Imperial College London

Prospects for Run 3 at CMS UK HEP Forum

Daniel Winterbottom d.winterbottom15@imperial.ac.uk

Overview

- I will discuss prospects for the CMS experiment in Run 3
- This is a very broad topic with many opportunities to explore new ideas / new models in Run 3
- The focus of today's talk will mainly be about analyses that can shed light on B-physics (muon g-2 anomalies discussed in backup)

The CMS detector

LHC Run 3 schedule

- Will take data until at least ~ end of 2024 (may be extended by 1 year)
- Will run p-p collisions at 13.6 TeV
- Total integrated luminosity ~ 160-200 fb⁻¹ (compared to ~ 140 fb⁻¹ in Run 2)

2028	2029	2030	2031	2032	2033	2034	2035	2036
JFMAMJJASOND								
	Run 4		LS4		Run 5		LS5	

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

Last updated: June 2021

Run 3 prospects

Many prospects for the Run 3 dataset, expected improvements due to, for example:

- Increased luminosity
- Unconventional trigger stratagies
- New ideas

Increased luminosity prospects

- Many CMS analyses are statistically limited
- We expect improvements in Run 3 from increased data sets
- A good example is search for heavy $H/A \rightarrow \tau \tau$
- At high mass analysis is limited by statistics
- Gains can he even larger than projections!

Triggering at CMS

- CMS trigger has two levels:
 - Hardware based "L1": 40 MHz \rightarrow 100 kHz
 - Software based "HLT": 100 kHz \rightarrow 1 kHz
- "Conventional" triggers limited by the 1 kHz readout
- This 1 kHz limit comes mainly from limitations in how much data we can afford to process

Unconventional triggering

- **Data scouting** → save only objects reconstructed online
 - Write out only high-level objects reconstructed by the CMS trigger
 - Event size can be reduced from ~ 1 MB to ~ a few kB's
- **Data parking** → delay offline reconstruction
 - Store unprocessed events on tape
 - Event reconstruction performed later when resources are available e.g during shutdowns

Data scouting

- The analyses that benefit the most from scouting are those that suffer from trigger thresholds e.g low p_T signatures
- An example Run 2 analysis is dark-photon search $Z_D \rightarrow \mu \mu$ [1912.04776]
 - Standard triggers require µµ p_T thresholds of (20,15) GeV compared to (4, 4) GeV for scouting
- Motivated by hidden, dark-sector models explaining dark matter

• In Run 3 we will use scouting to probe other "difficult" signatures

• Extend scouting to store additional objects (currently only jets and muons stored)

B-physics anomalies

b→clv

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}l\nu)}$$

$$R(K^{(*)}) = \frac{\mathscr{B}(B \to K^{(*)}\mu\mu)}{\mathscr{B}(B \to K^{(*)}ee)}$$

Data parking

- In 2018 CMS collected 10 billion unbiased B hadron decays
 - Trigger strategy involves triggering on displaced muon from "other" B hadron decay
 - $B \rightarrow K^{(*)}I^+I^-$ branching ratio ~ 10⁻⁷
 - Need ~ 10¹⁰ events to get ~ 100 events assuming reconstruction efficiency ~ 10%
- Dataset readout is up to ~ 5 kHz
 - Too large to reconstruct promptly → "park" dataset
- Data analyses of this dataset are ongoing

B-physics in Run 3

- Plan to produce a similar B-physics dataset in Run 3
 - We have learned a lot from Run 2 parked dataset
 - Different LHC conditions/schedule in Run 3 change in strategy to account for this
 - Run 3 dataset will likely not follow the same strategy as Run 2
 - E.g we can increase our acceptance for $B \rightarrow K^{(*)}e^+e^-$ by triggering on electrons directly

Leptoquark models

- The various B-physics anomalies can be explain by leptoquarks
- Various types of models depending on spin / quantum numbers:
 - Scalar leptoquarks (LQ_S)
 - Vector leptoquarks (LQ_V)
- Combination of 2 LQ_S required to explain both b→clv and b→sll
- But a single LQ_V can explain both (U₁)

	Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$\fbox{$R_{K^{(*)}} \& R_{D^{(*)}}$}$
1	S_3 ($\bar{3}, 3, 1/3$)	✓	×	×
-Qs	S_1 (3 , 1 , 1/3)	×	✓	×
	R_2 (3 , 2 , 7/6)	×	\checkmark	×
LQv	U_1 (3 , 1 , 2/3)	✓	✓	✓
	U_3 (3 , 3 , 2/3)	\checkmark	×	×

[2103.12504]

24/11/21

• In next slides we will look at LQ_V as an example

Leptoquark signatures: resonant

- Largest LQ_V production cross sections for pair production
- Several combination of LQ_V decays possible
- In a recent analysis by CMS we consider the LQ_V LQ_V → bτ + tv [2012.04178]

24/11/21

- Signature:
 - b-tagged jet
 - hadronic τ
 - hadronic t (resolved or merged)
 - Missing p_⊺

d.winterbottom@imperial.ac.uk

Leptoquark signatures: t-channel

- Ideal scenario: LQ_V not far above current the bound (~ 2 TeV)
- But mass could be beyond LHC reach
- In this scenario we can still obtain a bound from high-p_T if we consider t-channel
- Starting to become sensitive to B-physics best fit regions with Run 2 data
- Will get even better with Run 3
 - Current expectation based on reinterpretation:
 - A dedicated search should do even better

Summary

- Presented a few examples of prospects for CMS experiment in Run 3
- Benefits from increased luminosity, dedicated trigger strategies, and new ideas
- Many other interesting analyses to be explored in Run 3 and beyond
- Stay tuned for more CMS results in future!

Thanks for your attention!

Backup

New trigger ideas at CMS

- Can reduce trigger rates by exploiting more features of the signal processes
- E.g VBF H→invisible trigger used in 2018
 - Exploit kinematics of jets at L1 and HLT to reduce MET thresholds

Dark photon comparison to other results

LQvt-channel mass distribution

Interference with Drell-Yan

Alternative benchmark model for LQ_V

• Benchmark model which includes right-handed couplings

Scalar LQ_S examples

 $S_1 + S_3$

[1803.10972]

Muon g-2

- Tension between muon g-2 SM prediction and measurements ~ 4.2σ
- Various models explaining this deviation
- Several explanations involve additional pseudoscalars, A
- Natural candidates are two-Higgsdoublet models (2HDM)
 - 5 Higgs bosons: h, H, A, H[±]
- Several searches by CMS for 2HDMs but in next slide I will discuss a signature currently not directly targeted

Lepton specific 2HDM

- Lepton-specific 2HDM
 - $tan\beta = v_2/v_1$ (v_i= vacuum expectation value)
 - For large tanβ coupling to leptons are enhances, while couplings to quarks are suppressed
- Usual production modes are suppressed but can pair produce
 - e.g pp \rightarrow Z* \rightarrow HA
- Final states with τ leptons
 - $HA \rightarrow 4\tau$
 - $HA \rightarrow ZAA \rightarrow 2I + 4\tau$
- Signal cross sections can be large compared to background
 - e.g $\sigma(pp \rightarrow HA \rightarrow 4\tau) = 15 260$ fb, $\sigma(pp \rightarrow ZZ \rightarrow 4\tau) = 17$ fb
- These signatures are currently unexplored at the LHC
 → can be probed with Run 2 + Run 3 data

[2104.10175]

- Minimal 2HDM models require large tan
- Non-minimal models can relax constraints by introducing additional particle content e.g vector-like leptons, right-handed neutrinos

