UK HEP FORUM 2021: FROM LABORATORIES TO THE UNIVERSE AND BACK

ATLAS: PHYSICS PROSPECTS IN (EARLY) RUN 3

OLEG BRANDT 24/11/2021

ATLAS DETECTOR MAJOR UPGRADES FOR RUN 3

AFP: ATLAS Forward Proton detector

- Scheduled to run throughout data taking (only 15 fb-1 / 140 fb-1 in Run 2)
- Important feature: Time of Flight (ToF)

NSW: New Small Wheel

- New muon detector in $|\eta| > 1.05$ based on Micromegas and small Thin Gap Chambers
- Excellent spatial + time resolution
- Mitigate pile-up and reduce fake muons
- BI: Barrel Inner layer muon system upgrade
 - Inner barrel layer extension of muon spectrometer based on Resistive Plate Chambers + small Muon Drift Tubes
 - Excellent time resolution
 - Improve muon trigger efficiency in the intermediate region

OLEG BRANDT

UK leadership

ATLAS DAQ + TRIGGER UPGPADES FOR RUN 3 ~ COMPLETE REPLACEMENT

DAQ L1 HLT Tier 0

L1Calo (level 1 calo trigger)

- Trigger readout fully digitised + finer granularity ("super cell")
- Improved $e/\gamma, \tau$, jet, E_T^{miss} with new hardware
- Large-R jet reconstruct'n
- UK: eFEX (electron feature extractor)+ROD (readout driver), leadership

L1Muon (not shown)

- 6 \rightarrow 15 p_T thresholds
- Charge information

10x higher granularity!

ATLAS-TDR-023

HLT (High Level Trigger) & Data AQuisition (DAQ)

- Similarly dramatic improvements!
- Not shown (\rightarrow backup)

LHC Run 3: 2022 - 2025 **pp:** $\sqrt{s} = 13.6$ TeV, $\mathscr{L} \approx 160$ fb⁻¹ PbPb: $\sqrt{s_{NN}} = 5.5$ TeV, $\mathscr{L} \approx 6$ nb⁻¹ **Special runs:** low- μ , high β^* , O-O, p-O, p-He Potentially 2x more PbPb, pp data in 2021 AFF using AFP + time of flight! NSW, BI Tier 0 eFEX* New DAQ tracking Trigger Level Analysis, ROD* +trigger delayed reconstruct'n Major UK involvement OLEG BRANDT

6

INCREASE IN $\sqrt{s} = 13 \rightarrow 13.6$ TeV

• Substantial increase in sensitivity to BSM physics at mass scales > 5 TeV:

- Moderate benefits from \sqrt{s} increase for most analyses]
 - Example: stop with $m_{\tilde{t}} = 1.5 \text{ TeV} \rightarrow \sigma_{\tilde{t}\tilde{t}}$ increases by 30%

OLEG BRANDT

INCREASE IN $\sqrt{s} = 13 \rightarrow 13.6$ TeV

Additional data point for cross section measurements:

Increased integrated luminosity $\mathscr L$

- Searches very close to observation / evidence threshold
- Example:
 - 4-top production
 - Currently very close to observation (4.7 σ)

Increased integrated luminosity $\mathscr L$

×

Probing rare processes

×

Differential measurements of rare processes + new phase space

Increased integrated luminosity $\mathscr L$

Flagship search for DM via Higgs-portal statistically limited!

Source	$\Delta[\%]$
Jet energy scale	1.8
Jet energy resolution	5.5
Lepton	4.6
Other	1.9
Multijet	7.0
V+jets theory	1.6
Signal theory	1.0
MC stats.	7.9
Data stats.	17.3

Limit: $BR(H \rightarrow inv) < 0.11 \ (0.11^{+0.04}_{-0.03})$ Note: current results stat limited... Pushing below $BR(H \rightarrow inv) < 0.1$ is really exciting...

Many searches for DM models with extended Higgs sectors limited!

Increased integrated luminosity $\mathscr L$

INCREASED INTEGRATED LUMINOSITY \mathscr{L}

Connection to $g_{\mu} - 2$ anomalies?

 $pp \rightarrow \tilde{\mu}^+_{L,B} \, \tilde{\mu}^-_{L,B}, \, \tilde{\mu} \rightarrow \mu \tilde{\chi}^0_1$, bino LSF June 2021 600 $m(\tilde{\chi}_1^0)$ [GeV] AS Preliminary Observed 8 - 13 TeV, 20.3 - 139 fb-500 08.08215. Bun 2 2/0. LEP $\tilde{\mu}_{R}$ excluded 400 $a_{ii}^{SUSY} \pm 1\sigma = (2.5 \pm 0.6) \times 10^{-9}$ (60, 0.5 TeV, 0.5 TeV) (60, 3.0 TeV, 1.0 TeV) 300 (60, 1.0 TeV, 1.0 TeV) (5, 3.0 TeV, 1.0 TeV) 5 10 TeV 10 TeV 200 100 0 200 300 400 500 600 700 800 100 $m(\tilde{\mu}_{L,B})$ [GeV] ATL-PHYS-PUB-2021-019

Connection to $R_{K}^{(*)}$ anomalies?

PB-PB AND PP COLLISIONS WITH AFP

- Y.
- In Run 2 only 15 fb⁻¹ pp recorded with AFP \rightarrow expect doubling in 2022 alone!
 - similar improvement for PbPb running!
- Use AFP time of flight to tag $\gamma\gamma$ fusion!

$$\gamma\gamma
ightarrow au^+ au^-$$

PRD 102 (2020) 113008

Could use polarised τ to measure $g_{\tau} - 2?$

Surpass BSM sensitivity

of
$$g_{\mu} - 2$$
: $m_{\tau} \gg m_{\mu}$

Top quarks as a probe of temporal evolution of quark-gluon plasma in heavy ion collisions

Idea: PRL 120 (2018) 232301

LHC Run 3: 2022 - 2025 pp: $\sqrt{s} = 13.6$ TeV, $\mathscr{L} \approx 160$ fb⁻¹ PbPb: $\sqrt{s_{NN}} = 5.5$ TeV, $\mathscr{L} \approx 6$ nb⁻¹

Special runs: low- μ , high β^* , O-O, p-O, p-He

Cosmic ray shower models: constrain high Q^2 contributions

W mass measurement: constrain pile-up contribution and study recoil using low-*µ* data

NSW, BI

- ×
- Unprecedented opportunities for displaced signatures of long-lived particles!
 - [Detectors+triggers originally purpose-built for prompt physics]

- ×
- Unprecedented opportunities for displaced signatures of long-lived particles!
 - [Detectors+triggers originally purpose-built for prompt physics]
- Major improvements on software side of high-level trigger (and reco):
 - Multi-threading
 - Improved large-radius tracking (LRT) in regions identified by L1 trigger:
 - Reconstruct tracks with large transverse impact parameter $d_0 < 30$ cm

- ×
- Unprecedented opportunities for displaced signatures of long-lived particles!
 - [Detectors+triggers originally purpose-built for prompt physics]
- Major improvements on software side of high-level trigger (and reco):
 - Multi-threading
 - Improved large-radius tracking (LRT) in regions identified by L1 trigger:
 - Reconstruct tracks with large transverse impact parameter $d_0 < 30$ cm

- ×
- Unprecedented opportunities for displaced signatures of long-lived particles!
 - [Detectors+triggers originally purpose-built for prompt physics]
- Major improvements on software side of high-level trigger (and reco):
 - Multi-threading
 - Improved large-radius tracking (LRT) in regions identified by L1 trigger:
 - Reconstruct tracks with large transverse impact parameter $d_0 < 30$ cm

- ×
- Unprecedented opportunities for displaced signatures of long-lived particles!
 - [Detectors+triggers originally purpose-built for prompt physics]
- Major improvements on software side of high-level trigger (and reco):
 - Multi-threading
 - Improved large-radius tracking (LRT) in regions identified by L1 trigger:
 - Reconstruct tracks with large transverse impact parameter $d_0 < 30$ cm

TRIGGER-LEVEL ANALYSIS AND OTHER OPPORTUNITIES

- New opportunities due to more flexible high-level trigger:
 - Partial event building \rightarrow useful for calibrations at low p_T
 - Delayed reconstruction \rightarrow avoid ~1.5 kHz limit for prompt reconstruction
 - Use in-between LHC fills and technical stops
 - (also end of fill, but probably not due to \mathscr{L} levelling)
- Expand very successful trigger-level analysis (TLA) analyses from Run 2!

TRIGGER-LEVEL ANALYSIS AND OTHER OPPORTUNITIES

- New opportunities due to more flexible high-level trigger:
 - Partial event building \rightarrow useful for calibrations at low p_T
 - Delayed reconstruction \rightarrow avoid ~1.5 kHz limit for prompt reconstruction
 - Use in-between LHC fills and technical stops
 - (also end of fill, but probably not due to \mathscr{L} levelling)
- Expand very successful trigger-level analysis (TLA) analyses from Run 2!

Logical next step, after completing Run 2 analysis:

- rinse & repeat with Run 3 data
 - \rightarrow unprecedented sensitivity!
- Could probe for lower $m_{Z'}$ by using lower p_T triggers
 - \rightarrow Example: ISR(γ) + $q\bar{q}$

TRIGGER-LEVEL ANALYSIS AND OTHER OPPORTUNITIES

Barrel category

Data

160

- $Z_{\rm D}$ (25 GeV) $\varepsilon^2 = 2 \times 10^{-5}$

25.5 *m,,,,* (GeV

200

Background only fit

30

28

Pull

120

- New opportunities due to more flexible high-level trigger:
 - Partial event building \rightarrow useful for calibrations at low p_T
 - Delayed reconstruction \rightarrow avoid ~1.5 kHz limit for prompt reconstruction ٠
 - Use in-between LHC fills and technical stops
 - (also end of fill, but probably not due to \mathscr{L} levelling)
- Expand very successful trigger-level analysis (TLA) analyses from Run 2!

Logical next step, after completing Run 2 analysis:

- rinse & repeat with Run 3 data
 - \rightarrow unprecedented sensitivity!
- Could probe for lower $m_{Z'}$ by using lower p_T triggers \rightarrow Example: ISR(γ) + $q\bar{q}$
- Completely different final states

220

 $m_{\mu\mu}$ (GeV)

Increased integrated luminosity $\mathscr L$

X

• Probing rare processes

ATLAS DAQ + TRIGGER UPGRADES FOR RUN 3 ~ COMPLETE REPLACEMENT

L1Calo (level 1 calo trigger)

- Trigger readout fully digitised + finer granularity ("super cell")
- Improved $e/\gamma, \tau$, jet, E_T^{miss} with new hardware
- Large-R jet reconstruct'n
- UK: eFEX (electron feature extractor)+ROD (readout driver), leadership

L1Muon (not shown)

- 6 \rightarrow 15 p_T thresholds
- Charge information

ATLAS DAQ + TRIGGER UPGPADES FOR RUN 3 ~ COMPLETE REPLACEMENT

DAQ L1 HLT Tier 0

DAQ (Data AQuisition)

- New readout paths (+ legacy system):
 - FELIX: PCI cards in dedicated servers
 - Software Read Out Driver (ROD) on servers → interface to HLT
- More bandwidth + stability
- UK: coordination

HLT (High Level Trigger)

- Computing farm with $\mathcal{O}(10^5)$ cores
- Multithreading implemented
- Full-scan tracking of L1 trigger subset
- large-radius tracking (high impact parameter tracks) of L1 trigger subset
- UK: leading contributions on all fronts

- Generally: new trigger more sophisticated, more full reconstruction-like
 - \rightarrow sharper trigger efficiency turn-on
 - \rightarrow lower trigger thresholds for same bandwidth!
- Example L1 Calo (similarly striking improvements for L1Muon): Now: "super-cells" Before: $2 \times 2 \Delta \eta = 0.1$ cells

EM22 VHI: $p_T^e > 22 \text{ GeV}$ very high isolation

Performance: efficiency now up to 10% higher for similar bandwidth: $\epsilon_{
m trig} \gtrsim 98~\%$ at $p_T^e = 35~{
m GeV}~{
m vs.}~\epsilon_{
m trig} pprox 90~\%$ with legacy system

- Improvements for large-R jets ٠
- Similar performance for small-R jets and E_{T}^{miss}

More rate improvements by combining with improved, more versatile L1Topo!

using *e* or γ !

LLP Signatures

Slide courtesy K. Nagano

5

LLP Signatures and Run-2 Triggers

OLEG BRANDT