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Do you think that by modifying Newtonian dynamics to something like Gen-
eral Relativity one could explain the anomalies in the orbit of Uranus in a
viable way? (without introducing Neptune)

As seen in the lectures, the modification related to GR is valid when the gravitational
potential starts to be large. The gravitational potential can be approximated to

φ =
GNMsun

r
≈ 3 km

r
(1)

Orbital radius of Uranus ≈ 109 km. This is a tiny modification, much smaller than for
inner planets: GR is different from Newtonian dynamics at distances closer to the Sun.
It can’t explain anything in Neptune without spoiling the rest of the Solar System.

2

A very important result in dynamical systems is virial theorem. Can you
reproduce it for Newtonian dynamics? ( Show that the time average satisfies
2〈T 〉 = −〈V 〉 where T =

∑
miv

2
i /2 is the kinetic energy of a collection of parti-

cles, V =
∑

i<j Vij(r) =
∑

i<j Gmjmj/rij the potential energy, 1
τ

∫ τ
0
dt... = 〈...〉 and

we take the limit of large τ)

Hint: Start with the quantity

D =
∑
i

~pi · ~ri, (2)

where we are summing over number of particles. Take the time derivative, and average
over time. Assume that D does not grow with time in the situation of equilibrium

dD
dt

=
∑
i

~Fi · ~ri + 2T. (3)

If we average the previous quantity over time τ ,

1

τ

∫ τ

0

dt... = 〈...〉, (4)

we find
D(τ)−D(0)

τ
= 2〈T 〉+ 〈~F~r〉. (5)

1



The first object cancels at long times if the situation is almost in equilibrium (in other
words, as long as D(τ) is not growing with time. Which should be the case in a situation
in equilibrium). The last term,∑

i 6=j

−~∂Vij~ri =
∑
i<j

−~∂Vij(~ri − ~rj) =
∑
i<j

Vij (6)

where we used that Vij(r) = Gmjmj/rij.

3

We know from the lectures that DM is almost collisionless. Can you estimate
a bound on the cross-section by assuming that the typical clusters do not in-
teract when they collide? (assume the energy density of DM is ∼ GeV/cm3

and recall that the typical size a cluster is ∼ few Mpc. Similarly, you can
assume that the typical time between collisions should be larger than the
crossing time of clusters. Assume this time to be 1 Gyr. You can leave the
estimate in terms of the velocity in this second case).

Hint: The mean free path in a medium of n number density and given a cross section
σ is

lmfp ∼ 1/(nσ) (7)

while the typical time between collisions is (we don’t use it)

lmfp/v. (8)

Assume that
lmfp > #Mpc. (9)

This means

σ/m < cm3/(GeV )/Mpc = 1/(10−24gr)10−24cm2 ≈ cm2/gr (10)

4

You can become an cosmologist for one day. Go to the webpage https:
//lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm. In the first page you can
choose different values for Ωbh

2. Check how if one increases this value (com-
pensate it by reducing the value of Ωch

2, which is the value of the DM com-
ponent such that Ωb + Ωc is the same as before. If you click the ‘Transfer
Functions’ box you also get the power spectrum. Plot the Cl (data from
‘camb xxxxx scalcls.dat’ shown as LinLog) and compare by eye with https:
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//wiki.cosmos.esa.int/planckpla2015/index.php/File:A15_TT.png. If you have
asked for ‘Transfer functions’ you can also loglog plot the power spectrum
file ‘camb xxxxx matterpower z0.dat’ and see how it changes.

5

Find the minimum value of dark matter mass allowed by quantum mechan-
ics for bosonic and fermionic candidates. You need to fit the DM candi-
date to dwarf spheroidals (r ∼kpc, typical velocity ∼ 10−4c and mean density
∼ 5 GeV/cm3)

Hint: As we discussed during the lectures, the idea for baryons is that the uncertainty
principle tells us the de Broglie wavelength allowed given a typical momentum (more
precisely, the uncertainty in momentum, which shouldn’t exceed the momentum that is
required for these structures to be bounded)

∆x∆p ≥ 2π~ (11)

The uncertainty in position is kpc, thus

kpc ·m10−4 ≥ 2π, (12)

meaning
m & 10−22 eV. (13)

Hint: For fermions, the idea is that you need to fit the fermions in the free states that
live in a halo of certain maximum size and maximum momentum. Assuming a box in
phase space of size kpc and 10−4m, compute the number of degrees of freedom available,
and fill them up to accommodate all the mass of the galaxy.

N =
kpc3(10−4m)3

(∆x∆p)3
∼ 1064

( m
eV

)3

. (14)

These states should fill up the total mass, so

ρ(kpc)3 ∼Mgalaxy = Nm (15)

I find
m & 300 eV. (16)
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What’s H0 in years? H0 ∼ 0.7km/s/Mpc

The result is ∼ 14 Gyr.
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Compute the yield for a relativistic and non relativistic species. Estimate
the yield that we need in order to reproduce the correct DM relic abundance
Ωh2 ≈ 0.1

s =
2π2

45
g∗sT

3 (17)

Also , for relativistic particles

nγ = ζ(3)
geff
π2

T 3. (18)

Hence

Yeq =
45

2π4
ζ(3)

geff
g∗s
≈ 0.278

geff
g∗s

(19)

For NR,

n = geff

(
mT

2π

)3/2

e−m/T (20)

and hence

Yeq =
45

2π4

(π
8

)1/2 geff
g∗s

(m
T

)3/2

e−m/T . (21)

Then

Ωh2 =
ρχ
ρc
h2 =

mχnχh
2

ρc
=
mχY∞s0h

2

ρc
(22)

The yield stays constant since freeze-out,

Ωh2 =
mχYfs0h

2

ρc
(23)

One gets

Yf ≈ 3.55× 10−10

(
1GeV

mχ

)
. (24)
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Show that in terms of Y , the equation of evolution reads

dY

dt
= −s〈σv〉

(
Y 2 − Y 2

eq

)
. (25)

dY

dt
=

d

dt

(n
s

)
=

d

dt

(
a3n

a3s

)
=

1

a3s

(
3a2ȧn+ a3dn

dt

)
=

1

s

(
3Hn+

dn

dt

)
(26)
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Here we have used that the expansion of the Universe is iso-entropic and thus a3s remains
constant. Also we use the definition of the Hubble parameter. Using (37) of the notes
we get the final result.

9

Using Boltzmann equation, expressed in terms of the yield Y = n/s, which
reads

dY

dx
= −λ〈σv〉

x2

(
Y 2 − Y 2

eq

)
, (27)

define the quantity ∆Y = Y −Yeq and show that, for non-relativistic particles,
the solution can be approximated as (xf is the time of freezeout at which
Γ ∼ H)

∆Y = −
dYeq
dx

Yeq
x2

2λ〈σv〉 , 1 < x� xf

∆Y∞ = Y∞ =
xf

λ

(
a+ b

2x2
f

) , x� xf (when Y � Yeq)
(28)

For the second part assume that the thermally averaged annihilation cross
section can be expanded in powers of 1/x as 〈σv〉 = a+ b

x
,

Hint: For early times, 1 < x� xf , the yield follows closely its equilibrium, Y ≈ Yeq
and we can assume that d∆Y/dx = 0, and just follow the algebra

We find

∆Y = −
dYeq
dx

Yeq
x2

2λ〈σv〉

∆Yf ≈
x2f

2λ〈σv〉

(29)

where in the last line we have used that for large enough x, using

Yeq =
45

2π4

(π
8

)1/2 geff
g∗s

(m
T

)3/2

e−m/T (30)

implies dYeq/dx ≈ −Yeq at leading order in x.
Hint: For late times, x � xf , we can assume that Y � Yeq, and thus ∆Y∞ ≈ Y∞.

You need to integrate from xf to x∞. You can neglect the Yf int he final formula
This leads to the following expression,

d∆Y

dx
≈ −λ〈σv〉

x2
∆2
Y (31)
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This is a separable equation that we integrate from the freeze-out time up to nowadays.
In doing so, it is customary to expand the thermally averaged annihilation cross section
in powers of 1/x as 〈σv〉 = a+ b

x
,∫ ∆Y∞

∆Yf

d∆Y

∆2
Y

= −
∫ x∞

xf

λ〈σv〉
x2

dx (32)

Taking into account that x∞ � xf , this leads to

1

∆Y∞

=
1

∆Yf

+
λ

xf

(
a+

b

2xf

)
(33)

The term 1/∆Yf is generally ignored (if we are only aiming at a precision up to a few
per cent) . We can check that this is a good approximation using the previously derived
(29) for xf ≈ 20 (which, is the value for which the equilibrium Yield has the right value).
This leads to

∆Y∞ = Y∞ =
xf

λ
(
a+ b

2xf

) (34)

The relic density can now be expressed in terms of this result as follows

Ωh2 =
mχY∞s0h

2

ρc

≈ 10−10GeV−2

a+ b
40

≈ 3× 10−27cm3s−1

a+ b
40

(35)

This expression explicitly shows that for larger values of the annihilation cross section,
smaller values of the relic density are obtained.
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IIn the Early Universe, neutrinos remain in equilibrium through the process
e++e− ←→ νe+ν̄e. Using that both the electron-positron and neutrino popula-
tions are relativistic and therefore their number density scales as n ∼ T 3, the
decoupling temperature of neutrinos can be roughly estimated by equating
the annihilation rate Γ = n〈σv〉 and the Hubble expansion rate H =

√
8πGρ/3.

The energy density of the Universe scales as ρ ∼ T . Show that neutrinos
decouple at approximately T ∼ 1 MeV.

Hint: Neutrinos keep in thermal equilibrium through interactions with electrons through
the processes e− + e+ ←→ νe + ν̄e and e− + νe ←→ e− + νe. When neutrinos decouple
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there are in the thermal bath electrons, positrons, photons and the three neutrinos and
antineutrinos, g∗ = 10.75 (check it).

Using dimensional arguments, the cross section of these processes at a temperature T
(which defines the c.o.m. energy) is approximately σ = G2

FT
2, where GF = 1.17× 10−5

GeV .
Given that both neutrinos and electrons are fermions, their number density can be

written as
ne,νe =

geff
π2

ζ(3)T 3 ≈ 0.1ge,νeT
3 (36)

where ge = 2 and gν = 1. The interaction rate of these processes therefore reads

Γ = ne〈σv〉 ≈ 0.1 (ge + gνe)T
3G2

FT
2 ≈ 0.3G2

FT
5 (37)

where we have considered that both species are relativistic and therefore v ∼ c = 1. For
a radiation dominated Universe the Hubble parameter reads

H =
π√
90
g1/2
∗

T 2

MP

(38)

In order to see when neutrinos decouple, we need to compare their annihilation rate with
the Hubble parameter

Γ

H
= MP

0.3G2
FT

5

0.3g
1/2
∗ T 2

=
MPG

2
FT

3

g
1/2
∗

∼
(

T

2MeV

)3

(39)

the last expression we have used that the number of relativistic degrees of freedom when
neutrinos decouple is g∗ = 10.75. This approximation suggests that neutrinos decouple
from the thermal bath at T ∼ 2 MeV . A full numerical solution of Boltzmann equation
yields T ∼ 1 MeV, so this is still a good approximation.

11

From the question above, we know that when neutrinos decouple, they are
still relativistic. The other relativistic species in the thermal bath are elec-
trons, positrons, photons and the three neutrinos and antineutrinos. With
this information the relic density of neutrinos in the Universe today can be
estimated as a function of the neutrino mass. .

Hint: To do that, follow eq (56) of the notes, and substitute geff by the corresponding
value for two helicities.

Since neutrinos decouple while they are still relativistic, their yield reads

Yeq ≈ 0.278
geff
g∗s

(40)
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Neutrinos decouple at a few MeV, when the species that were still relativistic are
e±, γ, ν and ν̄. Thus, the number of relativistic degrees of freedom isg∗ = g∗s = 10.75..
For one neutrino family, the effective number of degrees of freedom is geff = 3g/4 = 3/2.
Using these values, the relic density today an be written as

Ωh2 =

∑
imνiY∞s0h

2

ρc

≈
∑

imνi

91eV
h2

(41)

Notice that in order for neutrinos to be the bulk of dark matter, we would need
m ≈ 9 eV, which is much bigger than current upper limits (for example, obtained
from cosmological observations). Notice, indeed, that if we consider the current bound∑
mνi ≤ 0.3 eV we can quantify the contribution of neutrinos to the total amount of

dark matter, resulting in Ωh2 ≤ 0.003. This is less than a 3% of the total dark matter
density.

12

What’s the relic density of a species of mass m that is kept in equilibrium
with SM particles through 3DM → 2SM processes assuming it decouples at
T ∼ m? (follow the same steps as 3.3.2 of the notes). Which value of the
mass generates the observed DM abundance? (assume 〈σv〉 ∼ α3/m5, where
α is a dimensionless coupling)

Hint: The rate of interaction is should now be proportional to the flux squared ∼ n2.
So we expect

Γ ∼ n2〈σv〉 ∼ m2/MPl (42)

The ’cross-section’ has now different dimensions, since the total number of events is
proportional to the flux squared. A reference where things are done in detail is https://
arxiv.org/pdf/1706.05381.pdf (see also https://arxiv.org/abs/1411.3727). For
the moment we keep it as it is. Then

ρf = mn ∼ m2

(MPl〈σv〉)1/2
(43)

After freeze-out, this evolves until the moment of matter-radiation equality, that we use
to fix the abundance:

ρRME = ρf

(
TRME

Tf

)3

= ρf

(
TRME

m

)3

∼ T 4
RME. (44)
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So,
1

m2MPlT 2
∼ 〈σv〉 (45)

So, dimensionally, 〈σv〉 ∼ α3/m5. I introduced the factor α3 assuming that the process
requires three vertices, but this is not important, as long as it is below 1. So the final
result is

m ∼ α(T 2MPl)
1/3 ∼ 100α keV (46)

13

Direct detection. What is the minimum velocity needed vm for a WIMP with
mass mχ to produce a 10 keV recoil in a nucleus of mass mN Which cross-
sections will generate one event/day in a 1 T detector of targets of 100 GeV?

One can simply use the possibility where all the kinetic energy is absorbed by the
recoil 10keV = Ek,DM = mγ −m. In the NR limit, Ek,DM = 1

2
mv2, from where you find

v.
For the number of events, see (95) of notes

N = nvσtNT = 10v
σ

(300)4GeV 2

GeV

m
events/day. (47)

14

Boost the DM distribution to the Solar System frame and compute v̄

In the rest frame of the DM, the distribution is given by

fv =
1

Nesc

(
3

2πσ2
0

)3/2

e
− 3

2
v2

2σ20 . (48)

The Solar system moves with velocity ~v� with respect to this frame, which implies that
for an observer at the Sun, ~v = ~vDM +~v�. The average velocity of a DM particle in this
frame is hence ∫

d3v~vf(~vDM + ~v�) =

∫
d3ṽ(~̃v − ~v�)f(~̃v) = −~v� (49)

where I changed the variable of intergration. Here I’m ignoring the limits related to the
escape velocity.
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15

Consider two massive bosonic fields coupled with Lagrangian

L =
1

2
∂µφ1∂

µφ1 −m2
1φ

2
1 +

1

2
∂µφ2∂

µφ2 −m2
2φ

2
1 + gφ2

1φ2 (50)

Assume that φ has a background value φ̄1. Show that the fluctuations over
this background satisfy (in Fourier space)

(ω2 − k2 −m2
1)δφ1 + gφ̄1δφ2 = 0, (ω2 − k2 −m2

2)δφ2 + gφ̄1δφ1 = 0. (51)

If the system starts with initial conditions δφ1 = φ0 and δφ̇1 = δφ̇2 = δφ2 = 0,
compute the value of δφ2 as the wave propagates in the limit where m1 = m2

(you can do it in the limit of small g).

The equations of motion follow from expanding φ1 = φ̄ + δφ1, and retaining the
quadratic order in perturbation in the Lagrangian. Then one finds

(−�−m2
1)δφ1 + gφ̄1δφ2 = 0, (−�−m2

2)δφ2 + gφ̄1δφ1 = 0. (52)

The idea is to find the modes that propagate without mixing. In the case of equal masses,
these are simply

φ+ = δφ1 + δφ2, and φ− = δφ1 − δφ2. (53)

They propagate as
(−�−m2)φ± ± gφ̄1φ± = 0. (54)

Now there are different was to proceed. One of them is to use the Green function for
the previous linear equation. Let’s do something a bit less sophisticated. The modes
propagate with dispersion relation

ω2 = k2 +m2 ∓ gφ̄. (55)

The group velocity is (in the limit of small mass and coupling)

vg =
dω

dk
=

k

(k2 +m2 ∓ gφ̄)1/2
= 1− 1

2

m2 ∓ gφ̄
k2

(56)

One mode is a bit faster than the other, the − mode. So we focus on this one. This
mode starts with initial conditions

φ− = φ0. (57)

It then propagates with velocity vg. Since

φ2 =
1

2
(φ+ − φ−) (58)

One sees that φ2 is generated as the beam propagates. This result is valid at leading
order in g, so it is not valid for oscillations.
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