

Christoph Englert

Theoretical outlook for LHC Run 3

UKHEP Forum

24/11/21

The Standard Model: a tale of symmetries

LHC run 3

era of experimental beacons and theoretical intuition

anomalous muon magnetic moment

- \rightarrow Alex's and Andreas' talks
- general decomposition of three-point QED vertex

$$= -ie\bar{u}(p') \left[\gamma^{\mu}F_1(k^2) + \frac{i}{2M_{\mu}}\sigma^{\mu\nu}k_{\nu}F_2(k^2) + \dots \right] u(p)$$

$$= -ie\bar{u}(p') \left[\gamma^{\mu}F_1(k^2) + \frac{i}{2M_{\mu}}\sigma^{\mu\nu}k_{\nu}F_2(k^2) + \dots \right] u(p)$$

• magnetic moment $\vec{\mu} = \frac{e}{2m} [2F_1(0) + 2F_2(0)]\vec{S}$ gives $g = 2 + 2F_2(0)$

new physics predominantly in muons, but large modification means either strong coupling or light states

anomalous muon magnetic moment

\rightarrow Alex's and Andreas' talks

combined experimental and theoretical effort

comprehensive investigation already after BNL •

Single field SM extensions

Single field SM extensions				1	 difficult in good old 		
Model	Spin	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Result for $\Delta a_{\mu}^{\text{BNL}}$, Δa_{μ}^{2021}	÷.	+	John I/II modela	
1	0	(1, 1, 1)	Excluded: $\Delta a_{\mu} < 0$		ι	spe 1/ 11 models	
2	0	(1 , 1 ,2)	Excluded: $\Delta a_{\mu} < 0$			[Charabialia at al \16]	
3	0	$({f 1},{f 2},-1/2)$	Updated in Sec. 3.2				
4	0	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$			[Atkinson et al. 21]	
5	0	$(\overline{3},1,1/3)$	Updated Sec. 3.3.			z-t-bosonic loop	
6	0	$(\overline{3},1,4/3)$	Excluded: LHC searches		50 _[
7	0	$(\overline{3},3,1/3)$	Excluded: LHC searches		-	$M_{H,H^*} = 150 \mathrm{GeV}^{-1}$	
8	0	$({f 3},{f 2},7/6)$	Updated Sec. 3.3.		40	$M_{H,H^{*}} = 200 \text{GeV}$	
9	0	$({f 3},{f 2},1/6)$	Excluded: LHC searches			<i>M_{H,H[*]}</i> = 250 GeV	
10	1/2	$({f 1},{f 1},0)$	Excluded: $\Delta a_{\mu} < 0$,		
11	1/2	(1, 1, -1)	Excluded: Δa_{μ} too small		0 ³⁰		
12	1/2	(1, 2, -1/2)	Excluded: LEP lepton mixing		λa _μ X		
13	1/2	(1, 2, -3/2)	Excluded: $\Delta a_{\mu} < 0$		<لا 20		
14	1/2	$({f 1},{f 3},0)$	Excluded: $\Delta a_{\mu} < 0$		-		
15	1/2	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$		10		
16	1	$({f 1},{f 1},0)$	Special cases viable		-		
17	1	(1, 2, -3/2)	UV completion problems		ŀ	20 40 60 80 100 120	
18	1	$({f 1},{f 3},0)$	Excluded: LHC searches				
19	1	$({f \overline{3}},{f 1},-2/3)$	UV completion problems			M _A [GeV]	
20	1	$(\overline{3},1,-5/3)$	Excluded: LHC searches				
21	1	$({f \overline{3}},{f 2},-5/6)$	UV completion problems				
22	1	$(\overline{3},2,1/6)$	Excluded: $\Delta a_{\mu} < 0$				
23	1	$(\overline{3},3,-2/3)$	Excluded: proton decay				

[Athron et al. `21]

comprehensive investigation already after BNL

Single field SM extensions

Single field SM extensions				 difficult in good old
Model	Spin	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Result for $\Delta a_{\mu}^{\text{BNL}}$, Δa_{μ}^{2021}	type I/II models
1	0	(1, 1, 1)	Excluded: $\Delta a_{\mu} < 0$	type 1/ 11 models
2	0	$({f 1},{f 1},2)$	Excluded: $\Delta a_{\mu} < 0$	[Charabialia at al \16]
3	0	(1, 2, -1/2)	Updated in Sec. 3.2	
4	0	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$	[Atkinson et al. 21]
5	0	$(\overline{3},1,1/3)$	Updated Sec. 3.3.	
6	0	$(\overline{\bf 3},{f 1},4/3)$	Excluded: LHC searches	
7	0	$(\overline{3},3,1/3)$	Excluded: LHC searches	
8	0	$({f 3},{f 2},7/6)$	Updated Sec. 3.3.	
9	0	(3, 2, 1/6)	Excluded: LHC searches	
10	1/2	(1, 1, 0)	Excluded: $\Delta a_{\mu} < 0$	
11	1/2	(1, 1, -1)	Excluded: Δa_{μ} too small	A^0 i \sum_{γ}
12	1/2	(1, 2, -1/2)	Excluded: LEP lepton mixing	
13	1/2	(1, 2, -3/2)	Excluded: $\Delta a_{\mu} < 0$	
14	1/2	(1, 3, 0)	Excluded: $\Delta a_{\mu} < 0$	μ μ μ
15	1/2	(1, 3, -1)	Excluded: $\Delta a_{\mu} < 0$	
16	1	(1, 1, 0)	Special cases viable	0000
17	1	(1, 2, -3/2)	UV completion problems	
18	1	(1, 3, 0)	Excluded: LHC searches	τ^-
19	1	$(\overline{\bf 3}, {\bf 1}, -2/3)$	UV completion problems	
20	1	$(\overline{\bf 3},{f 1},-5/3)$	Excluded: LHC searches	
21	1	$(\overline{3}, 2, -5/6)$	UV completion problems	 lepton specific / flavour
22	1	$(\overline{3}, 2, 1/6)$	Excluded: $\Delta a_{\mu} < 0$	aligned poggible tou
23	1	$(\overline{3},3,-2/3)$	Excluded: proton decay	anglieu possible: tau
				final states at min 2

[Athron et al. `21]

multi-field SM extensions

$(SU(3)_C \times SU(2)_L \times U(1)_Y)_{spin}$	$ +\mathbb{Z}_2 $	Result for $\Delta a_{\mu}^{\text{BNL}}$, Δa_{μ}^{2021}		
(1 1 0) (1 1 1)	No	Projected LHC 14 TeV exclusion, not confirmed		
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Updated Sec. 4.2		
$(1,1,-1)_0-(1,1,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$		
$(1, 2, -1/2)_0 - (1, 1, 0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$		
$(1 \ 1 \ 0)_{2} - (1 \ 2 \ -1/2)_{1}$	No	Excluded: LHC searches		
$(1, 1, 0)_0 (1, 2, -1/2)_{1/2}$	Yes	Updated Sec. 4.2		
$(1 \ 9 \ 1/9)_{0} - (1 \ 1 \ 1)_{0}$	No	Excluded: LEP contact interactions		
$(1, 2, -1/2)_0$ $(1, 1, -1)_{1/2}$	Yes	Viable with under abundant DM		
$(1,1,-1)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$		
$(1, 2, -1/2)_0 - (1, 2, -1/2)_{1/2}$	Both	Excluded: LEP search		
$(1 \ 2 \ 1/2)_{2}$ $(1 \ 2 \ 0)_{3}$	No	Excluded: LHC searches		
$(1, 2, -1/2)_0 - (1, 3, 0)_{1/2}$	Yes	Viable with under abundant DM		
$(1 \ 9 \ 1/9)_{2} - (1 \ 9 \ 1)_{2}$	No	Excluded: LHC searches + LEP contact interactions		
$(1, 2, -1/2)_0$ $(1, 3, -1)_{1/2}$	Yes	Viable with under abundant DM		
$(1,3,0)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$		
$(1 \ 3 \ 0)_0 - (1 \ 3 \ -1)_{1/2}$	No	Excluded: LHC searches		
$(1, 3, 0)_0 (1, 3, 1)_{1/2}$	Yes	Viable with under abundant DM		
$(1,3,-1)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$		
$({f 1},{f 3},-1)_0-({f 1},{f 3},0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$		
$({f 1},{f 1},-1)_{1/2}-({f 1},{f 1},0)_1$	No	Excluded: $\Delta a_{\mu} < 0$		
$(1,2,-1/2)_{1/2} - (1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$		
$(1, 2, -1/2)_{1/2} - (1, 3, 0)_1$	No	Excluded: LHC searches + LEP contact interactions		
$(1,1,0)_{1/2} - (1,1,1)_1$	No	Excluded: LHC searches + LEP contact interactions		
$(1, 2, -1/2)_{1/2} - (1, 1, -1)_1$	No	Excluded: LHC searches + LEP contact interactions		
$(1,3,-1)_{1/2} - (1,3,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$		

[Athron et al.`21]

way out of perturbative conundrum à la composite Higgs?

way out of perturbative conundrum à la composite Higgs?

 minimal example: Zee-Babu SM extension neutrino [Anisha et al. `21] S: (1, 1, 1)physics etc. $\mathcal{R}: (\mathbf{1}, \mathbf{1}, 2)$ $\left(\frac{(f_{\mathcal{S}}^{\dagger}f_{\mathcal{S}})_{\mu\mu}}{M_{b^{\pm}}^{2}} + 4\frac{(f_{\mathcal{R}}^{\dagger}f_{\mathcal{R}})_{\mu\mu}}{M_{r^{\pm\pm}}^{2}}\right)$ $a_{\mu}^{\rm d4}$ (Zee-Babu) e.g. [Leville et al. `78] [Moore et al. `85] μ^{\mp} μ^{\mp}

 negative result can be compensated by kinematically enhanced loop dynamics and/or strong couplings....

- minimal example: Zee-Babu SM extension neutrino [Anisha et al. 21] S: (1, 1, 1)physics etc. $\mathcal{R}: (\mathbf{1}, \mathbf{1}, 2)$ $a_{\mu}^{d4}(\text{Zee-Babu}) = -\frac{M_{\mu}^2}{24\pi^2} \left(\frac{(f_{\mathcal{S}}^{\dagger}f_{\mathcal{S}})_{\mu\mu}}{M_{h\pm}^2} + 4\frac{(f_{\mathcal{R}}^{\dagger}f_{\mathcal{R}})_{\mu\mu}}{M_{r\pm\pm}^2} \right)$ e.g. [Leville et al. `78] [Moore et al. `85] $\Lambda^{2} \times a_{\mu}^{\mathrm{d6},r^{\pm\pm}}(\mathrm{Zee-Babu}) = \frac{f_{\mathcal{R}}M_{\mu}^{2}v^{2}(\mathcal{C}_{e\mathcal{R}\phi})_{\mu\mu}}{6\pi^{2}M_{++}^{2}} + \frac{f_{\mathcal{R}}M_{\mu}^{2}v^{2}(\mathcal{C}_{\ell\phi\mathcal{R}})_{\mu\mu}}{2\pi^{2}M_{++}^{2}} \left(\log\left(\frac{M_{r^{\pm\pm}}}{M_{\mu}}\right) - \frac{1}{4}\right)$ $+\frac{f_{\mathcal{R}}M^3_{\mu}v(\mathcal{C}_{\mathcal{R}\ell e})_{\mu\mu}}{\sqrt{2}\pi^2 M^2} \left(\frac{7}{12} - \log\left(\frac{M_{r^{\pm\pm}}}{M_{\mu}}\right)\right) + \frac{f_{\mathcal{R}}^2 M^2_{\mu}v^2 \mathcal{C}_{\phi\mathcal{R}\mathcal{D}}}{12\pi^2 M^2}$ +
 - negative result can be compensated by kinematically enhanced loop dynamics and/or strong couplings....

- relatively low cut off can be consistent with TeV scale exotics
- many interactions! But muon-Higgs-exotics interplay transparent

doubly charged Higgs pair production @3/ab

hunting new physics in Run 3

hunting new physics in Run 3

coupling/scale separated BSM physics

concrete models **Effective Field Theory** extended SMEFT $\mathcal{L} = \mathcal{L}_{\mathrm{SM}}$ - (\mathbb{C}) Higgs portals [Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] 2HDMs [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10] simplified models compositeness.... rich kinematical structure

EF^(a)to inform theory

g

- new top-philic states arise in many BSM theories: $-(c_S \bar{t}_L t_R S + h.c.)$
- top pair production with large cross section could fingerprint such states

elle

• EFT is suitable tool to constrain such states model-independently, however matchings is crutical. $p_{g}^{0} p_{g}^{0} p_$

23

New physics in tops

 EFT is suitable tool to constrain such states model-independently, however matching is crucial!

New physics in tops

• EFT is suitable tool to constrain such states model-independently, *however matching is crucial and so are expected uncertainties*

New physics in tops

• EFT is suitable tool to constrain such states model-independently, *however matching is crucial and so are expected uncertainties*

LHC Run 3

sensitivity

improvements beyond fits?

▶ prime example Higgs+2j, mt=∞ SM limit accidentally good, NLO in EFT limit
[Del Duca et al. `03]

[Campbell, Ellis, Zanderighi `06]

multi-scale processes to inform EFT fits

▶ prime example Higgs+2j, mt=∞ SM limit accidentally good, NLO in [Del Duca et al. `03] [Campbell, Ellis, Zanderighi `06]

 $pp \rightarrow hjj$ SM background ($\mu = \mu_0$) 14 SM background ($\mu = \mu_0/2$) observables: $p_T^{j,1}$, σ_{hii} Number of Events (normalized) SM background ($\mu = 2\mu_0$) 12 $c_a = -0.6$ $c_t = 0.27$ signal + background ($\mu = \mu_0$) $pp \rightarrow hjj$ SM background ($\mu = \mu_0$) 10 SM background ($\mu = \mu_0/2$) observables: $p_T^{j,1}$, σ_{hjj} Number of Events (normalized) SM background ($\mu = 2\mu_0$) without adversary $c_a = -0.6$ $c_t = 0.27$ signal + background ($\mu = \mu_0$) 6 5 6 with adversary 4 3 2 2 0 1.0 0.0 0.8 0.9 0.1 0.2 0.5 0.6 0.7 0.4**Neural Network Score** $\mathbf{0}$ 0.1 0.4 0.5 0.6 0.0 0.8 0.9 1.0 0.2 0.3 0.7 **Neural Network Score**

 include uncertainties to the selection of BSM-discriminating phase space regions: most robust sensitivity [Goodfellow et al. `14] [Louppe, Kagan, Cranmer `16] ...

hunting new physics in Run 3

coupling/scale separated BSM physics

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}}$ -

Effective Field Theory

model-independent CP violation

concrete models

- extended SMEFT
 - (\mathbb{C}) Higgs portals
- 2HDMs
- simplified models
- compositeness....

[ATLAS, 2006.15458]

Higgs CP violation

- asymmetry-based measurement in elw Z+2jet production
- symmetric CP even effects cancel
- very challenging to combat fluctuations

 sign for hierarchical new physics beyond the SM ?

Wilson	Includes	95% confidence	e interval [TeV $^{-2}$]	<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19_0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	2 78 1 13	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

[ATLAS,	2006.15458]
---------	-------------

CP violation in ATLAS

Wilson	Includes	95% confidence	e interval [TeV $^{-2}$]	<i>p</i> -value (SM)	•
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed		
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%	
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%	
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%	
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%	
c_{HWB}/Λ^2	no	[-2.45, 2.45]	-3.70. 1.13	29.0%	•
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%	
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%	
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%	

- ATLAS see a tension related to CP violation in WBF Z production
- sign for hierarchical new physics beyond the SM?

what can be learned from this for Run 3?

[Das Bakshi et al. `20]

- Assumptions of two-parameter CP fits theoretically consistent in a wide class of vector-like leptons
- Hierarchy $|C_{H\widetilde{W}B}|/\Lambda^2 > |C_{\widetilde{W}}|/\Lambda^2$ predicted in these scenarios
- broad UV assumptions reduce complexity of fit whilst facilitating matching more straightforwardly

→ Andreas' and Ben's talks

LFU violation: non-trivial BSM flavour

→ Andreas' and Ben's talks LFU violation: non-trivial BSM flavour

LFU and Higgs sector extensions

 $\swarrow d$

 ν_{ℓ}

lowering Higgs masses for Run 3

large interference effects of Higgs "signal" with QCD background

[Gaemers, Hoogeveen `84] [Dicus et al. `94] [Carena, Liu `16]...

 top resonance searches in Higgs sector extensions with narrow width approximation is inadequate!

LHC Run 3

era of experimental beacons and theoretical intuition

LHC RUN 3

anomaly clarification: g-2, LFU and CP more data complementary search strategies Higgs and top phenomenology concrete UV extensions vs EFT fit strategies ready to go multi-Higgs final states in better reach precision vs anomaly detection

new strategies, machine learning,...