Detecting parity violation from axion inflation with third generation detectors

Charles Badger Mairi Sakellariadou

Parity Violation in the SGWB

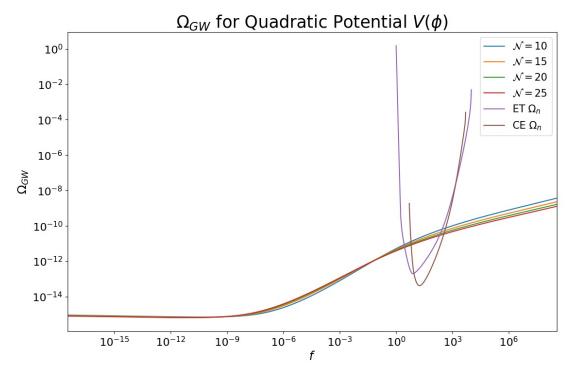
- A stochastic gravitational wave background (SGWB) created from the overlap of gravitational wave (GW) sources.
- Some sources are expected to have uneven circular polarisations, called a Parity Violation (PV). Can be quantified with polarisation parameter $|\Pi| \le 1$, where $\Pi = 0$ is an unpolarised spectrum and $\Pi > 0$ is right polarised.
- Such parity violating sources are expected to come from cosmologically sourced GWs namely those coming from Axion Inflation.
- We anticipate to detect such GWs with the upcoming 3rd generation (3g) detectors, Einstein Telescope (ET) and Cosmic Explorer (CE).

How well can we detect PV in the SGWB using 3g detectors?

Axion Inflation

- A pseudoscalar inflaton field ϕ coupled to U(1) gauge fields can generate potentially detectable GWs.
- Can be characterized primarily with $\xi(N_{CMB}) = \xi_{CMB} \equiv \alpha |\dot{\phi}|/2\Lambda H$, total e-folds N_{CMB} , and a choice scalar potential $V(\phi)$.
- However, we are constrained by an upper bound on scalar perturbation $\Delta_s^2(f)$ from the non-observation of primordial black holes. We can evade this by considering more than one gauge field coupling $(\mathcal{N}>1)$.
- GW energy density $\Omega_{GW}(f)$ spectra for quadratic potential $V(\phi)\sim\phi^2$, $N_{CMB}=60$, $\xi_{CMB}=2.5$ for $\mathcal{N}>1$ gauge fields can be seen on right.
- These GWs are expected to be almost entirely right-handed over 3g network frequency range (5 Hz $\leq f \leq$ 5000 Hz), giving approximately constant $\Pi(f) \simeq 1$.

$$\mathcal{L} = -rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - rac{1}{4}F^{a}_{\mu
u}F^{\mu
u}_{a} - V(\phi) - rac{lpha^{a}}{4arLambda}\phi F^{a}_{\mu
u}F^{ ilde{\mu}
u}_{a}$$

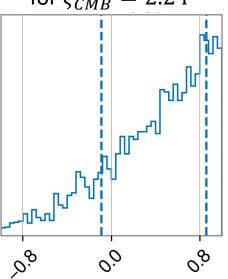


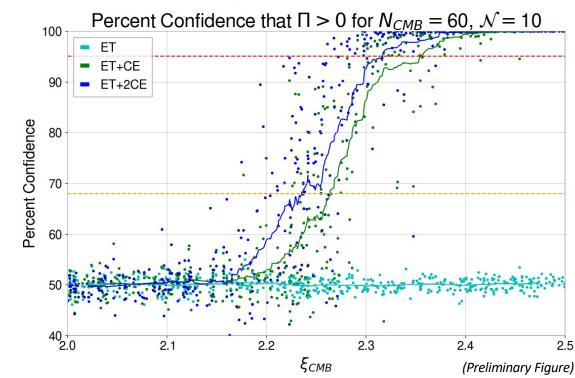
(Preliminary Figure)

Constraining PV in 3g detectors

- Assuming a quadratic model, parameter estimations are conducted on injected GW signals to understand how well we can detect PV.
- Different 3g detector networks were explored we used ET alone, ET + CE, and ET + 2CE.
- Resulting estimations of Π can show a preference for positive values so we base our results on percent of Π posterior distribution is greater than 0.
- Clear that additional detectors in network and increasing magnitude of ξ_{CMB} improve our ability to detect a parity violation

for
$$\xi_{CMB} = 2.24$$





Conclusions

- Assuming an axion inflation quadratic scalar potential, we were able to find models that stay under $\Delta_s^2(f)$ constraint that may be detectable in upcoming 3g networks.
- 3g detectors are promising in detecting GWs sourced from such quadratic models.
- Our ability to detect a parity violating GW strongly depends on the 3g network of choice and parameter ξ_{CMB} . A multi-detector network is critical in detecting a parity violation in the SGWB.
- Our model assumed $N_{CMB}=60$. Smaller assumed values of N_{CMB} would yield stronger GW signals, so our results are conservative in understanding PV detection outlook.

Thank you! Questions?

Spare slides – Methods

• To parameter estimate, use a hybrid frequentist-Bayesian approach using Gaussian log-likelihood:

$$\log p(\hat{C}(f)|\boldsymbol{ heta}) \propto \sum_{d_1d_2} \sum_{f} rac{\left[\hat{C}_{d_1d_2}(f) - \Omega_{\mathrm{GW}}'(f, oldsymbol{ heta})
ight]^2}{\sigma_{d_1d_2}^2(f)}$$

where

$$\Omega'_{GW}(f) = \Omega_{GW}(f) \left[1 + \Pi(f) \frac{\gamma_V^{d_1 d_2}(f)}{\gamma_I^{d_1 d_2}(f)} \right]$$

$$\gamma_I^{d_1 d_2}(f) = \frac{5}{8\pi} \int d\hat{\Omega} (F_{d_1}^+ F_{d_2}^{+*} + F_{d_1}^{\times} F_{d_2}^{\times *}) e^{2\pi i f \hat{\Omega} \cdot \Delta \vec{x}},$$
$$\gamma_V^{d_1 d_2}(f) = -\frac{5}{8\pi} \int d\hat{\Omega} (F_{d_1}^+ F_{d_2}^{\times *} - F_{d_1}^{\times} F_{d_2}^{+*}) e^{2\pi i f \hat{\Omega} \cdot \Delta \vec{x}}$$

for detectors d_1 , d_2 and model parameters $\boldsymbol{\theta}$.

Spare slides – Axion Inflation Spectra

• From initial conditions ξ_{CMB} , N_{CMB} , can numerically calculate evolution of ϕ and ξ over frequency f using

$$-\phi_{,N} + M_{\rm Pl}^2 \frac{V_{,\phi}}{V} = \mathcal{N} \times \frac{2.4}{9M_{\rm Pl}^2} \times 10^{-4} \left(\frac{\alpha}{\Lambda}\right) \frac{V}{\xi^4} e^{2\pi\xi}$$

With these two sets of evolutions, can then compute $\Omega_{GW}(f)$ and $\Delta_S^2(f)$ spectra:

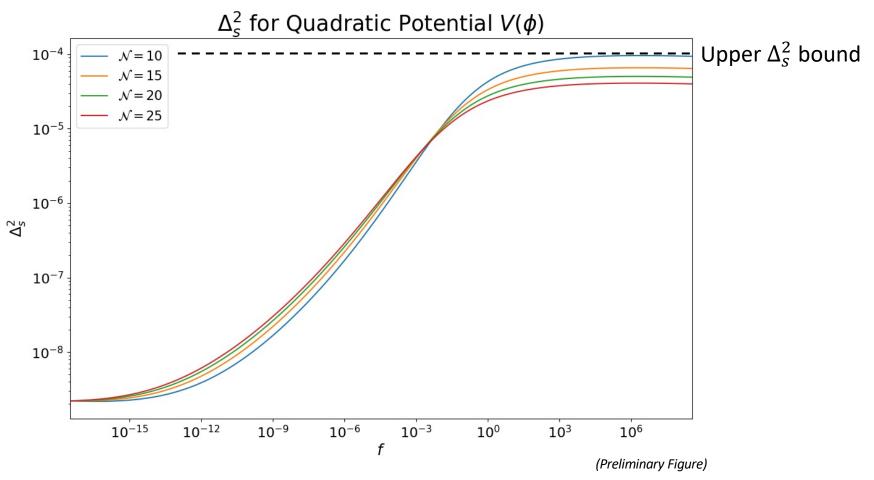
$$\Omega_{\rm GW} \simeq \frac{1}{12} \Omega_{R,0} \left(\frac{V}{3\pi^2 M_{\rm Pl}^4} \right) \left(1 + 4.3 \times 10^{-7} \mathcal{N} \frac{V}{3M_{\rm Pl}^4 \xi^6} e^{4\pi\xi} \right)$$

$$\Delta_s^2(k) = \Delta_s^2(k)_{\rm vac} + \Delta_s^2(k)_{\rm gauge} = \left(\frac{H^2}{2\pi|\dot{\phi}|}\right)^2 + \left(\frac{\alpha\langle\vec{E}\vec{B}\rangle/\sqrt{\mathcal{N}}}{3\Lambda\beta H\dot{\phi}}\right)^2 \text{ where } \beta \equiv 1 - 2\pi\xi\frac{\alpha\langle\vec{E}\vec{B}\rangle}{\Lambda 3H\dot{\phi}} \text{ and } -\langle\vec{E}\vec{B}\rangle \simeq \mathcal{N} \cdot 2.4 \cdot 10^{-4}\frac{H^4}{\xi^4}e^{2\pi\xi}$$

and $\Omega_{R,0}=8.6\times 10^{-5}$ and M_{Pl} is the Planck mass (we set this to unity). For quadratic potential $V(\phi)\sim\phi^2$, we can calculate coupling constant $\frac{\alpha}{\Lambda}=2\frac{\xi_{CMB}}{M_{Pl}}\sqrt{N_{CMB}}$. In addition, the parity violation parameter for the quadratic potential $V(\phi)=\lambda\phi^2$ can be written as:

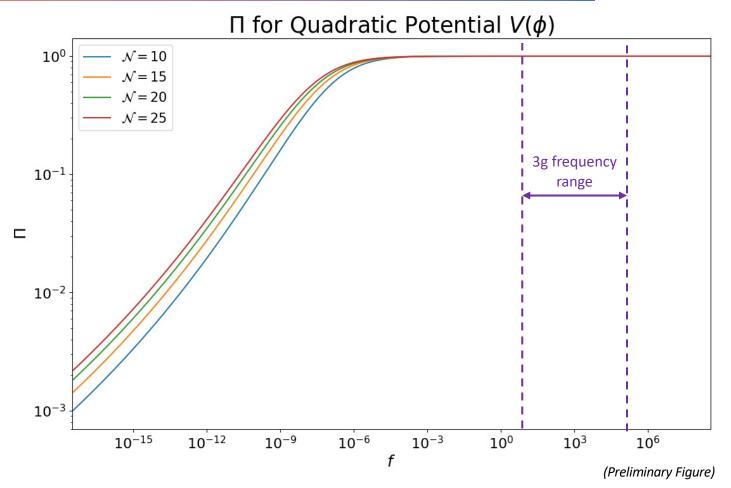
$$\Pi \simeq \frac{4.3 \times 10^{-7} \frac{\lambda \phi^2}{3M_{\text{Pl}}^4} \frac{e^{4\pi\xi}}{\xi^6}}{1 + 4.3 \times 10^{-7} \frac{\lambda \phi^2}{3M_{\text{Pl}}^4} \frac{e^{4\pi\xi}}{\xi^6}}$$

Spare slides – Axion Inflation Spectra



 $\Delta_s^2(f)$ for quadratic potential $V(\phi)\sim\phi^2$, $N_{CMB}=60$, $\xi_{CMB}=2.5$ for $\mathcal{N}>1$ gauge fields. Note all spectra remain under upper bound

Spare slides – Parity Violation



 $\Pi(f)$ for quadratic potential $V(\phi) \sim \phi^2$, $N_{CMB} = 60$, $\xi_{CMB} = 2.5$ for $\mathcal{N} > 1$ gauge fields. Note all spectra are approximately equal to 1 in the 3g detector frequency range.