



# Experimental results on lepton flavour universality (violation in B decays)

Konstantinos A. Petridis

On behalf of LHCb-UK

November 23, 2021

#### Flavour Anomalies



Over the past decade we have observed a coherent set of tensions with SM predictions  $% \left( {{{\rm{SM}}} \right) = 0} \right)$ 

- In  $b \rightarrow s \ell^+ \ell^-$  transitions (FCNC)
  - 1. Branching Fractions
    - $\rightarrow$  Large theory uncertainties (excl  $B^{\mathbf{0}}_{(s)} \rightarrow \ell^+ \ell^-$  see later)).

#### 2. Angular analyses

- $\rightarrow$  Can access observables with reduced dependence on theory uncertainties.
- 3. Lepton Flavour Universality involving  $\mu/e$  ratios
  - $\rightarrow$  Theoretically pristine
- In  $b 
  ightarrow c \ell 
  u$  transitions (tree-level)
  - 4. Lepton Flavour Universality involving  $\mu/ au$  ratios
    - $\rightarrow$  Theoretically pristine



#### $b ightarrow s\ell\ell$ decays

 $B^+ \to K^+ \ell^+ \ell^-, B^0 \to K^{*0} \ell^+ \ell^-, B_s \to \phi \mu^+ \mu^-, \Lambda_b \to \Lambda^* \ell^+ \ell^-,$  $B^0_{(s)} \rightarrow \ell^+ \ell^- \dots$ 



#### In SM

- Loop level
- ▷ GIM suppressed
- Left-handed chirality
- $\rightarrow$  NP could violate any of these
- Large number of observables sensitive to the full gamut of new physics couplings



#### Theory formalism

 The Operator Product Expansion lies at the heart of the description of rare B decay measurements

$$\mathcal{H}_{eff} \approx -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts(d)}^{*} \sum_{i} C_{i}^{SM} \mathcal{O}_{i} + \sum_{i} C_{i}^{NP} \mathcal{O}_{i}$$

- "Integrate" out heavy ( $\mu \ge m_W$ ) field(s) and introduce set of:
  - $\triangleright$  Wilson coefficients  $C_i$  describing the (perturbative) short distance part
  - $\triangleright$  Operators  $\mathcal{O}_i$  describing the (non-perturbative) long distance part
    - Account for strong interaction effects difficult to calculate

#### Sensitivity to New Physics



#### Different decays probe different operators:

| Operator $\mathcal{O}_i^{(')}$                         | $B_{s(d)} \rightarrow X_{s(d)} \mu^+ \mu^-$ | $B_{s(d)} \rightarrow \mu^+ \mu^-$ | $B_{s(d)} \rightarrow X_{s(d)}\gamma$ |
|--------------------------------------------------------|---------------------------------------------|------------------------------------|---------------------------------------|
| $\mathcal{O}_7^{(`)}$ EM                               | $\checkmark$                                |                                    | $\checkmark$                          |
| $\mathcal{O}_9^{(`)}$ Vector dilepton                  | $\checkmark$                                |                                    |                                       |
| $\mathcal{O}_{10}^{(^{\prime})}$ Axial-vector dilepton | $\checkmark$                                | $\checkmark$                       |                                       |
| $\mathcal{O}_{S,P}^{(`)}$ (Pseudo-)Scalar dilepton     | (√)                                         | $\checkmark$                       |                                       |

► The <sup>(')</sup> denote chirality flipped counterparts

#### The LHCb detector





▶ UK responsible for VeLo and RICH systems

#### Lepton Flavour Universality tests

In the SM couplings of gauge bosons to leptons are independent of lepton flavour

 $\rightarrow$  Branching fractions differ only by phase space and helicity-suppressed contributions

► Ratios of the form:

$$R_{\mathcal{K}^{(*)}} := \frac{\mathcal{B}(B \to \mathcal{K}^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to \mathcal{K}^{(*)} e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$$

- ▶ In SM free from QCD uncertainties affecting other observables →  $\mathcal{O}(10^{-4})$  uncertainty [JHEP07(2007)040]
- ▶ Up to *O*(1%) QED corrections [EPJC76(2016)8,440]

 $\rightarrow$  Any significant deviation is a smoking gun for New Physics.

#### Flavour Anomalies



Over the past decade we have observed a coherent set of tensions with SM predictions

- In  $b \rightarrow s \ell^+ \ell^-$  transitions (FCNC)
  - 1. Branching Fractions
    - $\rightarrow$  Large theory uncertainties (excl  $B^{\mathbf{0}}_{(s)} \rightarrow \ell^+ \ell^-$  see later).
  - 2. Angular analyses
    - $\rightarrow$  Can access observables with reduced dependence on theory uncertainties.
  - 3. Lepton Flavour Universality involving  $\mu/e$  ratios
    - $\rightarrow$  Theoretically pristine
- In  $b 
  ightarrow c \ell 
  u$  transitions (tree-level)
  - 4. Lepton Flavour Universality involving  $\mu/\tau$  ratios  $B \rightarrow D^{(*)}\ell\nu, B_c \rightarrow J/\psi\ell\nu$ 
    - $\rightarrow$  Theoretically pristine



#### LFU tests with $b ightarrow c \ell u$



- Good theoretical control due to factorisation of leptonic and hadronic components in decay.
- ▶ Tree level process in SM  $\rightarrow$  requires huge new physics contribution in contrast to  $b \rightarrow s\ell\ell$  where the SM is suppressed.

#### $b ightarrow c \ell u$ LFU status



- Combination of LHCb results and BaBar/Belle
  - Precision dominated by B-factories
  - ▷ Measurements with LHCb's Run2 underway
- $\blacktriangleright$  Tension with SM  $\sim 3.1\sigma$
- New FNAL/MILC lattice results on  $B 
  ightarrow D^*$ :  $< 3\sigma$  fnal/milc [2105.14019]



Further results from lattice and experiment are needed

#### Flavour Anomalies



Over the past decade we have observed a coherent set of tensions with SM predictions  $% \left( {{{\rm{SM}}} \right) = 0} \right)$ 

- In  $b 
  ightarrow s \ell^+ \ell^-$  transitions (FCNC)
  - 1. Branching Fractions
    - $\rightarrow$  Large theory uncertainties (excl  ${}^{\mathbf{0}}_{(s)} \rightarrow \ell^+ \ell^-$  see later).
  - 2. Angular analyses
    - $\rightarrow$  Can access observables with reduced dependence on theory uncertainties.
  - 3. Lepton Flavour Universality involving  $\mu/e$  ratios  $\rightarrow$  Theoretically pristine
- In  $b 
  ightarrow c \ell 
  u$  transitions (tree-level)
  - 4. Lepton Flavour Universality involving  $\mu/ au$  ratios
    - $\rightarrow$  Theoretically pristine

# *гнср*

#### LFU tests with $b \rightarrow s \ell^+ \ell^-$ (pre-March 2021)



 $(q^2 \equiv \text{dilepton invariant mass squared})$ 

BaBar:[PRD86(2012)032012], Belle:[PRL103(2009)171801]  $\approx 2.0$  1.5 1.0 1.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Left:  $B^0 \to K^{*0}\ell^+\ell^- R_{K^*} \text{ 3fb}^{-1}$ [JHEP08(2017)055] Right:  $B^+ \to K^+\ell^+\ell^- R_K \text{ 5fb}^{-1}$ [PRL122(2019)191801] Bottom:  $\Lambda_b \to pK\ell^+\ell^- R_{pK} \text{ 4.7fb}^{-1}$ [JHEP05(2020)040] Latest LFU tests with  $b 
ightarrow s \ell^+ \ell^-$ 





- ► Update R<sub>K</sub> in 1.1 < q<sup>2</sup> < 6.0 GeV<sup>2</sup>/c<sup>4</sup> with the full Run2 dataset (doubling the number of B's as previous analysis)
- New LFU tests with:

$$\begin{array}{l} \triangleright \ \ B^+ \to {\cal K}^{*+}(\to {\cal K}_S \pi^+) \ell^+ \ell^- \ ({\cal R}_{{\cal K}^{*+}}) \ {\rm in} \ 0.045 < q^2 < 6.0 \, {\rm GeV}^2/c^4 \\ \triangleright \ \ B^0 \to {\cal K}_S \ell^+ \ell^- \ ({\cal R}_{{\cal K}_S}) \ {\rm in} \ 1.1 < q^2 < 6.0 \, {\rm GeV}^2/c^4 \end{array}$$



#### $R_{K^{(*)}}$ : Electrons vs muons (I)

 Electrons lose a large fraction of their energy through Bremsstrahlung in detector material



► Most electrons will emit one energetic photon the before magnet.

 $\rightarrow$  Look for photon clusters in the calorimeter ( $E_T>75\,{\rm MeV})$  compatible with electron direction before magnet.

 $\rightarrow$  Recover brem energy loss by "adding" the cluster energy back to the electron momentum.

#### $R_{K^{(*)}}$ : Electrons vs muons (II)

▶ Even after the Bremsstrahlung recovery electrons still have degraded mass and  $q^2$  resolution



 L0 calorimeter trigger requires higher thresholds, than L0 muon trigger, due to high occupancy.

- $\rightarrow$  Use 3 exclusive trigger categories for  $e^+e^-$  final states
- 1.  $e^{\pm}$  from signal-B; 2.  $K^{\pm}$  from signal-B; 3. rest of event
- Particle ID and tracking efficiency larger for muons than electrons

LFUV results

#### $R_{K^{(*)}}$ : Electrons vs muons (II)

Even after the Bremsstrahlung recovery electrons still have degraded mass and q<sup>2</sup> resolution

From previous result, LHCb [PRL122(2019)191801]



 L0 calorimeter trigger requires higher thresholds, than L0 muon trigger, due to high occupancy.

- $\rightarrow$  Use 3 exclusive trigger categories for  $e^+e^-$  final states
- 1.  $e^{\pm}$  from signal-B; 2.  $K^{\pm}$  from signal-B; 3. rest of event
- Particle ID and tracking efficiency larger for muons than electrons

#### $R_{K^{(*)}}$ Measurement Strategy



$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(\mu^{+} \mu^{-}))} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(e^{+} e^{-}))} = \frac{N_{\mu^{+} \mu^{-}}^{\text{rare}} \varepsilon_{\mu^{+} \mu^{-}}^{J/\psi}}{N_{\mu^{+} \mu^{-}}^{\text{rare}} \varepsilon_{\mu^{+} \mu^{-}}^{J/\psi}} \times \frac{N_{e^{+} e^{-}}^{J/\psi} \varepsilon_{e^{+} e^{-}}^{\text{rare}}}{N_{e^{+} e^{-}}^{\text{rare}} \varepsilon_{\mu^{+} \mu^{-}}^{J/\psi}}$$

 $\rightarrow$  R<sub>K</sub> is measured as a **double ratio** to cancel out most systematics

- Rare and  $J/\psi$  modes share identical selections apart from cut on  $q^2$
- Yields determined from a fit to the invariant mass of the final state particles
- Efficiencies computed using simulation that is calibrated with control channels in data
- $(q^2 \equiv \text{dilepton invariant mass squared})$



#### $R_{K^{(*)}}$ Selection and backgrounds

- ► As in our previous measurement, use particle ID requirements and mass vetoes to suppress peaking backgrounds from exclusive *B*-decays to negligible levels
  - $\triangleright$  Backgrounds of e.g  $B^+ \to \bar{D}^0 (\to K^+ e^- \nu) e^+ \bar{\nu}$ : cut on  $m_{K^+ e^-} > m_{D^0}$
  - ▷ Mis-ID backgrounds, e.g.  $B \to K \pi^+_{(\to e^+)} \pi^-_{(\to e^-)}$ : cut on electron PID
- Multivariate selection to reduce combinatorial background and improve signal significance (BDT)
- Residual backgrounds suppressed by choice of  $m(K^+\ell^+\ell^-)$  window
  - ►  $B^+ \rightarrow K^+ J/\psi(e^+e^-)$
  - ► Partially reconstructed dominated by  $B \rightarrow K^+ \pi^- e^+ e^-$  decays
  - Model in fit by constraining their fractions between trigger categories and calibrating simulated templates from data.

Cross-check our estimates using control regions in data and changing  $m(K^+\ell^+\ell^-)$  window in fit





#### $R_{K^{(*)}}$ Efficiency calibration

*гнср* гнср

Following identical procedure to our previous measurement, the simulation is calibrated based on control data for the following quantities:

- Trigger efficiency.
- ► Particle identification efficiency.
- ▶ B<sup>+</sup> kinematics.
- Resolutions of  $q^2$  and  $m(K^+e^+e^-)$ .

Verify procedure through host of cross-checks.

#### Cross-checks: Measurement of $r_{J/\psi}$



LHCb [arXiv:2103.11769]

► To ensure that the efficiencies are under control, check

$$r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} = 1,$$

known to be true within 0.4% [Particle Data Group].

 $\rightarrow$  Very stringent check, as it requires direct control of muons vs electrons.

Result:

$$r_{J/\psi} = 0.981 \pm 0.020 \text{ (stat + syst)}$$

• Checked that the value of  $r_{J/\psi}$  is compatible with unity for new and previous datasets and in all trigger samples.

# *LHCb*

# Cross-checks: $r_{J/\psi}$ as a function of kinematics LHCb [arXiv:2103.11769]

• Test efficiencies are understood in all kinematic regions by checking  $r_{J/\psi}$  is flat in all variables examined.



► Flatness of r<sub>J/ψ</sub> 2D plots gives confidence that efficiencies are understood across entire decay phase-space.

 $\rightarrow$  If take departure from flatness as genuine rather than fluctuations (accounting for rare-mode kinematics) bias expected on  $R_{\rm K}$  is 0.1%



# Cross-checks: Measurement of $R_{\psi(2S)}$

Measurement of the double ratio

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+\psi(2S)(\mu^+\mu^-))}{\mathcal{B}(B^+ \to K^+J/\psi(\mu^+\mu^-))} \left/ \frac{\mathcal{B}(B^+ \to K^+\psi(2S)(e^+e^-))}{\mathcal{B}(B^+ \to K^+J/\psi(e^+e^-))} \right|$$

- ► Independent validation of double-ratio procedure at q<sup>2</sup> away from J/ψ
- Result well compatible with unity:

$$R_{\psi(2S)} = 0.997 \pm 0.011 \text{ (stat + syst)}$$

 $\rightarrow$  can be interpreted as world's best LFU test in  $\psi(2S) \rightarrow \ell^+ \ell^-$ 





### Systematic uncertainties

LHCb [arXiv:2103.11769]

#### Dominant sources: $\sim 1\%$

- Choice of fit model
  - $\triangleright$  Associated signal and partially reconstructed background shape
- Statistics of calibration samples
  - Bootstrapping method that takes into account correlations between calibration samples and final measurement

#### Sub-dominant sources: $\sim 1\%$

- Efficiency calibration
  - $\rightarrow$  Dependence on tag definition and trigger biases
  - ightarrow Precision of the  $q^2$  and  $m(K^+e^+e^-)$  smearing factors
  - $\rightarrow$  Inaccuracies in material description in simulation

Total relative systematic of 1.5% in the final  $R_K$  measurement  $\rightarrow$  Expected to be statistically dominated



#### $R_K$ with full Run1 and Run2 dataset

LHCb [arXiv:2103.11769]Submitted to Nature Physics

 $R_{K} = 0.846 \stackrel{+0.042}{_{-0.039}} (\text{stat}) \stackrel{+0.013}{_{-0.012}} (\text{syst})$ 

- ▶ *p*-value under SM hypothesis: 0.0010 → Evidence of LFU violation at  $3.1\sigma$
- ► Compatibility with the SM obtained by integrating the profiled likelihood as a function of R<sub>K</sub> above 1
  - ▷ Taking into account the 1% theory uncertainty on  $R_{K}$  [EPJC76(2016)8,440]





### $R_{\mathcal{K}}$ with full Run1 and Run2 dataset

LHCb [arXiv:2103.11769]Submitted to Nature Physics

 $R_{K} = 0.846 \stackrel{+0.042}{_{-0.039}} (\text{stat}) \stackrel{+0.013}{_{-0.012}} (\text{syst})$ 

- ▶ p-value under SM hypothesis: 0.0010 → Evidence of LFU violation at 3.1σ
- ► Using  $R_K$  and previous measurement of  $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$  [JHEP06(2014)133] determine  $\mathcal{B}(B^+ \to K^+ e^+ e^-)$ .
- Suggests electrons are more SM-like than muons.



$$\frac{\mathrm{d}\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathrm{d}q^2} = (28.6 \ ^{+1.5}_{-1.4} (\mathrm{stat}) \ \pm 1.4 (\mathrm{syst})) \times 10^{-9} \ c^4 / \ \mathrm{GeV}^2.$$

#### $R_{K^{*+}}$ and $R_{K_S}$



#### ▶ LFU tests with $B^+ \to K^{*+}(\to K_S \pi^+) \ell^+ \ell^$ and $B^0 \to K_S \ell^+ \ell^-$ with $K_S \to \pi^+ \pi^-$

• Analysis procedure identical to  $R_K$ 

 $Dash R_{K^{*+}}$  measured in 0.045  $< q^2 < 6 \, {
m GeV}^2/c^4$ 

• Combined significance wrt SM  $2\sigma$ 





#### Flavour Anomalies



Over the past decade we have observed a coherent set of tensions with SM predictions  $% \left( {{{\rm{SM}}} \right) = 0} \right)$ 

In  $b \rightarrow s \ell^+ \ell^-$  transitions (FCNC)

1. Branching Fractions

 $\rightarrow$  Large theory uncertainties (excl  $B_{(s)}^{\mathbf{0}} \rightarrow \ell^+ \ell^-$  see later).

#### 2. Angular analyses

 $\rightarrow$  Can access observables with reduced dependence on theory uncertainties.

#### 3. Lepton Flavour Universality involving $\mu/e$ ratios

- $\rightarrow$  Theoretically pristine
- In  $b 
  ightarrow c \ell 
  u$  transitions (tree-level)
  - 4. Lepton Flavour Universality involving  $\mu/ au$  ratios
    - $\rightarrow$  Theoretically pristine



#### 1. Decay Rates

 Measurements consistently below theory predictions at low  $q^2 \equiv m_{\ell\ell}^2$  for many  $b \to s \mu^+ \mu^-$  decays



 $q^2$  [GeV<sup>2</sup>]

SM predictions suffer from large hadronic uncertainties

10

5

 $\frac{15}{q^2}$  [GeV<sup>2</sup>/c<sup>4</sup>]

 $q^2 [GeV^2/c^4]$ 

#### 1. Decay Rates - The golden one



New  $B^0_{(s)} \rightarrow \mu^+ \mu^-$  measurement by LHCb last March [2108.09283]

- Precise SM prediction (4% uncertainty) [Bobeth et al PRL112.101801], [Beneke et al JHEP10(2019)232]
- $\blacktriangleright$  Combination with CMS and ATLAS  $\rightarrow$  measurement compatible with SM at  $2\sigma$



•  $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$ 

•  $B^0 \to \mu^+\mu^-$  and  $B^0_s \to \mu^+\mu^-\gamma$  compatible with background only at 1.7 $\sigma$  and 1.5 $\sigma$ 

▶ Best limits on:  $\mathcal{B}(B^0_{(s)} \to e^+e^-) < 2.5(9.4) \times 10^{-9}$  at 95% CL  $\mathcal{B}(B^0_{(s)} \to \tau^+\tau^-) < 2.1(6.8) \times 10^{-3}$  at 90% CL [LHCb PRL124.211802], [LHCb PRL118.251802]  $\to$  SM contribution scales as  $m^2_{e,\tau}/m^2_{\mu}$  compared to  $B^0_{(s)} \to \mu^+\mu^-$ 

# 2. Angular analyses of $B \to K^* \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$

Large number of observables with complementary sensitivity to NP
 Orthogonal expt. systematics and more precise theory predictions

Left:  $B^{0} \to K^{*0} \mu^{+} \mu^{-}$  [PRL125011802(2020)], Right:  $B^{+} \to K^{*+} \mu^{+} \mu^{-}$  [arXiv:2012.13241]



- $\blacktriangleright$  Combination of all angular observables suggests  $\sim 3\sigma$  tension with SM predictions in each channel
- $\blacktriangleright$  New  $B_{\rm s} \to \phi \mu \mu$  angular analysis from LHCb [JHEP 11 (2021) 043] consistent with SM at  $1.9\sigma$

#### Putting it all together



▶ Combination all  $b \rightarrow s \ell^+ \ell^-$  measurements

Consistent set of measurements

 $hinspace > 6\sigma$  from SM

► But  $B \rightarrow K^{(*)}\mu^+\mu^-$  BF and angular observables potentially suffer from underestimated hadronic uncertainties related to  $c\bar{c}$  loop contributions

 $\to B_s \to \mu^+ \mu^-$  and LFU observables have very clean theory predictions.

 $ho~\sim4.5\sigma$  from SM

 Measurements point to new vector coupling (C<sub>9</sub><sup>µ</sup>)



#### Further measurements in the pipeline





LFU tests of angular observables in B→K\*ℓℓ eg Q<sub>5</sub> = P'<sub>5</sub>(µµ)-P'<sub>5</sub>(ee)

Ongoing analysis at LHCb

▶ Measure  $R_K$  at  $q^2 > 4m_D^2$  and test experimental methodology with control mode at  $q^2 = 1 \, \text{GeV}^2/c^4$ 

Ongoing analyses at LHCb

• Measure charm loops in  $B o K^{(*)} \mu^+ \mu^-$  from the data

 $\rightarrow$  Can extract hadronic contributions directly from data [Bobeth et al EPJC(2018)78:451], [Blake, KP et al EPJC(2018)78:453]



#### Where else should we be looking?

Models that address anomalies can also explain hierarchical structure of quark and lepton mass matrices [sidori et al [PLB(2018)317] (models of flavour).



 $\blacktriangleright$  With 300ab^-1  $pp \rightarrow \tau\tau$  ATLAS and CMS can probe significant fraction of parameter space

K.A. Petridis (Bristol)



#### Where else should we be looking?

Models that address anomalies can also explain hierarchical structure of quark and lepton mass matrices Isidori et al [PLB(2018)317] (models of flavour).



▶ Huge enhancement of  $b \rightarrow s\tau\tau$  and  $b \rightarrow s\tau\mu$  that LHCb Run3+ and Belle2 will be sensitive to



# *LHCb*

#### Conclusions

- Over the past decade we have observed a **coherent** set of tensions with SM predictions in  $b \rightarrow s\ell\ell$  and  $b \rightarrow c\ell\nu$  decays
- ▶ This year's results of LFU in  $b \rightarrow s\ell\ell$  provide evidence of LFU and further strengthen the tensions with SM.
- Analyses that will shed light to these anomalies underway
   Including further tests of experimental methodology at low q<sup>2</sup>
- Ongoing discussion in LHCb regarding a global p-value to the SM using all relevant measurements following procedure outlined in [Isidori et al PLB(2021)136644]
- Large imprints of anomalies expected in LFU and LFV decays with  $\tau$ s and high energy signatures! (see next talks by Ben and Andreas)
- Run3 and beyond can provide a definitive understanding (see tomorrow's talk by Will)

#### Backup



# Control mode fits

LHCb [arXiv:2103.11769]



#### Signal Lineshape



- The m(K<sup>+</sup>ℓ<sup>+</sup>ℓ<sup>-</sup>) distributions of the rare mode are obtained from simulated decays, calibrating the peak and width of the distribution using B<sup>+</sup> → J/ψ(ℓ<sup>+</sup>ℓ<sup>-</sup>)K<sup>+</sup> data.
- In the subsequent fit to the rare mode the m(K<sup>+</sup>ℓ<sup>+</sup>ℓ<sup>-</sup>) lineshape is fixed.
- The q<sup>2</sup> scale/resolution in the simulation is corrected using the same procedure
  - ightarrow the efficiency of the  $q^2$  cut is calibrated from the data

#### $B^+ \to K^+ \ell^+ \ell^-$





LFUV results

## Semileptonic vetos

LHCb [arXiv:2103.11769]



#### Parameter overlap (I)





#### Parameter overlap (II)





#### Efficiency calibration

Ratio of efficiencies determined with simulation carefully calibrated using control channels selected from data:

- Particle ID calibration
  - ▷ Tune particle ID variables for diff. particle species using kinematically selected calibration samples  $(D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+...)$  [EPJ T&I(2019)6:1]
- Calibration of  $q^2$  and  $m(K^+e^+e^-)$  resolutions

 $\triangleright$  Use fit to  $m(J/\psi)$  to smear  $q^2$  in simulation to match that in data

- Calibration of B<sup>+</sup> kinematics
- Trigger efficiency calibration



#### Calibration of $B^+$ kinematics

- Calibrate the simulation so that it describes correctly the kinematics of the B<sup>+</sup>'s produced at LHCb.
- Compare distributions in data and simulation using B<sup>+</sup> → K<sup>+</sup>J/ψ(ℓ<sup>+</sup>ℓ<sup>-</sup>) candidates.
- ► Iterative reweighing of  $p_T(B^+) \times \eta(B^+)$ , but also the vertex quality and the significance of the  $B^+$  displacement.



K.A. Petridis (Bristol)

#### Trigger efficiency



Especially for the electron samples, need to take into consideration some subtleties:

- dependence on how the calibration sample is selected,
- correlation between the two leptons in the signal.

Repeat calibration with different samples/different requirements on the accompanying lepton

 $\rightarrow$  Associated systematic in the ratio of efficiencies is small

K.A. Petridis (Bristol)

LFUV results

#### Efficiency calibration summary

After calibration, very good data/MC agreement in all key observables



Maximal effect of turning off corrections results in relative shift  $R_K$  (+3 ± 1)% compared to 20% in  $r_{J/\psi}$ .

Demonstrates the robustness of the double-ratio method in suppressing systematic biases that affect the resonant and nonresonant decay modes similarly. Trigger strategy



[Credit: Dan Moise]

Same approach as in the previous analysis:

- for µµ channels, trigger on muons: LOMuon
- for ee channels, use three exclusive trigger categories: LOElectron, LOHadron, LOTIS
- systematics calculated and cross-checks performed for each trigger individually







#### Conclusions

Using the full LHCb dataset to date, presented:

- 1. Single most precise measurement of  $\mathcal{B}(B_s^0 \to \mu^+\mu^-)$ , improved precision on  $\tau_{\mu^+\mu^-}$  and first every limit on  $B_s^0 \to \mu^+\mu^-\gamma$
- 2. Updated  $R_K$  measurement  $\rightarrow 3.1\sigma$  departure from LFU!
  - $\rightarrow$  Reframing discussion on flavour anomalies



Complementarity between  $R_K$  and  $\mathcal{B}(B_s^0 \to \mu^+ \mu^+)$  measurements crucial moving forward.

"...perhaps the end of the beginning."

2. Angular analysis of  $B^0 o K^{*0} \mu^+ \mu^-$ 



▶ Differential decay rate of  $B^0 \to K^{*0} \mu^+ \mu^-$  and  $\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-$ :

$$\begin{split} \frac{\mathrm{d}^4\Gamma[\bar{B}^0\to\bar{K}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = & \frac{9}{32\pi}\sum_i I_i(q^2)f_i(\vec{\Omega}) \quad \mathrm{and}\\ \frac{\mathrm{d}^4\bar{\Gamma}[\bar{B}^0\to K^{*0}\mu^+\mu^-]}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = & \frac{9}{32\pi}\sum_i \bar{I}_i(q^2)f_i(\vec{\Omega}) \ , \end{split}$$

▶  $I_i$ : bilinear combinations of 6 *P*-wave and 2 *S*-wave helicity amplitudes (since  $K^{*0}$  can be found in J = 1 and J = 0)

Reparametrise distribution in terms of:

$$S_{i} = \left(I_{i} + \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right) \text{ and} A_{i} = \left(I_{i} - \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right).$$

Determine 8 S<sub>i</sub> and 8 A<sub>i</sub> for P-wave K<sup>\*0</sup> through a quasi 4D angular and m<sub>Kπ</sub> fit in bins of q<sup>2</sup>

#### What are these $I_i$ s I hear you ask?



| i  | $I_i$                                                                                                                                                                                       | $f_i$                                        |    |                                                                                                                                                                                                                                                                                   |                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1s | $\frac{3}{4}\left[ \mathcal{A}_{\parallel}^{L} ^{2}+ \mathcal{A}_{\perp}^{L} ^{2}+ \mathcal{A}_{\parallel}^{R} ^{2}+ \mathcal{A}_{\perp}^{R} ^{2}\right]$                                   | $\sin^2 \theta_K$                            | 10 | 1 [1 4L12 - 1 4R12]                                                                                                                                                                                                                                                               |                                          |
| 1c | $ \mathcal{A}_0^{\rm L} ^2 +  \mathcal{A}_0^{\rm R} ^2$                                                                                                                                     | $\cos^2 \theta_K$                            | 10 | $\frac{1}{3} \left[ \left  \mathcal{A}_{\tilde{\mathbf{S}}} \right ^{-} + \left  \mathcal{A}_{\tilde{\mathbf{S}}} \right ^{-} \right]$ $\sqrt{4} \mathbf{D}_{S} \left( \mathbf{A} \mathbf{L} \mathbf{A} \mathbf{L}^{*} + \mathbf{A} \mathbf{R} \mathbf{A} \mathbf{R}^{*} \right)$ | 1                                        |
| 2s | $rac{1}{4}\left[ \mathcal{A}_{\parallel}^{\mathrm{L}} ^{2}+ \mathcal{A}_{\perp}^{\mathrm{L}} ^{2}+ \mathcal{A}_{\parallel}^{\mathrm{R}} ^{2}+ \mathcal{A}_{\perp}^{\mathrm{R}} ^{2} ight]$ | $\sin^2 \theta_K \cos 2\theta_l$             | 11 | $\sqrt{\frac{1}{3}} \operatorname{Re}(\mathcal{A}_{\mathrm{S}}\mathcal{A}_{0} + \mathcal{A}_{\mathrm{S}}\mathcal{A}_{0}^{-})$                                                                                                                                                     | $\cos \theta_K$                          |
| 2c | $- \mathcal{A}_0^{\mathrm{L}} ^2- \mathcal{A}_0^{\mathrm{R}} ^2$                                                                                                                            | $\cos^2\theta_K\cos2\theta_l$                | 12 | $-\frac{1}{3}\left[\left \mathcal{A}_{S}^{R}\right ^{2}+\left \mathcal{A}_{S}^{R}\right ^{2}\right]$                                                                                                                                                                              | $\cos 2\theta_l$                         |
| 3  | $\frac{1}{2} \left[  \mathcal{A}_{\perp}^{L} ^{2} -  \mathcal{A}_{\parallel}^{L} ^{2} +  \mathcal{A}_{\perp}^{R} ^{2} -  \mathcal{A}_{\parallel}^{R} ^{2} \right]$                          | $\sin^2\theta_K \sin^2\theta_l \cos 2\phi$   | 13 | $-\sqrt{\frac{3}{3}}\operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{0}^{\mathrm{L}*} + \mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{0}^{\mathrm{L}*})$                                                                                                   | $\cos \theta_K \cos 2\theta_l$           |
| 4  | $\sqrt{\frac{1}{2}} \operatorname{Re}(\mathcal{A}_{0}^{L}\mathcal{A}_{\parallel}^{L*} + \mathcal{A}_{0}^{R}\mathcal{A}_{\parallel}^{R*})$                                                   | $\sin 2\theta_K \sin 2\theta_l \cos \phi$    | 14 | $\sqrt{\frac{2}{3}} \operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{\parallel}^{\mathrm{L}*} + \mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{\parallel}^{\mathrm{R}*})$                                                                                   | $\sin \theta_K \sin 2\theta_l \cos \phi$ |
| 5  | $\sqrt{2}$ Re $(\mathcal{A}_0^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*} - \mathcal{A}_0^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$                                                 | $\sin 2\theta_K \sin \theta_l \cos \phi$     | 15 | $\sqrt{\frac{8}{3}} \operatorname{Re}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*} - \mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$                                                                                           | $\sin\theta_K\sin\theta_l\cos\phi$       |
| 6s | $2\mathrm{Re}(\mathcal{A}_{\parallel}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*}-\mathcal{A}_{\parallel}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$                                 | $\sin^2 \theta_K \cos \theta_l$              | 16 | $\sqrt{\frac{8}{3}}$ Im $(\mathcal{A}_{S}^{L}\mathcal{A}_{\parallel}^{L*} - \mathcal{A}_{S}^{R}\mathcal{A}_{\perp}^{R*})$                                                                                                                                                         | $\sin\theta_K\sin\theta_l\sin\phi$       |
| 7  | $\sqrt{2} Im(\mathcal{A}_0^L \mathcal{A}_{\parallel}^{L*} - \mathcal{A}_0^R \mathcal{A}_{\parallel}^{R*})$                                                                                  | $\sin 2\theta_K \sin \theta_l \sin \phi$     | 17 | $\sqrt{\frac{2}{3}} \text{Im}(\mathcal{A}_{S}^{L}\mathcal{A}_{\perp}^{L*} + \mathcal{A}_{S}^{R}\mathcal{A}_{\perp}^{R*})$                                                                                                                                                         | $\sin \theta_K \sin 2\theta_l \sin \phi$ |
| 8  | $\sqrt{\frac{1}{2}} \mathrm{Im}(\mathcal{A}_0^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L}*} + \mathcal{A}_0^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R}*})$                               | $\sin 2\theta_K \sin 2\theta_l \sin \phi$    | 1  | V.                                                                                                                                                                                                                                                                                | 1                                        |
| 9  | $\operatorname{Im}(\mathcal{A}_{\parallel}^{\operatorname{L*}}\mathcal{A}_{\perp}^{\operatorname{L}} + \mathcal{A}_{\parallel}^{\operatorname{R*}}\mathcal{A}_{\perp}^{\operatorname{R}})$  | $\sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$ |    |                                                                                                                                                                                                                                                                                   |                                          |



#### And what do the amplitudes look like?

[JHEP 0901(2009)019] Altmannshofer et al.

$$\mathcal{A}_{0}^{\mathrm{L,R}}(q^{2}) = -8N \frac{m_{B}m_{K^{*}}}{\sqrt{q^{2}}} \left\{ C_{9} \mp C_{10} A_{12}(q^{2}) + \frac{m_{b}}{m_{B} + m_{K^{*}}} C_{7} C_{23}(q^{2}) + \mathcal{G}_{0}(q^{2}) \right\},$$

$$\mathcal{A}_{\parallel}^{\mathrm{L,R}}(q^{2}) = -N\sqrt{2}(m_{B}^{2} - m_{K^{*}}^{2}) \left\{ \underbrace{(C_{9} \mp C_{10})}_{m_{B}} \underbrace{A_{1}(q^{2})}_{m_{B}} + \frac{2m_{b}}{q^{2}} \underbrace{C_{7}T_{2}(q^{2})}_{q} + \mathcal{G}_{\parallel}(q^{2}) \right\},$$

$$\mathcal{A}_{\perp}^{\rm L,R}(q^2) = N\sqrt{2\lambda} \left\{ \underbrace{(C_9 \mp C_{10})}_{m_B + m_{K^*}} + \frac{2m_q}{q^2} \underbrace{C_7 T_1(q^2)}_{q} + \mathcal{G}_{\perp}(q^2) \right\},$$

- ▶  $C_{7,9,10}$ : Wilson coefficients
- ▶  $A_i$ ,  $T_i$ ,  $V_i$ :  $B \to K^*$  form factors
- ▶  $G_{\parallel,\perp,0}$ : Charm-loop contribution







Can also reparametrise angular distribution in terms of less form-factor dependent observables (so-called P<sub>i</sub> basis) e.g:

$$P_5' \sim \frac{Re(A_0^L A_{\perp}^L - A_0^R A_{\perp}^R)}{\sqrt{(|A_0^L|^2 + |A_0^R|^2)(|A_{\perp}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2)}}$$

 Recent advancements in form-factor calculations coupled with availability of experimental correlations between all observables makes this reparametrisation less important

# *гнср*

#### Acceptance correction

- ▶ Trigger, reconstruction and selection efficiency distorts the angular and  $q^2$  distribution of  $B^0 \to K^{*0} \mu^+ \mu^-$
- Acceptance correction parametrised using 4D Legendre polynomials
- ▶ Use moment analysis in  $B^0 o K^{*0} \mu^+ \mu^-$  MC to obtain coefficients  $c_{klmn}$
- ▶ Measurements in  $B^0 \rightarrow J/\psi K^{*0}$  control mode in excellent agreemnt with expectation

$$\varepsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) = \sum_{klmn} c_{klmn}P_{k}(\cos\theta_{\ell})P_{l}(\cos\theta_{K})P_{m}(\phi)P_{n}(q^{2})$$

$$1D \text{ projections}$$

$$\int_{UC} f_{underson} f_{underson}$$

 $\cos \theta$ 

-0.5

Relative efficiency

cos θ.

φ [rad]

 $a^2 [GeV^2/c^4]$ 

# *LHC*P

#### Acceptance correction

- ▶ Trigger, reconstruction and selection efficiency distorts the angular and  $q^2$  distribution of  $B^0 \to K^{*0} \mu^+ \mu^-$
- Acceptance correction parametrised using 4D Legendre polynomials
- ▶ Use moment analysis in  $B^0 \to K^{*0} \mu^+ \mu^-$  MC to obtain coefficients  $c_{klmn}$
- ▶ Measurements in  $B^0 \rightarrow J/\psi K^{*0}$  control mode in excellent agreemnt with expectation

$$\varepsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) = \sum_{klmn} c_{klmn} P_{k}(\cos\theta_{\ell}) P_{l}(\cos\theta_{K}) P_{m}(\phi) P_{n}(q^{2})$$





#### Angular analysis results

Latest update of the 8 CP-averaged observabes using data up to 2016 [Phys. Rev. Lett. 125 (2020) 011802]



- Suggesting anomalous vector-dilepton coupling (C<sub>9</sub>)
- Working on update with twice the data!



#### Rare decays in Run3 and beyond

- Still have x2 the data to study for most of these analyses just from Run2 alone
  - Much clearer picture in less than 1 year's time
- Angular and LFU measurements statistically limited even after Run3 of the LHC
- ► Increased dataset → determine theory nuisances directly from the data improving theory accuracy and precision
  - Working with existing data on this
  - $\blacktriangleright$  Larger datasets also bring LHCb's sensitivitiy to  $\tau$  final states comparable to theory predictions that explain anomalies
    - $\rightarrow$  Smoking gun signatures of anomalies





- ▶ Upgrade for Run3 driven by having to read out full detector at 30MHz and higher instantaneous lumi  $(4 \times 10^{32} \rightarrow 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1})$
- Fully-software trigger using GPUs for HLT1 and CPUs for HLT2 (RTA before HLT2)
- Upgrade readout electronics of every detector subsystem
- VELO pixels, Sci-Fi tracker, UT silicon strip, new RICH with MaPMT





#### Detector performance

[Int.J.Mod.Phys.A30(2015)1530022]

