UK HEP Forum 2021: From Laboratories to the Universe and Back The Cosener's House, Abington & Online 23-24 November 2021

Muon g - 2 theory

Andreas Jüttner

Southampton

Image: National Gallery

- $(g-2)_{\mu}$ in the Standard Model
- hadronic vacuum polarisation (HVP)
- hadronic light-by-light (HLbL)
- conclusions and outlook

Overview

Testing the Standard Model

SM describes electromagnetic, weak and strong interactions consistently in terms of renormalisable quantum field theory

While there are no 'discovery'-level cracks in the SM there is ample phenomenological evidence of its limitations, e.g.

• dark matter and energy

matter-antimatter asymmetry

particle hierarchy and couplings

We are frantically looking for signs of what could explain these: direct searches indirect searches

spin-1/2 particle

 $\langle l^{-}(p_2) | j_{\mu}^{\text{em}}(0) | l^{-}(p_1) \rangle = (-ie)\bar{u}(p_2)$

 $a_l^{\rm NP} \sim m_l^2 / M_{\rm NP}^2$ for $l = e, \mu, \tau - \mu$ is sweet spot between sensitivity and feasibility

Charged lepton magnetic moment

$$\Gamma^{\mu}(P,q)u(p_{1})$$

$$\Gamma^{\mu}(P,q) = F_{1}(q^{2})\gamma^{\mu} + F_{2}(q^{2})\frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{l}}$$

$$F_{1}(0) = 1 \quad F_{2}(0) = a_{l} = \frac{g-2}{2}$$

 $a_l = \frac{(g-2)_l}{2} = \frac{\alpha}{2\pi} = 0.0011614\dots$ [Schwinger (1948)]

	$a_{\mu} \times 10^{10}$	$\delta a_{\mu} \times 10^{10}$	
QED 5-loops	11658471.893	0.10	[Aoyama et al. 12 Aoyama et al. 19]
EW 2-loops	15.4	0.1	[Gnendinger et al. 13]
QCD HVP	684.5	4.0	[g-2 Theory Initiative 20]
QCD LbL	9.2	1.8	[g-2 Theory Initiative 20]
SM TOTAL	11659181.0	4.3	[g-2 Theory Initiative 20]

Status – Experiment

Fermilab's co-spokesperson Chris Polly: "So far we have analysed less than 6% of the data that the experiment will eventually collect.

ELSEVIER

journal homepage: www.elsevier.com/locate/physrep

The anomalous magnetic moment of the muon in the Standard Model

0.	Executive summary	5
1.	Introduction	6
2.	Data-driven calculations of HVP	8
3.	Lattice QCD calculations of HVP	52
4.	Data-driven and dispersive approach to HLbL	77
5.	Lattice approaches to HLbL	117
5.	The QED contributions to a_{μ}	135
7.	The electroweak contributions to a_{μ}	141
8.	Conclusions and outlook	146

https://muon-gm2-theory.illinois.edu

Contribution	Section	Equation	Value x 10 ¹¹ Citation Refs
Experimental average (E821+E989)		[updated]	116 592 061(41) bib, cite
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40) bib, cite
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7) bib, cite
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1) bib, cite
HVP LO (lattice, udsc)	Sec. 3.5.1	Eq. (3.49)	7116(184) bib, cite
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19) bib, cite
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1) bib, cite
HLbL (lattice, uds)	Sec. 5.7	Eq. (5.49)	79(35) bib, cite
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17) bib, cite
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104) bib, cite
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0) bib, cite
HVP $(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40) bib, cite
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18) bib, cite
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43) bib, cite
Difference: Δa_{μ} : = $a_{\mu}^{\exp} - a_{\mu}^{\mathrm{SM}}$	Sec. 8	[updated]	251(59)

Contents lists available at ScienceDirect

Physics Reports

PHYSICS REPORTS

	$a_{\mu} \times 10^{10}$	$\delta a_{\mu} \times 10$	10
QED 5-loops	11658471.893	0.10	[Aoyama et al. (2 Ayoama et al. (20
EW 2-loops	15.4	0.1	[Gnendinger et al. (20
QCD HVP	684.5	4.0	[g-2 Theory Initiative (20
QCD LbL	9.2	1.8	[g-2 Theory Initiative (20
SM TOTAL	11659181.0	4.3	[g-2 Theory Initiative (20

Theory — dominant errors

Theory needs to improve on hadronic contributions!

- $a_{\mu}^{\text{SM}} \approx a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QED}} + a_{\mu}^{\text{QCD}}$ $a_{\mu}^{\text{QCD}} = a_{\mu}^{\text{HVP, LO}} + a_{\mu}^{\text{HVP, NLO}} + \dots + a_{\mu}^{\text{HLbL}} + \dots$
 - "no new physics" HVP value required to bring experiment an SM into agreement
- most precise determination data-driven (experimental data + dispersion theory)
- huge Lattice-QCD activity catching up
- precision goal 0.1%

LO HVP in the SM

data-driven predictions

LO-HVP contribution hadronic 'blob' given by vacuum-polarisation tensor

analyticity

unitarity (optical theorem)

 $\mathrm{Im}\Pi(s) = \frac{1}{4}$

$$a_{\mu}^{\text{HVP, LO}} = \left(\frac{am_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{\hat{K}(s) R_{\text{had}}(s)}{s^2} \begin{bmatrix} \text{Bouchiat, Michel 1961} \\ \text{Durand 1962, 1963} \\ \text{Gourdin, De Rafael 1969} \end{bmatrix}$$

$$j^{\rm em}_{\mu} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d - \frac{1}{3} \bar{s} \gamma_{\mu} d - \frac{1}{$$

$$\Pi_{\mu\nu}(q^2) = ie^2 \int d^4x e^{iqx} \langle 0 | T j^{\text{em}}_{\mu}(x) j^{\text{em}}_{\nu}(0) | 0 \rangle$$
$$= \left(q_{\mu}q_{\nu} - g_{\mu\nu}q^2 \right) \Pi(q^2)$$

$$\Pi(q^2) - \Pi(0) = \int_0^\infty ds \frac{\operatorname{Im}\Pi(s)}{s(s - q^2 - i\epsilon)}$$
$$\frac{s}{s\pi\alpha(s)}\sigma_{\text{tot}}(e^+e^- \to \text{hadrons}) = \frac{\alpha(s)}{3}R_{\text{had}}(s)$$

LO-HVP contribution

- $e^+e^- \rightarrow$ hadrons: BaBar, BESIII, CMD2/3, KLOE2, SND
- energy scan or radiative return
- loads of structure in R
- different analysis techniques

$$a_{\mu}^{\text{LOHVP}} = \left(\frac{am_{\mu}}{3\pi}\right)^2 \left(\int_{4m_{\pi}^2}^{E_{\text{cut}}^2} ds \frac{\hat{K}(s) R_{\text{had}}^{\text{data}}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} ds \frac{\hat{K}(s) R_{\text{had}}^{\text{pQ}}(s)}{s^2}\right)$$

 $\sqrt{s} \lesssim 2 \text{GeV}$ exclusive channels $\sqrt{s} > 2 \text{GeV}$ inclusive channels, PT

• dominated by $\pi^+\pi^- \rightarrow \rho$ peak (~3/4, some tension in ISR data between KLOE and BABAR)

LO-HVP contribution

$$a_{\mu}^{\text{LOHVP}} = \left(\frac{am_{\mu}}{3\pi}\right)^2 \left(\int_{4m_{\pi}^2}^{E_{\text{cut}}^2} ds \frac{\hat{K}(s) R_{\text{had}}^{\text{data}}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} ds \frac{\hat{K}(s) R_{\text{had}}^{\text{pQCD}}(s)}{s^2}\right)$$

$688.1(4.1) \cdot 10^{-10}$	[FJ 17]	Mix
$687.1(3.0) \cdot 10^{-10}$	[BDJ 19]	• f
$694.0(4.0) \cdot 10^{-10}$	[DHMZ 19]	•
$692.8(2.4) \cdot 10^{-10}$	[KNT 19]	- 1
$693.1(4.0) \cdot 10^{-10}$	[TI 20]	

- different data analysis leads to different systematics / error estimates
- tensions in individual channels cancel in the sum
- $e^+e^- \rightarrow$ hadrons current precision on LO HVP <1%
- Future prospects: MUonE, BABAR (new analysis), SND-3, CMD-3, BESIII, Belle II

xture of fit to data/discrete integration MC or correlated fits for data combination help from EFT TI result is 'merged' from DHMZ 19

and KNT 19 plus analyticity and unitarity (~0.6%) for 2π and 3π

LO HVP in the SM

lattice-QCD predictions

LO HVP on the lattice $j^{\rm em}_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s$ $+\frac{2}{3}\bar{c}\gamma_{\mu}c-\frac{1}{3}\bar{b}\gamma_{\mu}b$

Master equation:

$$\Pi_{\mu\nu}(Q) = a^4 \sum_{x} e^{iQ \cdot x} \langle j_{\mu}^{\rm em}(x) j_{\nu}^{\rm em}(x) \rangle$$
$$a_{\mu}^{\rm LO \ HVP} = 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2$$

Naively computing
$$\Pi_{\mu\nu}(Q^2)$$
 is a text book exerci at the **sub-%-level precision for** a_{μ} is very hard

 $|j_{\nu}^{\rm em}(0)\rangle = (\hat{Q}_{\mu}\hat{Q}_{\nu} - \delta_{\mu\nu}\hat{Q}^2)\Pi(Q^2) + \dots$

$${}^{2}K_{E}(Q^{2})\left[\Pi(Q^{2})-\Pi(0)
ight]$$
 [Blum 2003]

ok exercise in lattice QCD – but doing it correctly and

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F^a_{\mu\nu} F^{a\,\mu\nu} + \sum_f \bar{\psi}_f \left(i\gamma^\mu D_\mu - m_f \right) \phi_f$$

- Lagrangian of massless gluons and *almost massless quarks*
- What experiment sees are bound states, e.g. m_{π} , $m_P \gg m_{u,d}$
- Underlying physics non-perturbative

Path integral quantisation:

Free parameters:

- gauge coupling $g \rightarrow \alpha_s = g^2/4\pi$
- quark masses $m_f = u_i d_i s_i c_i b_i t$

$$Oe^{-iS_{\mathsf{lat}}[U,\psi,\bar{\psi}]}$$
$$Oe^{-S_{\mathsf{lat}}[U,\psi,\bar{\psi}]}$$

Euclidean space-time **Boltzmann factor**

finite volume, space-time grid (IR and UV regulators) $\propto L^{-1} \propto a^{-1}$

 \rightarrow Well defined, finite dimensional Euclidean path integral \rightarrow From first principles, solve via MCMC

Advertisement: Flavour Lattice Averaging Group

FLAG-1 (Eur. Phys. J. C71 (2011) 1695) FLAG-2 (Eur. Phys.J. C74 (2014) 2890) FLAG-3 (Eur.Phys.J. C77 (2017) 2, 112) FLAG-4 (Eur.Phys.J.C 80 (2020) 2, 113) FLAG-5 (arXiv:2111.09849, http://itpwiki.unibe.ch/flag/) quark masses low-energy constants bottom hadron form factors bottom hadron mixing nucleon matrix elements strong coupling constant lattice scale setting kaon mixing hadronic kaon decay charm hadron form factors pion-pion scattering pion-kaon scattering kaon-kaon scattering

- summary of results
 - evaluation according to FLAG quality criteria (colour coding)
 - averages of best values where possible
 - detailed summary of properties of individual simulations

"What's currently the best lattice value for a particular quantity?"

bottom hadron decay constants charm hadron decay constants

$$\begin{aligned} & \text{LO HVP on the lattice} \\ & f_{\mu}^{\text{em}} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d \\ & \Pi_{\mu\nu}(Q) = a^{4} \sum_{x} e^{iQ \cdot x} \langle j_{\mu}^{\text{em}}(x) j_{\nu}^{\text{em}}(0) \rangle = (\hat{Q}_{\mu} \hat{Q}_{\nu} - \delta_{\mu\nu} \hat{Q}^{2}) \Pi(Q^{2}) + \dots + \frac{2}{3} c \gamma_{\mu} c - \frac{1}{3} \bar{b} \gamma_{\mu} d \\ & a_{\mu}^{\text{LO HVP}} = 4\pi^{2} \left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} dQ^{2} K_{E}(Q^{2}) \left[\Pi(Q^{2}) - \Pi(0)\right] \quad \text{[Blum 2005]} \end{aligned}$$

Modular calculation:

- different flavours different systema
- each component has individual contir infinite-volume limit ightarrow can be compu
- by far dominant contribution: ud connected

$$a_{\mu}^{\text{HVP,LO}} = a_{\mu}^{\text{HVP,LO}}(\alpha^2) + \delta a_{\mu}^{\text{HVP,LO}} \quad \text{QCD+QED}$$

HVP on the Lattice: Challenges

- noise reduction
- scale determination
- QED and strong IB effects

infinite-volume & continuum extrapolation

Statistical noise from Markov-Chain Monte Carlo:

$$\begin{split} C(t) &\equiv \Pi_{ii}(t,\vec{0}) = \frac{1}{3} \sum_{\vec{x}} \langle j_i^{\rm em}(\vec{x},t) j_i^{\rm em}(0) \rangle \\ a_{\mu}^{\rm LO \; HVP} &= 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 K_E(Q^2) \left[\Pi(Q^2) - \sum_{i=1}^{\infty} w_t C(t)\right] \\ &= \sum_{i=1}^{\infty} w_t C(t) \quad \text{[Bernecker, Meyer 11]} \end{split}$$

Signal-to-noise

$$\frac{C^2(t)}{\sigma^2(t)} = \frac{C^2(t)}{\langle (j_i^{\text{em}}(t) \, j_i^{\text{em}}(0))^2 \rangle - C(t)^2} \overset{\text{large } t}{\sim} e^{-2(t)}$$

Signal-to-noise

Signal-to-noise ratio

- More statistics
- Spectral reconstruction for $t > t_c$

• Statistical error $a_{\mu}^{\rm HVP,\,LO}$ is mostly from light quarks at $t\gtrsim 1.5~{\rm fm}$

 Noise reduction techniques (low-mode averaging, multi-level, all-to-all, ...) $C(t) = \sum A_i e^{-E_i t}$

Scale determination

 $a_{\mu}^{
m HVP,\,LO}$ itself dimensionless but lattice scale enters through m_{μ} in kernel K_E

e.g. $O = m_{\Omega} = 1672.45(29) (\delta m_{\Omega} = 0.2\%)$

[FLAG 2021]									
Quantity	Sec.	$N_f = 1 + 1 + 1 + 1$	Refs.	$N_f = 2 + 1 + 1$	Refs.	$N_f = 2 + 1$	Refs.	$N_f > 2 + 1$	Refs.
$\sqrt{t_0}$ [fm]	11.5.2			0.14186(88)	[37, 111, 112]	0.14464(87)	[8, 113, 114]		
$w_0[{ m fm}]$	11.5.2	0.17236(70)	[115]	0.17128(107)	[37,111,112]	0.17355(92)	[8,114,116]	0.17177(67)	[37, 111, 112, 115]
r_0 [fm]	11.5.2			0.474(14)	[7]	0.4701(36)	[24, 116-119]		
$r_1[{ m fm}]$	11.5.2			0.3112(30)	[37]	0.3127(30)	[41, 117 - 120]		

$$dQ^2 K_E(Q^2) \left[\Pi(Q^2) - \Pi(0) \right]$$

Lattice scale determined in terms of some dimensionful experimental input: $a = \frac{aO_{\text{lat}}}{O}$

FLAG's scale-setting summary uncertainty ~0.6%

With a sub-percent precision goal strong IB and QED effects can't be ignored

$$\langle O \rangle = \frac{1}{Z_0} \int \mathcal{D}[U] \mathcal{D}[A] \mathcal{D}[\Psi, \bar{\Psi}, U] \phi$$

Perturbative expansions: [RM123 Collaboration (2013)]

QED
$$\langle O \rangle = \langle O \rangle_0 + \frac{1}{2} e^2 \frac{\partial^2}{\partial e^2} \langle O \rangle |_{e=0} + \mathcal{O}(\alpha^2)$$

SIB
$$\langle O \rangle_{m_f \neq \hat{m}_f} = \langle O \rangle_{m_f = \hat{m}_f} + \Delta m_f \frac{\partial}{\partial m_f} \langle O \rangle |_{m_f = \hat{m}_f}$$

alternative: include QED in ensembles with SIB

QED & SIB ~ $1\% \rightarrow$ require less precision

$$\frac{m_u - m_d}{\Lambda_{\text{QCD}}} \sim O(1\%) \qquad \qquad \alpha \approx \frac{1}{137} \sim O(1\%)$$

 $O[\Psi, \bar{\Psi}, A, U] e^{-S_{F,0}[\Psi, \bar{\Psi}, U]} e^{-S_{\gamma}[A]} e^{-S_{G}[U]}$

Size of correction towards continuum limit depends on discretisation, quark mass, ...

EFT used to *improve* continuum limit [BMWc 21] EFT used to correct for finite volume effects or estimate from simulations of various volumes

Continuum extrapolation

Individual contributions

What next?

- RBC/UKQCD 2018 RBC/UKQCD 2018
- Data-driven methods still slightly ahead of lattice QCD
- but tensions in data-driven analysis
- BMW result closer to 'no-new-physics scenario

• while huge efforts under way to improve on lattice result for full $a_{\mu}^{\text{HVP, LO}}$ consider alternative observables to further scrutinise HVP results

there are regions in phase space where either lattice/experiment do better/worse \rightarrow choose range where discretisation effects, finite-volume effects and signal-to-noise issue are small

- compare windows rather than results for $a_{\mu}^{\text{HVP, LO}}$
- apply window to $R(e^+e^-)$ as well as lattice data

Window method

 \rightarrow allows for high-precision tests and comparisons

$$+ a_{\mu}^{W} + a_{\mu}^{LD}$$

$$= \sum_{t} C(t) w_{t} [1 - \Theta(t, t_{0}, \Delta)]$$

$$= \sum_{t} C(t) w_{t} [\Theta(t, t_{0}, \Delta) - \Theta(t, t_{1}, \Delta)]$$

$$= \sum_{t} C(t) w_{t} \Theta(t, t_{1}, \Delta)$$

$$t_{0} = 0.4 \text{ fm}$$

$$t_{1} = 1.0 \text{ fm}$$

 $\Theta(t, t', \Delta) = (1 + \tanh[(t - t')/\Delta])/2$

- tension (~ 3.7σ ?) between lattice and $R(e^+e^-)$?
- collaborations are using the *window* as a high-precision probe

Window method

reduced continuum-limit and finite-volume systematics, better signal-to-noise

HLbL in the SM

data-driven

- More complex analytical structure than HVP makes data-driven analysis more involved
- Representation in terms of dispersion integrals only recently [Colangelo, Hoferichter, Procura, Stoffer 2014]
- Dominant contributions from π^0, η, η' and π and K loops

Exchanges of other resonances (f_0, a_1, f_2, \ldots)

[Theory Initiative 20]

Contribution	TI 21
π^0, η, η' -poles	93.8(4.0)
π , K-loops/boxes	-16.4(2)
S-wave $\pi\pi$ rescattering	-8(1)
subtotal	69.4(4.1)
scalars	$\int_{-1(3)}$
tensors	$\int - I(3)$
axial vectors	6(6)
u, d, s-loops / short-distance	15(10)
<i>c</i> -loop	3(1)
total	92(19)
	[Theory Initiative 20]

[I neory initiative 20]

HLbL in the SM

lattice QCD

0.15

0.1

0.05

0

0

- Many new conceptual and computational techniques • *Infinite-volume-QED* method:
 - QED part: semi-analytical infinite-volume continuum pQED QCD part: lattice QCD

$$= F_2(0) = \frac{m_{\mu}e^6}{3} \int_y \int_x \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y)$$
[Mainz 16.21 RBC/UKOCD]

HLbL in the SM — summary

- Consistent results from variety of approaches
- increased stats. and improved methods make %level precision feasible on lattice
- "It now appears conclusive that the hadronic light-by-light contribution cannot explain the current tension between theory and experiment for the muon g – 2." [Mainz 21]

QED and EW contributions are known

QCD

- for data-driven HVP there is a new consensus (Theory Initiative 20) but an underlying tension in the data needs to be understood
- for HVP from the lattice a lot of activity and novel developments mainly on
 - statistical error
 - scale setting
 - QED

НИР

- infinite-volume and continuum extrapolations expect impoved precision and new ideas
- window method allows high-precision test lattice vs. dispersion relation vs. experiment
- novel ideas impacting other lattice computations
- for data-driven HLbL there is a new combined result (Theory Initiative 20)
- for HLbL on the lattice there are new results Ξ
 - SM predictions for HLbL in good agreement expect improved precision and new ideas but likely not solely responsible for explaining tension

