# **Collider Phenomenology**

### Lucian Harland-Lang, University of Oxford





## **Background Reading**

• Ellis, Stirling, Webber, "QCD and Collider Physics", aka "The Pink Book".

- Gunion, Kaber, Kane, Dawson, "Higgs Hunter's Guide"
- Many nice review/lecture notes online: hep-ph/0011256, <u>http://cds.cern.ch/record/454171</u>, arXiv:1011.5131, arXiv:0906.1833, hep-ph/0505192, arXiv:1709.04533, arXiv:1312.5672...





## **Purpose of Slides**

- Lecture notes will be given on board, but see online notes for more detail (will not cover everything there).
- These slides: plots that I cannot draw easily!



### (2-jet) Event Display



• Example event display from  $e^+e^-$  collisions.

### R(hadrons/muons)



5



### R(hadrons/muons) - Closer Look



R(hadrons/muons) - Closer Look





(Approx.!) Theory

Data

### Higgs Width



### Sigma(hadronic) - Z peak

### LHC jets @NNLO

Phys.Rev.Lett. 118 (2017) 7,072002

#### NNLO QCD predictions for single jet inclusive production at the LHC

J. Currie<sup>a</sup>, E.W.N. Glover<sup>a</sup>, J. Pires<sup>b</sup>

<sup>a</sup> Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, England <sup>b</sup> Max-Planck-Institut für Physik, Föhringer Ring 6 D-80805 Munich, Germany

We report the first calculation of fully differential jet production at leading colour in all partonic channels at next-to-next-to leading order (NNLO) in perturbative QCD and compare to the available ATLAS 7 TeV data. We discuss the size and shape of the perturbative corrections along with their







Figure 1: The percentage contribution of the sub-leading colour to full colour NNLO correction,  $\delta$ , for the single jet inclusive transverse energy distribution as a function of  $p_T$ .

### Running (Strong) Coupling



(Approx.!) Theory Data + Theory

## **Strong Coupling Determination**







### **Renormalization Scale Dependence**

• Two nice recent examples from **arXiv:1707.01044**:



## Thrust

• Basic (LO in QCD) expectation:



arXiv:0906.3436

 Modern (NNLO in QCD + NLL resummation) result vs. data.

• Nice description. Sensitive to (colour/spin) nature of gluons.



### **Thrust - Resummed Prediction**

• Impact of resummation: including Sudakov form factor.



### Resummation - Z transverse momentum



### **Callan-Gross Relation**



**Data from SLAC** 

### **Bjorken Scaling**



#### PDFs & DGLAP **Increase Scale (DGLAP)** MMHT14 NNLO, $Q^2 = 10^4 \,\mathrm{GeV}^2 \sim M_Z^2$ MMHT14 NNLO, $Q^2 = 10 \, {\rm GeV}^2$ 1.21.2 $xf(x,Q^2)$ $xf(x,Q^2)$ 1 0.8 0.8 $\mathbf{g}/10$ g/10 $\mathbf{u}_V$ 0.6 0.6 $\mathbf{u}_V$ b 0.4 0.4 $\mathbf{d}_V$ $\mathbf{d}_V$ 0.20.2С d d 0 0 0.0001 0.0010.01 0.0010.10.0001 0.010.11 1 x ${\boldsymbol{\mathcal{X}}}$ $P_{gq}(x) \xrightarrow{p} 0000 \qquad P_{gg}(x) \xrightarrow{p} 0000 \qquad P_{gg}(x) 0$

22

### The Proton @ LHC: Mostly Gluons





### **PDF** Fits

 Wide range of data/ experiments in modern 'global' PDF fits.

S. Bailey et al., arXiv:2012.04684

MSHT20

Highly Non-

 $\Rightarrow \quad trivial \ check \\ of \ QCD.$ 

LHC

| Data set                                                                                                                                                                                                                                                                                                             |                                         | NLO                                                                  | NNLO                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| BCDMS $\mu p F_2$ [49]                                                                                                                                                                                                                                                                                               |                                         | 169.4/163                                                            | 180.2/163                                                                              |
| BCDMS $\mu d F_2$ [49]                                                                                                                                                                                                                                                                                               |                                         | 135.0/151                                                            | 146.0/151                                                                              |
| NMC $\mu p F_2$ [50]                                                                                                                                                                                                                                                                                                 |                                         | 142.9/123                                                            | 124.1/123                                                                              |
| NMC $\mu d F_2$ [50]                                                                                                                                                                                                                                                                                                 |                                         | 128.2/123                                                            | 112.4/123                                                                              |
| NMC $\mu n/\mu p$ [51]                                                                                                                                                                                                                                                                                               |                                         | 127.8/148                                                            | 130.8/148                                                                              |
| E605 $\mu p F_2$ [52]                                                                                                                                                                                                                                                                                                |                                         | 59.5/53                                                              | 64.7/53                                                                                |
| E005 $\mu d F_2$ [52]                                                                                                                                                                                                                                                                                                |                                         | 50.3/53                                                              | 59.7/53                                                                                |
| SLAC $ep F_2$ [53, 54]<br>SLAC $-L E$ [52, 54]                                                                                                                                                                                                                                                                       |                                         | 29.4/37                                                              | 32.0/37                                                                                |
| SLAC $ea$ $F_2$ [55, 54]<br>NMC/DODMC/CLAC/HEDA E [40 50 54 146                                                                                                                                                                                                                                                      | 140]                                    | 31.4/38<br>70.4/57                                                   | 23.0/38                                                                                |
| $\frac{1}{140}$                                                                                                                                                                                                                                                                                                      | -140]                                   | 19.4/07                                                              | 00.4/07                                                                                |
| $E_{866}/NuSea pp D1 [149]$<br>$E_{866}/NuSea pd/pp DV [150]$                                                                                                                                                                                                                                                        |                                         | 10.6/15                                                              | 220.1/164                                                                              |
| $\frac{1000}{\text{NuToV}} \frac{\mu N E_{\text{r}}}{155}$                                                                                                                                                                                                                                                           |                                         | 10.0/10                                                              | 38 3/53                                                                                |
| CHORUS $\nu N F_2$ [56]                                                                                                                                                                                                                                                                                              |                                         | 97.8/49                                                              | 30.2/42                                                                                |
| NuTeV $\nu N \ rF_2$ [55]                                                                                                                                                                                                                                                                                            |                                         | 37 8/42                                                              | 30 7/42                                                                                |
| CHORUS $\nu N xF_2$ [56]                                                                                                                                                                                                                                                                                             |                                         | 22.0/28                                                              | 18.4/28                                                                                |
| CCFR $\nu N \rightarrow \mu \mu X$ [57]                                                                                                                                                                                                                                                                              |                                         | 73.2/86                                                              | 67.7/86                                                                                |
| NuTeV $\nu N \rightarrow \mu \mu X$ [57]                                                                                                                                                                                                                                                                             |                                         | 41.0/84                                                              | 58.4/84                                                                                |
| HERA $e^+p$ CC [84]                                                                                                                                                                                                                                                                                                  |                                         | 54.3/39                                                              | 52.0/39                                                                                |
| HERA $e^-p$ CC [84]                                                                                                                                                                                                                                                                                                  |                                         | 80.4/42                                                              | 70.2/42                                                                                |
| HERA $e^+p$ NC 820 GeV [84]                                                                                                                                                                                                                                                                                          |                                         | 91.6/75                                                              | 89.8/75                                                                                |
| HERA $e^+p$ NC 920 GeV [84]                                                                                                                                                                                                                                                                                          |                                         | 553.9/402                                                            | 512.7/402                                                                              |
| HERA e <sup>-</sup> p NC 460 GeV [84]                                                                                                                                                                                                                                                                                |                                         | 253.3/209                                                            | 248.3/209                                                                              |
| HERA $e^-p$ NC 575 GeV [84]                                                                                                                                                                                                                                                                                          |                                         | 268.1/259                                                            | 263.0/259                                                                              |
| HERA $e^-p$ NC 920 GeV [84]                                                                                                                                                                                                                                                                                          |                                         | 252.3/159                                                            | 244.4/159                                                                              |
| HERA $ep \ F_2^{\text{charm}}$ [26]                                                                                                                                                                                                                                                                                  |                                         | 125.6/79                                                             | 132.3/79                                                                               |
| DØ II $p\bar{p}$ incl. jets [125]                                                                                                                                                                                                                                                                                    |                                         | 117.2/110                                                            | 120.2/110                                                                              |
| CDF II $p\bar{p}$ incl. jets [124]                                                                                                                                                                                                                                                                                   |                                         | 70.4/76                                                              | 60.4/76                                                                                |
| CDF II $W$ asym. [90]                                                                                                                                                                                                                                                                                                |                                         | 19.1/13                                                              | 19.0/13                                                                                |
| DØ II $W \to \nu e$ asym. [151]                                                                                                                                                                                                                                                                                      |                                         | 44.4/12                                                              | 33.9/12                                                                                |
| DØ II $W \to \nu \mu$ asym. [152]                                                                                                                                                                                                                                                                                    |                                         | 13.9/10                                                              | 17.3/10                                                                                |
| $D\emptyset \ II \ Z \ rap. \ [153]$                                                                                                                                                                                                                                                                                 |                                         | 15.9/28                                                              | 16.4/28                                                                                |
| CDF II Z rap. [154]                                                                                                                                                                                                                                                                                                  |                                         | 36.9/28                                                              | 37.1/28                                                                                |
| DOW asym. [21]                                                                                                                                                                                                                                                                                                       |                                         | 13.1/14                                                              | 12.0/14                                                                                |
|                                                                                                                                                                                                                                                                                                                      |                                         |                                                                      |                                                                                        |
| Data set                                                                                                                                                                                                                                                                                                             |                                         | NLO                                                                  | NNLO                                                                                   |
| ATLAS $W^+, W^-, Z$ [119]                                                                                                                                                                                                                                                                                            | 34.7/30                                 |                                                                      | 29.9/30                                                                                |
| CMS W asym. $p_T > 35$ GeV [155]                                                                                                                                                                                                                                                                                     | 1                                       | 1.8/11                                                               | 7.8/11                                                                                 |
| CMS asym. $p_T > 25, 30 \text{ GeV} [156]$                                                                                                                                                                                                                                                                           | 1                                       | 1.8/24                                                               | 7.4/24                                                                                 |
| LHCb $Z \rightarrow e^+e^-$ [157]                                                                                                                                                                                                                                                                                    | 14.1/9                                  |                                                                      | 22.7/9                                                                                 |
| LHCb W asym. $p_T > 20$ GeV [158]                                                                                                                                                                                                                                                                                    | 10.5/10                                 |                                                                      | 12.5/10                                                                                |
| CMS $Z \rightarrow e^+e^-$ [159]                                                                                                                                                                                                                                                                                     | 18                                      | 8.9/35                                                               | 17.9/35                                                                                |
| ATLAS High-mass Drell-Yan [160]                                                                                                                                                                                                                                                                                      | 20.7/13                                 |                                                                      | 18 9/13                                                                                |
| CMS double diff Droll Van [72]                                                                                                                                                                                                                                                                                       | 222.2/132                               |                                                                      | 144.5/132                                                                              |
| Towatron ATLAS CMS $\sigma = [02]$ [04]                                                                                                                                                                                                                                                                              | 222.2/102<br>22.8/17                    |                                                                      | 141.0/102<br>145/17                                                                    |
| 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                | 114.4/67                                |                                                                      | 14.0/17                                                                                |
| LHCD 2015 W, Z [95,90]                                                                                                                                                                                                                                                                                               | 11                                      | 4.4/07                                                               | 99.4/07                                                                                |
| LHCb 8 TeV $Z \rightarrow ee$ [97]                                                                                                                                                                                                                                                                                   | - 3                                     | 9.0/17                                                               | 26.2/17                                                                                |
| $CMS \ 8 \ TeV \ W \ [98]$                                                                                                                                                                                                                                                                                           | 23                                      | 3.2/22                                                               | 12.7/22                                                                                |
| ATLAS 7 TeV jets [18]                                                                                                                                                                                                                                                                                                | 220                                     | 6.2/140                                                              | 221.6/140                                                                              |
| CMS 7 TeV $W + c$ [99]                                                                                                                                                                                                                                                                                               | 8                                       | 8.2/10                                                               | 8.6/10                                                                                 |
| ATLAS 7 TeV high precision $W, Z$ [20]                                                                                                                                                                                                                                                                               | 30                                      | 4.7/61                                                               | 116.6/61                                                                               |
| CMS 7 TeV jets [100]                                                                                                                                                                                                                                                                                                 | 200                                     | 0.6/158                                                              | 175.8/158                                                                              |
| CMS 8 TeV jets [101]                                                                                                                                                                                                                                                                                                 | 28                                      | 5.7/174                                                              | 261.3/174                                                                              |
| CMS 2.76 TeV jet [107]                                                                                                                                                                                                                                                                                               | 12                                      | 4 2/81                                                               | 102.9/81                                                                               |
| $\Delta TL \Delta S \otimes T_{eV} Z m_{rr}$ [75]                                                                                                                                                                                                                                                                    | 23                                      | 5.0/10/                                                              | 188 5/10/                                                                              |
| ATLAS 6 TeV $\Sigma p_T$ [15]<br>ATLAS 8 TeV single diff $t\bar{t}$ [102]                                                                                                                                                                                                                                            | 20                                      | 0.0/104                                                              | 25.6/25                                                                                |
| ATLAS O LEV SINGLE UII $ll$ [102]<br>ATLAS O TAV simple 1:0 $l\overline{l}$ 1:1 at a [100]                                                                                                                                                                                                                           | 3                                       | 7.1/20<br>4.7/5                                                      | 20.0/20                                                                                |
|                                                                                                                                                                                                                                                                                                                      |                                         | + (/ h                                                               | 3.4/D                                                                                  |
| AT LAS 8 TeV single dil <i>tt</i> dilepton [105]                                                                                                                                                                                                                                                                     | -                                       | 1.1/0                                                                | 22 5 1                                                                                 |
| CMS 8 TeV double differential $t\bar{t}$ [105]                                                                                                                                                                                                                                                                       | 35                                      | 2.8/15                                                               | 22.5/15                                                                                |
| CMS 8 TeV single differential $t\bar{t}$ [105]<br>CMS 8 TeV double differential $t\bar{t}$ [105]<br>CMS 8 TeV single differential $t\bar{t}$ [108]                                                                                                                                                                   | 3:<br>1                                 | 2.8/15<br>2.9/9                                                      | 22.5/15<br>13.2/9                                                                      |
| CMS 8 TeV single differential $t\bar{t}$ [105]<br>CMS 8 TeV double differential $t\bar{t}$ [105]<br>CMS 8 TeV single differential $t\bar{t}$ [108]<br>ATLAS 8 TeV High-mass Drell-Yan [73]                                                                                                                           | 3:<br>1<br>8:                           | 2.8/15<br>2.9/9<br>5.8/48                                            | 22.5/15<br>13.2/9<br>56.7/48                                                           |
| CMS 8 TeV single differential $t\bar{t}$ [105]<br>CMS 8 TeV double differential $t\bar{t}$ [105]<br>CMS 8 TeV single differential $t\bar{t}$ [108]<br>ATLAS 8 TeV High-mass Drell-Yan [73]<br>ATLAS 8 TeV W [106]                                                                                                    | 3:<br>1<br>8:<br>84                     | 2.8/15<br>2.9/9<br>5.8/48<br>4.6/22                                  | 22.5/15<br>13.2/9<br>56.7/48<br>57.4/22                                                |
| ATLAS 8 TeV single diff $t\bar{t}$ differential $t\bar{t}$ [105]<br>CMS 8 TeV double differential $t\bar{t}$ [105]<br>CMS 8 TeV single differential $t\bar{t}$ [108]<br>ATLAS 8 TeV High-mass Drell-Yan [73]<br>ATLAS 8 TeV W [106]<br>ATLAS 8 TeV W + jets [104]                                                    | 3:<br>1<br>8:<br>84<br>3:               | 2.8/15<br>2.9/9<br>5.8/48<br>4.6/22<br>3.9/30                        | 22.5/15<br>13.2/9<br>56.7/48<br>57.4/22<br>18.1/30                                     |
| ATLAS 8 TeV single diff $t\bar{t}$ differential $t\bar{t}$ [105]<br>CMS 8 TeV double differential $t\bar{t}$ [105]<br>CMS 8 TeV single differential $t\bar{t}$ [108]<br>ATLAS 8 TeV High-mass Drell-Yan [73]<br>ATLAS 8 TeV W [106]<br>ATLAS 8 TeV W + jets [104]<br>ATLAS 8 TeV double differential Z [74]          | 3:<br>1<br>8:<br>8:<br>8:<br>3:<br>15   | 2.8/15<br>2.9/9<br>5.8/48<br>4.6/22<br>3.9/30<br>97.4/59             | $\begin{array}{c} 22.5/15\\ 13.2/9\\ 56.7/48\\ 57.4/22\\ 18.1/30\\ 85.6/59\end{array}$ |
| ATLAS 8 TeV single diff $t\bar{t}$ differential $t\bar{t}$ [105]<br>CMS 8 TeV double differential $t\bar{t}$ [105]<br>CMS 8 TeV single differential $t\bar{t}$ [108]<br>ATLAS 8 TeV High-mass Drell-Yan [73]<br>ATLAS 8 TeV W [106]<br>ATLAS 8 TeV W + jets [104]<br>ATLAS 8 TeV double differential Z [74]<br>Total | 3:<br>1<br>8:<br>8:<br>3:<br>15<br>582: | 2.8/15<br>2.9/9<br>5.8/48<br>4.6/22<br>3.9/30<br>57.4/59<br>2.0/4363 | 22.5/15<br>13.2/9<br>56.7/48<br>57.4/22<br>18.1/30<br>85.6/59<br>5121.9/4363           |

 $\chi^2/N_{\rm pts} \sim 1!$ 

1.171.33 **NLO NNLO** 

### (2-jet) Event Display



• Example event display from  $e^+e^-$  collisions.

### How Many Jets?



arXiv:1011.5131









anti-k<sub>t</sub>,

anti- $k_T$ 

p<sub>t</sub> [GeV]

 $k_T$ 

### LAS measurement Jet Production Channels @ LHC



### Jet Transverse Momentum Loss



### **EW Precision Fits**



### W Boson Mass Determination



### W Boson Mass Determination



• Uncertainty on indirect EW fit ~ 8 MeV. Natural target for direct LHC measurements.

### Forward Backwards Asymmetry



### Vacuum Stability of Universe



## Vacuum Stability of Universe



In each of them, the transition happens initially locally in a small volume, nucleating a small bubble of the true vacuum. The bubble then starts to expand, reaching the speed of light very quickly, any destroying everything in its way.

### Vacuum Stability of Universe



Higgs Decays





<sup>•</sup> New state there: is it Standard ModelFigigg\$?.1: Main Leading Order Feynr production in (a) gluon fusion, (b) Vector associated production with a gauge boson)

of top (or bottom) quarks, (e-f) production

### Higgs: What Do We Know?



40

### Higgs: What Do We Know?



### Higgs Potential?

11. Status of Higgs boson physics 31

boson to a pair of b quarks [180], yiedling a 95% CL upper limit on BR( $t \rightarrow Hc$ ) < 0.47% with an expected sensitivity of  $\beta^{44} = -\mu^2 \phi^2 + \lambda \phi^4$ ?

Higgs boson pair and (ii) the search for resonant production of two Higgs bosons in the

deca osons Another whose am negatively the absen  $g_{a}$ • Challenge (suppressed rate), currently 50% precision at HL-LHC. field  $\phi$  [units o QReal precision needs new collider (or other breakthrough...).

Slide Credit: Gavin Salam Figure 11.5: Feynman diagrams contributing to Higgs boson pair production through (a) a top- and b-quark loop and (b) through the self couplings of the Higgs