin

Each Dirac spinor has two linearly independent solutions which we stated earlier corre-
sponded to the two possible spin states of a fermion. In this subsection we will define the
corresponding spin operator. If we again consider a particle at rest we have

u1 =


1
0
0
0

 , and u2 =


0
1
0
0

 . (29)

These have eigen-values ±1
2

under the matrix

1

2

(
σz 0
0 0

)
. (30)

One can repeat the same thing for anti-particles and generalise to all the Pauli matrices
to deduce the “spin operator”

S =
1

2

(
σ 0
0 σ

)
. (31)

You can check explicitly that S2 = 3
4
14, as we would expect. Therefore, for particles at

rest, p = 0, the top two components of ψ+ describe fermions with Sz = +1/2 (spin up)
and Sz = −1/2 (spin down) respectively.

In case of a general p one can consider the projection of the spin-operator along the
direction of motion of a particle, i.e. p/|p|. This gives the helicity operator, h(p)

h(p) =

(
σ.p
|p| 0

0 σ.p
|p|

)
. (32)

This operator satisfies h(p)2 = 1, and hence its eigenvalues are ±1.

2.3 Working with Dirac Spinors

So far we have discussed Dirac spinors, ψ, describing spin-1/2 particles and how Dirac
used his equation to predict anti-particles. To generate an equation for anti-particles, we
first take the Hermitian conjugate of the Dirac equation and find

ψ†(−iγ0←−∂0 + iγi
←−
∂i −m) = 0 , (33)

where the arrows over the derivatives just mean they act on the left, and we have used
the fact that γ0† = γ0 and γi† = −γi. All matrices have to be written on the right
because they are multiplying matrices and ψ† is a row-vector. The above equation does
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not seem Lorentz covariant. This can be rectified by multiplying the equation by γ0 on
the right-hand side and using [γ0, γi] = 0. Then we have

(ψ†γ0)(−i
←−
��∂ −m) = 0, or ψ(i

←−
��∂ +m) = 0 . (34)

The interpretation of the above equation is that the field ψ ≡ ψ†γ0 represents an anti-
particle.

By construction, the spinors u(p) and v(p) satisfy their respective Dirac equations in
momentum space:

(�p−m)u(p) = 0 , (�p+m)v(p) = 0 . (35)

They also satisfy a number of relations which will prove very useful in calculations of
scattering amplitudes. Firstly, they are orthonormal:

ur(p)us(p) = 2mδrs = −vr(p)vs(p),

ur(p)vs(p) = 0 = −vr(p)us(p).
(36)

If instead one takes the outer product of spinor and anti-spinor, they also satisfy the
following completeness relations:

2∑
r=1

ur(p)ur(p) = (�p+m) and
2∑
r=1

vr(p)vr(p) = (�p−m). (37)

These relations can be checked explicitly (see problem sheet).

2.4 Lorentz transformations on spinors

Let us consider the Lorentz transformation of eq. (6). The field ψ has the transformation
property

ψ(x)→ ψ′(x′) = ψ′(Λx) = S(Λ)ψ(x) ⇒ ψ̄(x)→ ψ̄′(x′) = ψ̄(x)γ0S†(Λ)γ0 , (38)

with S(Λ) a suitable 4× 4 matrix. Its explicit form is derived by the requirement that the
Dirac equation is Lorentz invariant:(

i∂′µγ
µ −m

)
ψ′(x′) =

(
i(Λ−1)νµ∂νγ

µ −m
)
S(Λ)ψ(x) . (39)

Let us guess that S(Λ) satisfies

γµS(Λ) = S(Λ)Λµ
ργ

ρ . (40)

With that we obtain(
i∂′µγ

µ −m
)
ψ′(x′) = S(Λ)

[
i(Λ−1)νµΛµ

ρ∂νγ
ρ −m

]
ψ(x)

= S(Λ)(i∂νγ
ν −m)ψ(x) = 0 ,

(41)
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so that ψ′(x′) is a solution of the transformed Dirac equation, provided ψ(x) is a solution
of the original one.

Eq. (40) is enough to construct the matrices S(Λ), but we will not need its explicit form.
By direct inspection one observes that

S†(Λ) = γ0S−1(Λ)γ0 ⇒ ψ̄′(x′) = ψ̄(x)S−1(Λ) . (42)

The fact that S−1(Λ) 6= S†(Λ) is not surprising, and is due to the fact that the Lorentz
group is non-compact, and therefore it does not admit unitary finite-dimensional repre-
sentations.

One can construct bi-linear products ψ̄Γψ, with Γ a 4 × 4 matrix. We now show that Γ
can be decomposed into a set of bi-linears, each having a definite transformation property
under the Lorentz group. Since Γ is 4 × 4 matrix, we expect to find 16 such bi-linear
products, constructed out of linearly independent matrices. Already we can find 5 such
bi-linears:

ψ̄ ψ → ψ̄S−1(Λ)S(Λ)ψ = ψ̄ ψ (scalar) ,

ψ̄ γµψ → ψ̄S−1(Λ)γµS(Λ)ψ = Λµ
ν

(
ψ̄ γνψ

)
(vector) ,

(43)

We can construct 6 more matrices by considering

Σµν =
i

4
[γµ, γν ] . (44)

Note that γµγν is not linearly independent from the previous matrices because {γµ, γν} =
2gµν1. This gives

ψ̄Σµνψ → ψ̄ S−1(Λ)
i

4
[γµ, γν ]S(Λ)ψ = Λµ

ρΛν
σ

(
ψ̄Σµνψ

)
(tensor) . (45)

In addition to the four γ-matrices, we can construct their product which is conventionally
known as γ5:

γ5 ≡ iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ =

(
0 12

12 0

)
, (46)

which satisfies

(γ5)2 = 1, {γ5, γµ} = 0, (γ5)† = γ5. (47)

The factor of i is to make the matrix Hermitian. Using γ5, we can construct 5 more
bi-linears

ψ̄ γ5ψ → ψ̄ S−1(Λ)iεµνρσγ
µγνγργσS(Λ)ψ

= i εµνρσΛµ
αΛν

βΛρ
γΛ

σ
δ

(
ψ̄ γαγβγγγδψ

)
= det(Λ) ψ̄ i εαβγδγ

αγβγγγδψ = det(Λ) ψ̄ γ5ψ (pseudo-scalar) ,

ψ̄ γ5γµψ → det(Λ) Λµ
ν

(
ψ̄ γ5γνψ

)
(pseudo-vector) .

(48)
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We have then found a set of 16 linearly independent matrices (check that they are linearly
independent!)

1, γ5, γµ, γµγ5, Σµν =
i

4
[γµ, γν ] , (49)

so that any bi-linear ψΓψ can be written as a sum of terms with definite transformation
properties, i.e. transforming in a clear way as a scalar, pseudo-scalar, vector, pseudo-
vector and tensor. (This is why the Feynman rule for a pseudo-scalar interacting with a
particle-anti-particle pair has a γ5 for example.)

The most common use of γ5 is in the projectors PL = (1 − γ5)/2 and PR = (1 + γ5)/2.
You can check explicitly that these behave like projectors (ie. P 2 = P and PLPR = 0).
When these act upon a Dirac spinor they project out either the component with “left-
handed” chirality or with “right-handed” chirality. These projectors therefore appear
when considering weak interactions, for example, as W bosons only couple to left-handed
particles. One has to take care when defining the handedness of antiparticles because

ψL = ψ†Lγ
0 = ψ†PLγ

0 = ψ†γ0PR = ψPR. (50)

A left-handed anti-particle appears with a right-handed projection operator next to it and
vice-versa.

3 Quantum Electro-Dynamics

In this section, we will develop the theory of quantum electro-dynamics (QED) which
describes the interaction between electrically charged fermions and a vector field (the
photon Aµ).

3.1 The QED Lagrangian

In this course, we have so far considered spin-0 and spin-1/2 particles. We will postpone a
detailed discussion of spin-1 particles until section 5.1. For the time being, we start from
the Maxwell’s equations in the vacuum in relativistic notation:

∂µF
µν = Jν , where F µν = ∂µAν − ∂νAµ , (51)

and Jν is a conserved current, i.e. satisfying ∂νJ
ν = 0. Maxwell’s equations can be derived

from the Lagrangian

L = Lem + Lint , Lem = −1

4
F µνFµν , Lint = −JµAµ , (52)

by applying Euler-Lagrange equations

∂µ
∂L

∂(∂µAν)
− ∂L
∂Aν

= −∂µF µν + Jν = 0 . (53)
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The Dirac equation for ψ and its equivalent for ψ can be derived from the Lagrangian

LDirac = ψ(iγµ∂µ −m)ψ . (54)

The starting point for the QED Lagrangian is then the sum of Lem and LDirac. However,
in order to make the theory describe interactions, we must include a term which couples
Aµ to ψ and ψ. If we wish Maxwell’s equation to be valid, this term has to be of the form
Lint = −JµAµ, with Jµ a conserved vector current. Looking back at the results of the
previous section, we see that there is one bilinear with the transformation properties of
a vector. And we then observe that this vector current Jµ = ψ̄ γµψ is indeed conserved,
provided ψ is a solution of Dirac equation. In fact

∂µJ
µ = ψ̄

←−
��∂ ψ + ψ̄ (��∂ψ) = (−mψ̄)ψ + ψ̄ (mψ) = 0 . (55)

Therefore, a good candidate for the electromagnetic current describing an electron of
charge −e is

Jµ = −e ψ̄ γµψ , (56)

where−emultiplies the vector current so as to be sure that the resulting Coulomb potential
arising from the solution of the static Maxwell’s equations is the expected one. Using the
above current, we obtain:

L = Lem + LDirac + Lint = −1

4
F µνFµν + ψ̄ (i��∂ −m)ψ + eψ̄ γµψAµ . (57)

Notice that L is invariant with respect to the “gauge” transformations

ψ(x)→ ψ′(x) = e−ieα(x)ψ(x) , Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x) . (58)

Notice that the addition of the interaction term Lint is equivalent to the replacement

∂µ → Dµ = ∂µ − ieAµ . (59)

This prescription is known as “minimal coupling” and automatically ensures that the
Lagrangian is gauge invariant. The use of gauge invariance to introduce interactions will
be covered in detail in the Standard Model course next week. This gives

L = −1

4
F µνFµν + ψ(iγµ(∂µ + ieAµ)ψ . (60)

The fact that L is invariant under the gauge transformations in eq. (62) means that Aµ

contains unphysical degrees of freedom. This is clear in view of the fact that a massless
vector field contains two physical polarisations, whereas Aµ has four degrees of freedom. In
order to eliminate this degeneracy, a “gauge-fixing” condition is imposed. A possible choice
of a gauge condition is the so-called Coulomb gauge, in which ∇ ·A = 0. Although this
condition eliminates the two additional degrees of freedom, it breaks Lorentz covariance.
A common choice that preserves Lorentz covariance is the Lorenz gauge1:

∂µA
µ = 0. (61)

1Lorentz and Lorenz are two different physicist
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This corresponds to choosing the gauge parameter α such that �α = −∂µAµ above. In
this gauge, the Maxwell equations become �Aν = 0.

Notice that the Lorentz gauge condition reduces the number of degrees of freedom in A
from four to three. Even now though Aµ is not unique. A transformation of the form

Aµ → A′µ = Aµ + ∂µχ , �χ = 0 , (62)

will also leave the Lagrangian unchanged. At classical level we can eliminate the extra
polarisation “by hand”, but at quantum level this cannot be done without giving up
covariant canonical commutation rules. The way out, which can only be summarised, is
to add a gauge-fixing Lagrangian Lgf , so that the full QED Lagrangian becomes

LQED = Lem + LDirac + Lint + Lgf , Lgf = − 1

2ξ
(∂µA

µ)2 . (63)

Using this Lagrangian as a starting point, and an extra condition on physical states, only
the two physical polarisations propagate on-shell. Notice that setting ξ = 0 corresponds
to enforcing the Lorentz gauge condition ∂µA

ν = 0, otherwise the equations of motions
give �∂µAν = 0, i.e. ∂µA

ν is a free field.

3.2 Feynman Rules

Feynman developed a method of organising the calculation of scattering amplitudes in
terms of diagrams. Starting from a set of vertices (or interactions), each corresponding to
a term in the Lagrangian, and a set of links (or propagators), one builds every possible
connected diagram corresponding to your initial and final state. Each piece of the diagram
corresponds to a mathematical expressions, which combine following a “rule” to form the
scattering amplitude (actually iM).

In the quantum field theory course at this school, you learn how to derive the “Feynman
rules” for scalar φ4 theory. The principles are the same here so in this course we will state
the Feynman rules for QED and learn how to work with them. The Feynman rules are
shown in figure 4. The left-hand column represents internal parts of the diagram while
the right-hand column gives the rules for external fermions and photons.

A few comments are necessary here:

1. Individual pieces of a Feynman diagram are a mixture of matrices, vectors, co-
vectors and scalars. They do not commute. The final amplitude is a number and
therefore you must follow each fermion line from a spinor (either outgoing particle
or incoming anti-particle) through the series of matrices to finish on an anti-spinor
(either incoming particle or out-going anti-particle). This corresponds to working
backwards along the fermion line. We will see this in the examples which follow.
Similarly, all Lorentz indices corresponding to photons have to be contracted.

13



µ

p q

k

p

µ ν

p

ieγµ

i(�p+m)

p2 −m2 + iε

−i
p2 + iε

(
gµν − (1− ξ)p

µpν

p2

)

Incoming

Outgoing

µ p →

p →

p →

p →

p →

p → µ

u(p)

v(p)

εµ(p)

u(p)

v(p)

ε∗µ(p)

Figure 4: The Feynman rules for QED. Wavy lines represent a photon and straight lines
represent any charged fermion. The arrow on the straight line tells you it is a particle or
anti-particle depending on whether it is with or against momentum flow. The polarisation
vectors εµ(p) will be discussed in section 5.2.

2. The photon propagator term has a free parameter ξ. This is due to the gauge
freedom we discussed in the previous section. It does not represent a physical degree
of freedom and therefore any calculation of a physical observable will be independent
of ξ. We will most commonly work in Feynman gauge ξ = 1.

3. The propagators come with factors of iε in the denominator, otherwise they would
have poles on the real axis and any integral over p would not be well-defined. The
factor of iε prescribes which direction to travel around the poles. This choice corre-
sponds to the “Feynman prescription”, which ensures causality.

4. The interaction vertex contains only one flavour of fermion. We know that the
emission of a photon does not change an electron to a quark for example. Weak
interactions do change the flavour of the quarks, but QED and QCD does not.

5. There are addtional factors of (−1) in the following scenarios:

(a) an anti-fermion line runs continuously from an initial to a final state;

(b) there is a closed fermion loop;

(c) between diagrams with identical fermions in the final state.

These arise from the anti-commutation properties of fermionic operators which is
beyond the scope of this course. This sign can be important to get the relative
phase between diagrams correct, as happens for instance in Bhabha scattering.
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e(p) e(p′)

µ(k) µ(k′)

e(p) e(p′)

µ(k) µ(k′)

↓ q

Figure 5: Building the leading-order Feynman diagram for Coulomb scattering. We start
from the initial and final states on the left-hand side. The diagram on the right is the only
way to connect these with up to two vertices.

Examples: Coulomb Scattering

As a first example, we consider Coulomb scattering:

e(p)µ(k) → e(p′)µ(k′) . (64)

We start by drawing the external particles, see left-hand side of fig. 5. We now want to
find all possible ways to connect these. There is no direct interaction between an electron
and a muon but both interact with a photon, so a possible connected diagram is the one
shown on the right-hand side. In fact, this is the only possible diagram with no more than
two vertices. The number of vertices is directly related to the powers of the coupling e
and therefore the diagram shown on the right is the leading-order (or tree-level) process.

If we consider e(p) e(k)→ e(p′) e(k′) or e+(p) e−(k)→ e+(p′) e−(k′) instead, there are two
diagrams with two vertices, i.e. at O(e2) (try this!). Both have to be added before squaring
the amplitude to have the tree-level contribution to the cross section.

If we allow ourselves more than two vertices, there are many more diagrams we can draw.
Since the number of external particles doesn’t increase, these must contain closed loops
and, therefore, they represent higher-loop processes. In this course, we will limit ourselves
to tree-level processes. Loop-diagrams will be covered in the phenomenology course.

Now we will construct the tree-level amplitude for Coulomb scattering from the rules in
Fig. 4. Keeping in mind the earlier warning about the ordering of matrices and spinors,
we take each fermion line in turn. The electron line gives

u(p′) (ieγµ) u(p) . (65)

In spin-space, this is co-vector–matrix–vector, which is a number. In Lorentz space it has
one free index µ and is therefore a vector. Similarly, for the muon line we get

u(k′) (ieγν) u(k) . (66)

Lastly, for the propagator with momentum q = p′ − p = k − k′ in Feynman gauge, we get

−igµν
q2 + iε

, (67)
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so that the full amplitude is

iM = ie2 [u(p′) γµ u(p)]
gµν
q2

[u(k′) γν u(k)] . (68)

We will drop the iε from now on, as we will not need it in this example.

Just as in quantum mechanics, in order to compute the probability of this process hap-
pening, we must calculate |M|2. We will now add specific indices to label the spins,
r, r′, s, s′. In order to describe an unpolarised physical scattering process, we will average
over initial-state spins and sum over final-state spins. This convention is represented by a
bar as follows:

|M|2 =
1

2

2∑
r=1

1

2

2∑
s=1

2∑
r′=1

2∑
s′=1

|M|2

=
1

4

e4

(q2)2

∑
r,r′

[ur′(p
′) γµ ur(p)][ur′(p

′) γρ ur(p)]
∗

×
∑
s,s′

[us′(k
′) γµ us(k)][us′(k

′) γρ us(k)]∗ ,

(69)

where we have explicitly evaluated the metric contractions for brevity.

To evaluate the products in eq. (69) we will use the results from section 2.1. We will take
the pieces corresponding to the electron line first. Since [ur′(p

′)γρur(p)]
∗ is a number, its

complex conjugate is its hermitian conjugate. Therefore

[ur′(p
′)γρur(p)]

∗ = u†r(p)γ
ρ†γ0†ur′(p

′) = u†r(p)γ
0γρur′(p

′) = ur(p)γ
ρur′(p

′) , (70)

where we have used γν† = γ0γνγ0, which you showed on the problem sheet. We now use
eq. (37) to find∑

r,r′

[ur′(p
′) γµ ur(p)][ur′(p

′) γρ ur(p)]
∗ =

∑
r,r′

ur′(p
′) γµ ur(p)ur(p)γ

ρur′(p
′)

=
∑
r′

ur′(p
′)γµ (�p+m) γρur′(p

′) .
(71)

We will use m for the electron mass and M for the muon mass. It is now useful to add a
component index in spinor-space like you would do in normal linear algebra. Schematically
we have ∑

r′

ur′iΓijur′j , (72)

where Γ represents the chain of γ-matrices in eq. (71). Now that we are explicitly labelling
the components, we can swap the order of the terms to get∑

r′

Γijur′jur′i = Γij(�p
′ +m)ji = Tr(γµ (�p+m) γρ(�p

′ +m)) . (73)
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We could have anticipated that we would get a trace as we need to get a single number
from a series of matrices. Working from the anti-commutation relations, one can readily
show the following identities (see problem sheet):

Tr(odd number of γ matrices) = 0 , Tr(γµγν) = 4gµν ,

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) .
(74)

Therefore, eq. (73) equals

4pνp
′
σ(gµνgρσ − gµρgνσ + gµσgνρ) + 4m2gµρ . (75)

The same series of steps gives∑
s,s′

[us′(k
′) γµ us(k)][us′(k

′) γρ us(k)]∗ = 4kαk′β(gµαgρβ − gµρgαβ + gµβgαρ) + 4M2gµρ .

(76)

Substituting these results into eq. (69) gives

|M|2 =
8e4

(q2)2
(
(pk) (p′k′) + (pk′)(p′k) + 2m2M2 −M2(pp′)−m2(kk′)

)
. (77)

We will now rewrite the invariants which appear in the above equation in terms of the
centre-of-mass energy squared, s and the exchanged momentum-squared, q2 = t. We have

2(pk) = (p+ k)2 −m2 −M2 = s−m2 −M2, 2(p′k′) = s−m2 −M2

2(pp′) = −(p− p′)2 + 2m2 = −q2 + 2m2 , 2(kk′) = −q2 + 2M2

2(pk′) = 2p·(p+ k − p′) = s+ q2 −m2 −M2 , 2(p′k) = s+ q2 −m2 −M2 ,

(78)

which finally gives

|M|2 =
2e4

(q2)2
(
(s−m2 −M2)2 + (s+ q2 −m2 −M2)2 + 2q2(m2 +M2)

)
. (79)

This expression can be further simplified by introducing the further invariant u = (p −
k′)2 = (p′ − k)2:

|M|2 =
2e4

t2
(
(s−m2 −M2)2 + (u−m2 −M2)2 + 2t (m2 +M2)

)
. (80)

The above equation gives the probability that the corresponding process occurs at a given
point in phase space. In the next section, we will derive how to calculate a total cross
section (or a total decay width) from amplitudes squared.

4 Calculation of Cross Sections

Ultimately it is not the amplitude we really want to calculate, but its integral over phase
space to give the total cross section if it is a scattering process or the total decay width if
it is a decay.
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4.1 Phase Space Integrals

We must integrate over all the allowed phase space, which means all possible momentum
configurations of the final-state particles. This result, divided by the flux of incoming
particles, will give the total cross section.

In principle, we must integrate over over a 4-dimensional phase space for each particle f
in the final state, but we must impose that each satisfies its on-shell condition p2f = m2

f .
We therefore must have∏

f

∫
d4pf
(2π)4

(2π)δ(p2f −m2)Θ(p0f ) =
∏
f

∫
d4pf
(2π)4

(2π) δ((p0f )
2 − p2f −m2)Θ(p0f )

=
∏
f

∫
d3pf

(2π)3(2Ef )
,

(81)

where Ef =
√
p2f +m2. Although the final expression explicitly separates the depen-

dence on E and p, it is still Lorentz invariant as the original expression is clearly Lorentz
invariant. Eq. (81) is frequently referred to as the Lorentz Invariant Phase Space mea-
sure (LIPS). The factors of 2π correspond to the conventions used for momentum space
integrations in QFT.

We now need to normalise this expression to the flux of incoming particles. This is done
by multiplying by the flux factor, F . For the scattering of two incoming particles, this is
usually written as

F =
1

4EaEb|va − vb|
, (82)

where Ei and vi are the energy and velocity of each incoming particle.2 A neater, equivalent
form which explicitly demonstrates the Lorentz invariance of this quantity is

F =
1

4
√

(papb)2 −m2
am

2
b

. (83)

In the massless limit s� m1,m2, this simplifies to F ' 1/(2s). Finally, we must impose
total conservation of momentum to find

σ = F
(∏

f

∫
d3pf

(2π)3(2Ef )

)
|M|2 (2π)4δ4

(∑
f

pf − p1 − p2
)
. (84)

If you wish to calculate a total decay width instead, the expression is very similar. The
only difference is that the flux factor becomes

F =
1

2M
, (85)

2You can find a motivation for the flux factor in Aitchison and Hey and a more complete derivation in
Peskin and Schröder chapter 4.5.

18



where M is the mass of the decaying particle. The total decay width, Γ, is therefore given
by

Γ =
1

2M

(∏
f

∫
d3pf

(2π)3(2Ef )

)
|M|2 (2π)4δ4

(∑
f

pf − pM
)
. (86)

4.2 Return to Coulomb Scattering

We may now calculate the relativistic cross section for Coulomb scattering, using our result
from section 3.2. Eq. (84) applied to this example gives

σ = F
∫

d3p′

(2π)3(2E ′p)

d3k′

(2π)3(2E ′k)
|M|2 (2π)4δ4 (p′ + k′ − p− k) . (87)

As this expression is Lorentz invariant, we are free to choose which frame to evaluate it
in. This is an extremely powerful tool to evaluate these integrals, as a careful choice can
lead to considerable simplifications. We will choose the centre-of-mass frame here so that
p = −k. We can easily do the the k′ integration using three of the δ-functions to give

σ = F
∫

d3p′

(2π)3
1

4E ′pE
′
k

|M|2 (2π)δ
(
E ′p + E ′k − Ep − Ek

)
. (88)

We will proceed by transforming to spherical polar coordinates, d3p′ = |p′|2d|p′|dΩ, where
we have written the solid angle, sin θ dθ dφ, as dΩ:

σ =
F

(2π)2

∫
dΩd|p′| |p

′|2
4E ′pE

′
k

|M|2 δ
(
E ′p + E ′k − Ep − Ek

)
. (89)

We now make the change of variable |p′| → E = E ′p + E ′k, which has Jacobian factor

∂E

∂|p′| =
E|p′|
E ′pE

′
k

(90)

to get

σ =
F

(2π)2

∫
dΩdE

|p′|
4E
|M|2 δ

(
E −√s

)
=
F

(2π)2

∫
dΩ
|p′|
4
√
s
|M|2 , (91)

where it is understood that k′ = −p′ with |p′| determined from E =
√
s. The only

undefined variables are the angles which remain to be integrated over. We could now

substitute the expression for |M|2 explicitly in terms of these angles but it is actually
informative to instead study the differential cross section

dσ

dΩ
=
F

16π2

|p′|√
s
|M|2 . (92)
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θ
k = (Ek, k)

k′ = (Ek′, k
′)

Figure 6: Scattering by an external Coulomb potential.

We will now consider the high energy limit where s � m2
e,m

2
µ. In this limit, the three

Mandelstam invariants are given by

s = 4p2 , t = −4p2 sin2(θ/2) , u = −4p2 cos2(θ/2) , (93)

which gives

|M|2 ' 2e4
s2 + u2

t2
=

2e4

sin4(θ/2)

(
1 + cos4

θ

2

)
. (94)

Note that this amplitude squared has no dependence on the azimuthal angle φ. Using the
conventional notation α = e2/(4π), we obtain

dσ

dΩ
' α2

2s

1 + cos4(θ/2)

sin4(θ/2)
. (95)

4.3 The Coulomb Potential

The same calculation may be used to calculate the cross section for the scattering of a
relativistic particle from an external Coulomb potential by working in the rest frame of
the muon and taking mµ →∞. This is illustrated in fig. 6.

Repeating the same calculation in this limit yields

dσ

dΩ
=

α2

4k2v2 sin4(θ/2)

(
1− v2 sin2(θ/2)

)
=

(
dσ

dΩ

)
R

(
1− v2 sin2(θ/2)

)
,

(96)

where v = |k|/Ek and (
dσ

dΩ

)
R

=
α2

4k2v2 sin4(θ/2)
(97)

is the Rutherford cross section which was calculated in preschool problem 9. The extra
v2-term in eq. (96) then gives the relativistic correction to this. This result is entirely due

to the electron being a spin-1/2 particle. If it were spin-0 instead, |M|2 would look much
simpler as there are no fermion traces to be performed and in that case we would find that
there is no relativistic correction.
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4.4 e+e− Annihilation

The calculation we have just performed is almost identical to e+(p′) e−(p)→ µ+(k)µ−(k′).
Although this now involves anti-particles, there is still one single diagram at leading-order
and the trace algebra is very similar. Indeed we can re-interpret the incoming e+ as an
outgoing e− with momentum −p′, and the outgoing µ+ as an incoming µ− with momentum
−k. Then we do find explicitly that

|Me+(p′)e−(p)→µ+(k′)µ−(k)|
2

= |Me−(p)µ−(−k)→e−(−p′)µ−(k′)|
2
. (98)

This is an example of “crossing symmetry”. Note in general that there is an additional
minus sign for each fermion which swaps from the initial to final state or vice versa. This
is because, for example,∑

r

ur(p
′)ur(p

′) = �p
′ +m −→

∑
r

vr(−p′)vr(−p′) = −�p
′ −m = −(�p

′ +m) . (99)

In this case there are two minus signs whose combined effect gives just one.

If in e+e−-annihilation we take the approximation me = 0, we find

|M|2 =
8e4

s2
[
(pk)2 + (pk′)2 +m2

µ(kk)′
]
, (100)

Once again, choosing to work in the centre-of-mass frame, we find(
dσ

dΩ

)
e+e−→µ+µ−

=
α2

4s

√
1− 4m2

µ

s

(
1 +

4m2
µ

s
+

(
1− 4m2

µ

s

)
cos2 θ

)
. (101)

If we again take the high-energy limit where s� m2
µ, this reduces to(

dσ

dΩ

)
e+e−→µ+µ−

=
α2

4s
(1 + cos2 θ) . (102)

We can now convert the above result to a total cross section by performing the integral
over the solid angle. This gives

σ(e+e− → µ+µ−) ' 4πα2

3s
. (103)

Now, when an electron and positron annihilate, other fermions may be produced. If these
are quarks, they are then observed in the detector as hadrons. The same calculation gives

σ(e+e− → hadrons) =
4πα2

3s
Nc

nf∑
i=1

Q2
i , (104)

plus higher-order corrections, where there are Nc colours in each of the nf massless flavours
of quarks with charge Qi. Therefore the ratio

R =
σ(e+e− → µ+µ−)

σ(e+e− → hadrons)
(105)

has been used to measure the number of colours to be Nc = 3.
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5 Photon Scattering

In this section we will calculate the scattering amplitude for eγ → eγ. In order to do that
we need first to consider how to treat incoming and outgoing photons.

5.1 Photon Polarisation

We seek to find a plane-wave solution corresponding to a free photon (like our treatment
for Dirac particles in section 2.1). It will have the form

Aµ(x) = εµ(k) e−ik·x , (106)

where εµ(k) is the polarisation vector of the photon. In the Lorenz gauge of eq. (61), the
photon equation of motion in eq. (51) is

�Aµ = 0 , (107)

and is automatically satisfied by a solution of the form in eq. (106), provided k2 = 0.
The Lorenz gauge condition (∂µA

µ = 0) gives an additional constraint on the polarisation
vector

k ·ε(k) = 0 . (108)

However, there is still freedom here because, given a polarisation vector ε which solves this
equation, any other vector of the form ε′ = ε + λ k will also be a solution, which corre-
sponds to the propagation of an extra unphysical longitudinal photon, with a polarisation
proportional to kµ. This freedom is usually used to set ε0 = 0 such that k ·ε = 0 so that
the two physical polarisations εα, with α = 1, 2, are in the transverse direction, and are
chosen to be orthonormal. A useful relation we will use in the following is

2∑
α=1

εαi(k)ε∗αj(k) = δij − k̂ik̂j, where k̂i =
ki

|k| =
ki

k0
. (109)

The Feynman rule for an incoming photon is simply εµ(k) while for an outgoing photon
it is ε∗µ(k), as shown in Fig. 4.

As for fermion spins, for unpolarised processes you compute the total cross section by
averaging over incoming polarisations and summing over outgoing polarisations. Let us
consider the case of a general process with one external incoming photon. The matrix
element would have the form

iM = Aµ εµ(k) . (110)

The left-hand side is a physical quantity, hence it should give the same result for any
choice of the gauge. Had we chosen ε+ λ k instead, this implies that Aµ kµ has to vanish.
This is a “Ward Identity” for QED, and is therefore a test of gauge-invariance.
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k

p′

k′

p k′

k p′

Figure 7: The two tree-level diagrams for e(p) γ(k)→ e(p′) γ(k′).

Squaring the scattering-amplitude over the physical polarisations gives

2∑
α=1

|Aµ εαµ(k)|2 =
2∑

α=1

AµA∗ν εαµ(k) ε∗αν (k)

= AiAj(δij − k̂ik̂j) ,
(111)

using eq. (109). The equation Aµ kµ = 0 implies Ai k̂i = A0 and hence

2∑
α=1

|Aµ εαµ(k)|2 = AiAi − A0A0 = −AµAνgµν . (112)

This could be done for each photon in turn if there were more in the process, and we find
the general result that

2∑
α=1

εαµ ε
∗α
ν → −gµν . (113)

We have used the → notation of Peskin and Schröder here as the result is not an exact
equality in the absence of the rest of the matrix element, but the result is nonetheless true
in any practical calculation. Obviously, the quantity calculated must be gauge-invariant
for this substitution to be valid; but it holds also for gauge-invariant sets of diagrams.

5.2 Compton Scattering

There are two diagrams at leading order for this process, shown in Fig. 7. Following the
Feynman rules in Fig. 4 and the rules for external photons in the previous subsection, we
find that the sum of the two diagrams gives

iM = −ie2 ε∗′µ(k′) εν(k) u(p′)

(
γµ

�p+��k +m

(p+ k)2 −m2
γν + γν

�p−��k′ +m

(p− k′)2 −m2
γµ

)
u(p) . (114)

You can check explicitly that the above amplitude does indeed satisfy the appropriate QED
Ward Identities, i.e. replacing εν(k) with kν gives M = 0, and similarly when replacing
ε∗′µ(k′) with k′µ (see tutorial sheet).
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k = (ω, k)

θ

k′ = (ω′, k′)

p = (m, 0)

p′ = (E ′, p′)

Figure 8: The Compton scattering process in the rest frame of the incoming electron.

We now square the amplitude to get

|M|2 =
1

2

∑
γ pol

1

2

∑
e spin

|M|2

= 2e4

(
(pk)

(pk′)
+

(pk′)

(pk)
+ 2m2

(
1

(pk)
− 1

(pk′)

)
+m4

(
1

(pk)
− 1

(pk′)

)2
)
.

(115)

The calculation of the spin traces in this case requires the identities

γµγ
µ = 4 , γµγ

ργµ = −2γρ , (116)

from the problem sheet. We will again choose a suitable reference frame to simplify the
calculation. In this case, it is convenient to work in the rest frame of the incoming electron
(this is used for evaluating p.(k − k′)) as shown in fig. 8. We can use energy conservation
to compute ω′:

m2 = p′2 = (p+ k − k′)2 = m2 + 2m(ω − ω′)− 2ωω′(1− cos θ)

⇒ ω′ =
ω

1 + (ω/m)(1− cos θ)
.

(117)

In this frame, we therefore have

|M|2 = 2e4
(
ω

ω′
+
ω′

ω
− sin2 θ

)
. (118)

The explicit dependence on the electron mass cancels with the factors of m in ω′. It is
however present in the flux factor F = 1/(4mω). We now compute the integral over the
phase space to get

σ =
1

4mω

∫
d3p′

(2π)3(2E ′)

d3k′

(2π)3(2ω′)
2e4
(
ω

ω′
+
ω′

ω
− sin2 θ

)
(2π)4δ4 (p′ + k′ − p− k) .

(119)
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We can again do the integral over d3k′ using the spatial parts of the δ-function. Then we
transfer to spherical polars and find

dσ

dΩ
=

α2

2m2

(
ω′

ω

)2(
ω

ω′
+
ω′

ω
− sin2 θ

)
. (120)

A nice check of this result is to take the low-energy limit where ω � m. Then ω ' ω′ and
we find

dσ

dΩ
=

α2

2m2

(
1 + cos2 θ

)
. (121)

This is the Thomson cross section for the scattering of classical electromagnetic radiation
by a free electron. In the other limit, the high-energy limit where ω � m, we have

ω′ ' m

1− cos θ
⇒ dσ

dΩ
' α2

2mω

1

1− cos θ
. (122)

and the cross section is strongly peaked for small angles. This leads to a logarithmic
enhancement when you perform the angular integration. These “collinear” logarithms
arise whenever massless particles are emitted; this will be discussed in more detail in the
phenomenology course.

Note that, since ω > ω′, eq. (122) holds strictly for (1− cos θ) > m/ω. For smaller angles,
eq. (121) holds and

dσ

dΩ
' α2

m2
. (123)

The forward (small scattering angle) Compton scattering cross section is then a valuable
method to measure the QED coupling α.

6 Strong Interactions

In this section we will develop the theory of the strong interactions, quantum chromo-
dynamics (QCD). The major difference between QED and QCD is that the gluons are
self-interacting because they also carry colour charge (unlike the charge-neutral photon).

6.1 QCD Lagrangian

The particles which carry colour charge are

Spin-1/2: six families of quarks (up, charge and top with electric charge +2/3;
down, strange and bottom with electric charge -1/3)
For each flavour, there are Nc = 3 of these.

Spin-1: 8 = (N2
c − 1) massless gluons.
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The QCD Lagrangian for a quark of mass m is

LQCD = −1

4
F aµνF a

µν + ψi(i��Dij −mδij)ψj,
with Dµ

ij = ∂µδij + igst
a
ijA

aµ, F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν .

(124)

The a, i and j indices are gauge group indices which are discussed further below. The
sum over these is implicit in eq. (124). Each ta is a 3 × 3 matrix in colour space. The ta

matrices do not commute with each other, but obey the following algebra

[ta, tb] = ifabctc , (125)

which is reminiscent of the algebra of angular momentum operators, [Ji, Jj] = iεijkJk.
Here, in place of the alternating tensor εijk, we have the “structure constants” fabc (which
also appear in F a

µν). These are also completely anti-symmetric under the swapping of any
pair of indices.

Just as the Ji generate the rotation group, SU(2), the ta generate the colour symmetry
group, SU(3). We choose to take the Pauli matrices as a representation of SU(2). For
SU(3) we choose to take the representation where ta = 1

2
λa and the λa are the Gell-Mann

matrices:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 . λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

, λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(126)

In practice, we are not interested in calculating one particular colour component and
instead work with sums over all colours which ultimately leads to traces over the ta-
matrices. We will see explicit examples of this in the sections that follow and here just
collect some useful identities:

Tr(ta) = 0, Tr(tatb) =
1

2
δab,

∑
a

taijt
a
jk = CF δik ,

∑
a,b

fabcfabd = CAδ
cd ,

where CF =
4

3
, CA = 3 .

(127)

Notice that we have labelled with a = 1, . . . , 8 the gluon indices and with i = 1, . . . , 3 the
quark indices. Particular care must be taken when these identities combine to give a trace
of a δ-function:

δaa = N2
c − 1 = 8 (the number of gluons)

δii = Nc = 3 (the number of quarks) .
(128)
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The QCD Lagrangian LQCD is invariant under the infinitesimal “gauge” transformations

ψi(x)→
(
δij − igsθa(x)taij

)
ψ(x) ,

Aaµ(x)→ Aaµ(x) +Dab
µ θ

b(x) ,
(129)

where Dab
µ is the covariant derivative in the “adjoint” representation, the one under which

the gluon fields transforms under SU(3), as opposed to the “fundamental” representa-
tion, which rules the transformation of quark fields. In particular, the adjoint covariant
derivative is given by

Dab
µ = ∂µδ

ab + igsA
c
µ(T c)ab , (T c)ab = ifacb = −ifabc . (130)

The matrices T a, as needed for any generator of a representation of SU(3), satisfy the
same commutation rules as ta:

[T a, T b] = ifabcT c . (131)

These are nothing else than the Jacobi identity satisfied by the structure constants fabc:

fabcf cde + f bdcf cae + fdacf cbe = 0 . (132)

Notice that the gauge transformation for Aaµ involves the strong coupling gs:

Aµ → Aµ + ∂µθ
a + gsf

abcθbAcµ = Aaµ + ∂aµθ
a +O(gs) , (133)

and only at lowest order in gs does it reduce to the analogous transformation for QED.

As in QED, in order to quantise the QCD Lagrangian, we need to introduce a “gauge-
fixing” term, for instance

Lgf = − 1

2ξ
(∂µA

µ
a)2 . (134)

We now describe the Feynman rules for QCD. The quark and gluon propagators are
identical to those for QED except they are also accompanied by the appropriate delta-
function in colour space (see fig. 9). The coupling between two quarks and a gluon is now

p →
j k

p →µ ν

a b

δkj
i(�p+m)

p2 −m2 + iε

δab
−igµν
p2 + iε

Figure 9: The Feynman rules for the quark and gluon propagators (the latter is in Feynman
gauge ξ = 1).

given in terms of colour matrices, taij as shown in fig. 10. Notice that the Dirac matrix
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j k

a

µ igsγ
µT a

kj

−igsγµtakj

Figure 10: The Feynman rule for a quark-quark-gluon vertex.

a b

c

pµ qν

rρ

a b

cd

gsf
abc (gµν(p− q)ρ + gνρ(q − r)µ + gρµ(r − p)ν)

−ig2s
(
fabef cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
)

Figure 11: Three and four gluon vertices which arise from eq. (124). All momenta are
taken to be incoming.
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γµ also still appears as it must for spin-1/2 particles. The colour matrices and Dirac
matrices do not interact with each other (they act on different vector spaces). The ‘a’
is the “adjoint” index and is associated with the gluon. The k and j are “fundamental”
indices associated with the outgoing and incoming fermion line respectively.

Returning to the Lagrangian, in QCD F a
µν has an extra term compared to QED, as required

by gauge invariance. (Technically this term is present for QED too, but QED is an
“Abelian” gauge theory which means that the structure constants are zero). Multiplying
out F aµνF a

µν give extra terms with 3 and 4 gauge fields. These correspond to new three-
and four-gluon vertices as shown in fig. 11.

6.2 Gauge Invariance

The presence of the non-commuting colour matrices illustrates that SU(3) is a non-Abelian
gauge group. We can see the effect of this by studying the QCD equivalent of photon pair
production, q(p) q̄(p′)→ g(k) g(k′), shown in fig. 12. In QED, the matrix element squared

p

p’ p’

p p

p’

k k k

k’k’k’

(a) (b) (c)

Figure 12: Feynman diagrams for the process qq̄ → gg.

for this process can be obtained from that of Compton scattering via crossing.

One immediate effect is obvious – there is now a third diagram including the three-gluon
vertex. If we sum the contributions from the first two diagrams we find

M(a)+(b) = A(a)+(b)
µν ε∗µ(k)ε′∗ν(k′),

A(a)+(b)
µν = −ig2sv(p′)

(
γνt

b �p−��k

(p− k)2
γµt

a + γµt
a �p−��k′

(p− k′)2γνt
b

)
u(p) ,

(135)

where we have implicitly assumed that gluon k has colour a and polarisation index µ, and
gluon k′ has colour b and polarisation index ν. At this order, see eq. (133), gauge invari-
ance corresponds to testing whether the replacement εµ → εµ + λkµ leaves the amplitude

invariant. This is equivalent to testing the condition for the Ward Identity, A(a)+(b)
µν kµ = 0:

A(a)+(b)
µν kµ = −ig2s [ta, tb]v(p′)γνu(p) 6= 0 . (136)

The non-zero commutator makes these diagrams alone not gauge-invariant. Adding di-
agram (c) gives a contribution which exactly cancels this (try this!) but yields another
term proportional to k′µ. This vanishes when we remember the whole expression is con-
tracted with ε′∗ν(k′), and so gauge invariance is only obeyed once we project onto physical
polarisations. This wasn’t necessary in QED.
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Recall in the QED case in section 3.2, we used Aµνkµ = 0 to show that, in practical
calculations, we can always make the replacement

2∑
α=1

εαµε
∗α
ν → −gµν . (137)

Although the right-hand summed all polarisations and not only the physical transverse
ones, in actual calculations the unphysical longitudinal gluon polarisations automatically
cancelled. This is no longer the case in QCD, where one has to sum strictly over physical
polarisations. However, this can make calculations more cumbersome, so it might still be
useful to sum over all polarisations, and to cancel in some way the unphysical degrees of
freedom. How this cancellation is performed depends on the gauge. In covariant gauges,
like the Feynman gauge, this is done by introducing extra fields, called the ghost fields.
The alternative is to use the so-called physical gauges, that ensure that that only physical
degrees of freedom propagate on shell.

Ghost Fields

To understand how the cancellation of unphysical polarisations actually arises in a covari-
ant gauge, we need to revert to the case of photon pair production in QED. When we
make the replacement in eq. (137), we are exploiting the fact that QED is unitary, i.e.
probability is conserved through time evolution. A non-trivial implication of unitarity is
that, at the lowest order in perturbation theory, twice the imaginary part of the forward
amplitude for the process e+e− → e+e− has to be equal to amplitude squared for the
process e+e− → γγ, when we integrate over the photon phase space and sum over physi-
cal photon polarisations. This is illustrated in Fig. 13, which shows the only intermediate
states that, at the considered order in perturbation theory, give a non-zero imaginary part,
namely two virtual photons. Furthermore, it is possible to show that the imaginary part of

2

2

=+Im

Figure 13: Unitarity relation for the process e+e− → γγ. The shaded blob represent the
sum of all possible subdiagrams that can give rise to two photons in the final state at the
lowest order in perturbation theory.

any Feynman diagram is obtained by putting on shell in all possible ways the intermediate
propagators (i.e. cutting the diagram) by replacing i/(p2 − m2 + iε) in each of them by
(2π)Θ(p0)δ(p

2−m2). This divides each Feynman diagram into two subdiagrams on either
side of the cut. On one side of the cut, one uses standard Feynman rules. On the other
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sides, one needs to apply complex conjugation to all Feynman vertices and propagators.
Cuts of a diagram that conflict with energy-momentum conservation do not give any con-
tribution to the imaginary part. The result of this cutting procedure for the present case
is illustrated in Fig. 14. The dashed line on the right-hand side of the figure represents
the only cut of the diagram that gives a non-zero imaginary part, obtained by putting on
shell the intermediate photon propagators. If the amplitude is computed in the Feynman

Im2 =

Figure 14: Pictorial representation of the cutting rules needed to compute the imaginary
part of the forward amplitude e+e− → e+e− mediated by two virtual photons. The
shaded blob represents the sum all possible subdiagrams that can give two photons in the
intermediate state, that is, the two diagrams on the left-hand side of Fig. 13.

gauge, for an intermediate photon of momentum k, we have to perform the replacement

−gµµ′
i

k2 + iε
→ −gµµ′(2π)Θ(k0)δ(k

2) . (138)

Let us call Aµν the contribution to the diagram on the left of the cut in Fig. 14. From
the Ward identity kµAµν = 0, we obtain that the contribution of gluon k to the imaginary
part of the amplitude becomes∫

d4k

(2π)4
(−gµµ′)(2π)Θ(k0)δ(k

2)Aµν =

∫
d3k

(2π)32k0
Aµν

2∑
α=1

εαµ(k)ε∗αµ′ (k) , (139)

where α = 1, 2 is the index labelling photon physical polarisations. This verifies explicitly
the unitary relation represented in Fig. 13. The latter means that, in QED, making the
replacement in eq. (137) corresponds to exploiting the unitarity of the theory to compute
an amplitude squared through the imaginary part of the corresponding forward amplitude.

In the case of QCD, as we have seen in the previous section, the fact that kµAµν 6= 0 implies
that the amplitude squared for the process qq̄ → gg is not given by the imaginary part of
the forward amplitude qq̄ → qq̄, when only gluons are considered as intermediate states.
In fact, the cut forward amplitude contains the contribution of non-physical longitudinal
polarisations, which do not contribute to the amplitude squared for qq̄ → gg. This would
violate unitarity, so there has to be additional fields that are responsible for the cancellation
of the contribution of non-physical polarisations in the imaginary part of the forward
amplitude. These new fields are called ghosts. They are scalar fields, but satisfy Pauli
exclusion principle like fermions. They transform under SU(3) in the same way as gluons,
i.e. in the adjoint representation. The Feynman rules for ghosts are shown in fig. 15.
They can propagate and couple to gluons, but never appear in physical final states. If
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b c

a

µ

q

gsf
abcqµ

a b

q →
δab

i

q2 + iε

Figure 15: The Feynman rules for ghost fields, which are constructed explicitly to cancel
unphysical degrees of freedom.

we now consider the imaginary part of the forward qq̄ amplitude, at the lowest order in
perturbation theory we need to include not only gluons as intermediate states, but ghosts
as well, as pictorially illustrated in Fig. 16. The ghost-antighost loop contributes to the
imaginary part of the forward amplitude with a factor (−1), just like a normal fermion
loop, so as to cancel the contribution of the unphysical longitudinal gluon polarisations
when summing over all diagrams. The resulting imaginary part equals the amplitude
squared for the process qq̄ → gg, integrated over the gluon phase space and summed over
physical gluon polarisations, as required by unitarity of QCD.

2

+ =

Figure 16: Pictorial representation of the unitarity constraint for QCD discussed in the
text. Longitudinal polarisations for on-shell gluons in the cut amplitude on the left-hand
side of the equality are cancelled by the contribution of the ghost-antighost loop. Each
blob represents the sum of the three diagrams in Fig. 12.

Physical Gauges

Alternatively, we can impose a so-called “physical gauge” condition on the gluon fields
to eliminate unphysical polarisations from the start. This eliminates the need for ghosts,
which do not interact with gluons anymore, but complicates the gluon propagator. In
place of the Lorentz gauge condition ∂µAaµ = 0, we impose

Aaµn
µ = 0 , (140)

for some arbitrary reference vector nµ. This is done by adding the gauge-fixing Lagrangian

Lgf = − 1

2ξ
(Aaµn

µ)2 , (141)

and taking the limit ξ → 0, thus enforcing the gauge condition in eq. (140).
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a b

µ ν
q →

δab
i

q2 + iε

(
−gµν +

qµnν + qνnµ

(qn)
− n2 q

µqν

(qn)2

)
Figure 17: The gluon propagator when working in a physical gauge, Aaµn

µ = 0.

(a) (b)

Figure 18: Sample “loop” Feynman diagrams: (a) one of the one-loop corrections to
Coulomb scattering and (b) a one-loop correction to the photon propagator.

The new expression for the propagator (for ξ = 0) is shown in fig. 17. When we use a
physical gauge, whenever we sum over polarisations, we can make the replacement

2∑
α=1

εαµ(q)ε∗αν (q)→ −gµν +
qµnν + qνnµ

(qn)
− n2 q

µqν

(qn)2
. (142)

The different choices of reference vector nµ correspond to different choices of the gauge.
One can explicitly check that results for physical quantities, such as cross sections, are
independent of this choice.

A relevant example of a physical gauge is the light-cone gauge, in which n2 = 0. In such a
gauge, if we have an on-shell gluon q = (ω, q), we can choose n = (1,−q/ω). In this case

−gµν +
qµnν + qνnµ

(qn)
=

2∑
α=1

εαµ(q)ε∗αν (q) , (143)

so that the replacement gives exactly the sum over the physical polarisations introduced
in section 5.1. The expression in eq. (143) is the one that must be used in covariant gauges
if one does not want to introduce unphysical amplitudes squared with ghosts in the final
state.

7 Renormalisation

7.1 Dimensional regularisation and renormalisation scale

As mentioned in section 3.2, starting from the Feynman rules one can construct diagrams
with loops, as for example the diagrams shown in fig. 18. The presence of loops means that
momentum-conservation at each interaction vertex is no longer sufficient to determine the
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momentum in each leg. For example, k can take any value in the diagrams shown in fig. 18.
We must therefore integrate over all possible values of unconstrained loop momenta. For
example, the result for the diagram in fig. 18(b) is

(ie)2
∫

d4k

(2π)4
Tr[γµ(��k + �p+m)γν(��k +m)]

(k2 −m2)((k + p)2 −m2)
, (144)

with p the photon momentum and d the number of space-time dimensions. As the integral
runs over all values of k, it includes very large values of k. Counting the powers of k,
there are six of them in the numerator and four in the denominator, which implies that
this integral diverges. In general, for any integral of the form∫

ddk

(2π)4
N(k)

M(k)
(145)

we define the superficial degree of divergence, D, to be the result of the näıve power-
counting:

D = d+ (powers of k in N)− (powers of k in M) . (146)

If D ≥ 0, then the integral is said to be superficially divergent. Such divergences are called
ultra-violet (UV) because they arise whenever loop momenta get large. The boundary case
of D = 0 is a logarithmic divergence (think of

∫
dk 1/k). The term “superficial” is used

because there can be other factors which can affect the actual degree of divergence. In
the example above, gauge invariance actually implies that the final result of the integral
in eq. (144) must be proportional to (p2gµν − pµpν). Therefore the divergence is only
logarithmic, and not quadratic as it appears from näıve power counting.

The main point, though, is not the degree of divergence, but the fact that one finds
divergences at all. These higher-loop corrections were supposed to be corrections in the
perturbative series, hence smaller than those appearing at the previous perturbative order.
For many years, this caused a major problem for the development of perturbation the-
ory. However, there exists a well-defined procedure to “remove” these divergences which
is called renormalisation. The basic idea behind renormalisation is that the parameters
appearing in the Lagrangian do not need to be physical quantities, but their value is deter-
mined by comparing perturbative predictions to actual experimental data. For instance,
the value of e can be extracted by measuring the Compton differential cross section at
small angles. Therefore, infinities that eventually appear in perturbative calculations can
be in principle reabsorbed in a redefinition of the parameters entering the Lagrangian. In
practice, this amounts to rescaling all quantities in the Lagrangian by a “renormalisation
constant”, Z. For instance, for a field φ we have

φ −→ φ0 = ZφφR . (147)

The field φ0 is called “bare” field, as opposed to the “renormalised” field φR, and Zφ is
called renormalisation constant. This procedure has to be repeated for all fields, masses
and coupling constants. Provided that all infinities in the theory can be removed with
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a finite number of renormalisation constants Z, then the theory is said to be renormalis-
able. After the renormalisation constants have been fixed, we can calculate all physical
quantities in terms of the renormalised quantities and the results will be both finite and
unambiguously defined.

The renormalisation constants are calculated according to some procedure that is called
“renormalisation scheme”. This consists in computing a suitable set of correlation func-
tions, and imposing that these functions are finite at any order in perturbation theory.
In this procedure one finds divergent integrals, which have to be regularised in some way.
The regularisation actually provide means to parameterise the divergence. One approach
is to implement a momentum cut-off, Λ, so as to artificially remove the region with large
momentum. The most common approach though is called “dimensional regularisation”.
Here we decrease the term d in eq. (146) to a lower value, so that we calculate all integrals
in d = 4− 2ε dimensions instead of d = 4. The integration measure becomes

d4k

(2π)4
−→ d4−2εk

(2π)4−2ε
, (148)

and for each dimensionsless coupling gR one performs the replacement

gR → µ
4−d
2 gR(µ) = µεgR(µ) . (149)

The factor of µε is essential to preserve the correct dimensions of the bare coupling in d
dimensions. The renormalised coupling gR stays dimensionsless and depends now on the
scale µ. The latter quantity is the famous renormalisation scale and it is the price that
we pay for renormalisation as our finite calculations are now all dependent upon µ.

To summarise, the steps to perform renormalisation within dimensional regularisation are:

1. Compute all integrals in terms of renormalised quantities.

2. All UV divergences appear as 1/ε-poles.

3. Define the renormalisation functions Z so as to cancel the poles in ε (and maybe
some finite terms).

After renormalisation, eq. (147) depends on both ε and µ, as follows:

φ0(ε) = Zφ(µ, ε)φR(µ) , (150)

and a similar expression holds for all couplings and masses. Both φ0 and Z are infinite for
ε→ 0, whereas φR(µ) stays finite, but depends on the unphysical renormalisation scale µ.

In a renormalised theory then, even tree-level diagrams depend on the renormalisation
scale, through the coupling for example. The dependence on the renormalisation scale
would dissappear only if we were able to calculate physical quantities to all orders in
perturbation theory. Although this is unpractical, calculating one or two extra orders in
perturbation theory can reduce the dependence considerably. However, this does mean
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Figure 19: Plot showing the scale dependence for inclusive jet production at LO, NLO and
NNLO, taken from Gehrmann-De Ridder, Gehrmann, Glover & Pires, arXiv:1301.7310.

that any theoretical calculation now depends on a free parameter, and it is exactly this
parameter which leads to a way to estimate the “theory uncertainty”. In fact, consider an
observable O(αR(µ), µ, {Qi}), where {Qi} is a set of characteristic scales for the process.
If we know O(n), the perturbative expansion of O at order n in perturbation theory, we
have

O(n)(αR(µ′), µ′, {Qi}) = O(n)(αR(µ), µ, {Qi}) +O(αn+1
R (µ)) , (151)

so that the variation of µ around some central value µ0 produces automatically a higher-
order term. Notice that O(n)(αR(µ), µ, {Qi}) might contain ln(Qi/µ). This is why the
central scale µ0 is normally chosen of the order of the typical value that the scales Qi can
assume. For example in gg → H, one would typically take µ0 ∼ mH .

The obvious way to gauge how the strength of the dependence on the scale in a calculation
is to vary the scale and see how the result varies. If the dependence is very weak, the
result will be negligible. If the dependence is very strong, the variation will be large.
The consensus of the community is to quote the theoretical uncertainty when the central
scale is varied by a factor of 2 in each direction. One should remember that this is only an
uncertainty of the dependence on the renormalisation scale and not a strict error bar. This
is illustrated by the plot in fig. 19, which is taken from Gehrmann-De Ridder, Gehrmann,
Glover & Pires, arXiv:1301.7310. It shows the scale dependence for inclusive jet production
in the gluon-gluon channel at LO, NLO and NNLO. Indeed the variation decreases each
time indicating that the sensitivity to the scale is decreasing. The fact that the lines do
not overlap is a clear sign that these uncertainty bands are not error bands.
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7.2 Running Coupling

Suppose we have chosen a renormalisation scale µ. How do we measure a coupling αR(µ)?
We normally consider an observable O(αR(µ′), µ′, {Qi}), compute it at the highest possible
order in perturbation theory, and compare the obtained number with experimental data:

O(n)(αR(µ′), µ′, {Qi}) = Oexp ⇒ αR(µ) . (152)

By doing this for various observables, characterised by different typical scales µ, one can
actually measure the dependence of the coupling on the renormalisation scale µ. This
dependence can be predicted theoretically, and the comparison of the predicted dependence
with the one that is actually observed represents one of the most stringent tests of the
validity of a given QFT. This is illustrated for QCD in fig. 20, where one sees an astonishing
agreement between the predicted “running” of the QCD coupling with the renormalisation
scale Q, and what is observed in experimental data.

Figure 20: The QCD coupling αs as a function of the renormalisation scale Q, in theory
and experiment, taken from arXiv:1512.0519.

The theoretical object that dictates how a coupling evolves with the renormalisation scale
is the beta function β(αR), defined as

µ2∂αR
∂µ2

= β(αR) = −β0α2
R − β1α3

R + . . . . (153)

There are various ways to compute the beta function, which in general depends on the
renormalisation scheme used. However, one can show that the first two coefficient of the
beta function, β0 and β1, are independent of the renormalisation scheme. If we consider
a scheme tied to dimensional regularisation (e.g. the so-called MS scheme), one has the
relation

α0(ε) = µ2ε Z2
g (ε, µ2)αR(µ2) , (154)
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where α0 = g20/(4π) and αR = g2R/(4π). The crucial observation is that the bare coupling
α0 does not depend on µ. Therefore, its logarithmic derivative with respect to µ2 is zero:

0 = µ2∂α0

∂µ2
= µ2ε Z2

g (ε, µ2)

[(
ε+

µ2

Z2
g

∂Z2
g

∂µ2

)
αR + µ2∂αR

∂µ2

]
. (155)

This gives

µ2∂αR
∂µ2

= −
(
ε+

µ2

Z2
g

∂Z2
g

∂µ2

)
αR ≡ β(ε, αR)→ β(αR) = − lim

ε→0

µ2

Z2
g

∂Z2
g

∂µ2
αR , ε→ 0 .

(156)
In any scheme based on dimensional regularisation we have

Zg(ε, µ
2) = 1 +

αR(µ2)

ε
Z(1)
g + . . . . (157)

Therefore the first term of the beta function is just obtained from the 1/ε pole of Zg, as
follows

β(αR) = − lim
ε→0

µ2

Z2
g

∂Z2
g

∂µ2
αR = − lim

ε→0

2Z
(1)
g

ε
µ2∂αR
∂µ2︸ ︷︷ ︸

=−εαR

αR = −β0α2
R ⇒ β0 = −2Z(1)

g . (158)

The calculation of Z
(1)
g can be performed using any quantity that involves an interaction

vertex. A way that is common to both QED and QCD is to consider the renormalised
interaction Lagrangian

Lint → ZgZ2

√
Z3 (gRψ̄R��ARψR) = Z1 (gRψ̄R��ARψR) , ⇒ Zg =

Z1

Z2

√
Z3

. (159)

Here we have used the ubiquitous notation Zψ =
√
Z2 and ZA =

√
Z3. The function

Z1 contains all UV divergences associated with loop corrections to the interaction vertex,
whereas Z2 and Z3 contain UV divergences arising in the calculations of the fermion
and gauge-boson propagators respectively. In QED, a powerful Ward identity implies
Z1 = Z2, so that the beta function can be calculated just from all the loop corrections to
the propagator in the unrenormalised theory. For the case of QED

β0 = −2Z(1)
g = Z

(1)
3 = − 1

3π
. (160)

Inserting this expression in the beta function we obtain

βQED(α) =
1

3π
α2 . (161)

which means that the QED coupling, at least until the beta function is dominated by its
first term, becomes stronger with energy.
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In QCD instead the Ward identity Z1 = Z2 does not hold any more. However, it holds
at least for the part of these renormalisation functions that depends on CF . Since, at
one loop, Z

(1)
2 is proportional to CF , its contribution to the beta function cancels exactly

with the abelian contribution to Z
(1)
1 . Therefore, the only contributions to the QCD beta

function at one loop come from the renormalisation function of the gluon Z
(1)
3 and the

non-abelian part of Z
(1)
1 , which we call Z

(1)
1 |n.a. The two depend on the gauge, but this

gauge dependence cancels in the combination

β0 = −2Z(1)
g = Z

(1)
3 − 2Z

(1)
1 |n.a . (162)

For instance, in the Feynman gauge

Z
(1)
3 =

αs
ε

5CA − 2nf
12π

, Z
(1)
1 = −αs

ε

CF + CA
4π

, (163)

where αs = g2s/(4π) and nf is the number of massless (a.k.a. “active”) quark flavours
contributing to the renormalisation of the gluon propagator. This gives

βQCD(αs) = −11CA − 2nf
12π

α2
s = − 21

12π
α2
s , (164)

where the latter expression corresponds to the actual value of the beta function for nf = 6
active flavours, as is the case at very high momentum scales. The fact that the beta
function of QCD is negative when αs is small means that the QCD coupling decreases
with energy. This property is known as asymptotic freedom, and is crucial to be able to
compute hadronic cross sections in terms of quarks and gluons. In fact, when probed at
short distances, hadrons appear as made up of pointlike constituents, quarks and gluons,
which interact very feebly. Therefore, the Feynman rules we have learnt so far are enough
to compute high-energy observables, for instance jet cross sections, as will be explained
in the phenomenology course. At larger distances, the QCD coupling becomes stronger
and stronger, at a point that quarks and gluons bind together to form hadrons. This
phenomenon is known as confinement.

End note

This has been a very quick tour through some of the very important, deep and interesting
material relevant for the description of QED and QCD. I hope it has provided some insight,
and provided you with useful tools for the future.
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