

Impact of improved detector calibration on high energy electron reconstruction and identification in CMS

Charlotte Cooke

University of Bristol & Rutherford Appleton Laboratory

Motivation

- Z' search looking for new high mass resonances decaying to two leptons
 - CMS requires electron candidates to pass a set of dedicated high energy electron criteria (HEEP ID)
- In Run 2, CMS was able to place a mass limit on spin-1 Z'_{SSM} of 4.50 TeV (95% CL) using both the dielectron and dimuon channels.
- Will collect more data in Run 3, also expecting an increase in energy from 13.0 to 13.6 TeV
 - Run 2 increased the Z'_{SSM} mass limit by 1.1 TeV, so expect to be able to explore Z' higher mass ranges in Run 3

The upper limits (95% CL) on the product of production cross section and branching fraction for a spin-1 resonance with a width equal to 0.6% of the resonance mass. From arXiv:1803.06292

Ultra Legacy Data

- Recalibrated ECAL using Run 2 data
- Well known resonances of π_0 and Z were used calibrate crystals on a per year basis
- Evaluating impact of UL calibration on Z' analysis:
 - UL provides better electron energy resolution, especially in forward region
 - UL may also improve HEEP ID efficiency and data/MC agreement

Tight BDT-based electron identification efficiency (upper panel) and data-to simulation correction factors (lower panel) From arXiv:2012.06888

Dielectron mass resolution from Z -> ee events From <u>arXiv:2012.06888</u>

HEEP ID

Variable	Barrel	Endcap
Ε _T	> 35 GeV	> 35 GeV
η range	η _{sc} < 1.4442	1.566< η _{sc} < 2.5
isEcalDriven	=1	=1
$ \Delta\eta_{in}^{seed} $	< 0.004	< 0.006
Δφ _{in}	< 0.06	< 0.06
H/E	< 1/E + 0.05	< 5/E + 0.05
full 5x5 σ _{iηiη}	n/a	<0.03
full 5x5 E ^{2x5} /E ^{5x5}	> 0.94 OR E ^{1x5} /E ^{5x5} >	n/a
	0.83	
EM + Had Depth 1	<2+0.03*Et	< 2.5 +0.28*rho for
Isolation	+0.28*rho	Et<50 else <
		2.5+0.03*(Et-50)
		+0.28*rho
Track Isol: Trk Pt	<5	<5
Inner Layer Lost Hits	<=1	<=1
dxy	<0.02	<0.05

- Subdetector based isolation rather than PF isolation
 - Uses information from ECAL, HCAL and tracker
- Simple, robust ID
- Requires that the lateral spread of energy deposits in the ECAL is consistent with that of a single electron and that the track is matched to the ECAL deposit

HEEP ID using Ultra Legacy Data (Barrel)

- All three plots are for the barrel region, |eta| < 1.4442
- Run D was a well-behaved run and shows similar improved efficiency compared to full 2017 EOY plots
- Run F suffered from some detector issues which caused the decreased HEEP ID efficiency

Plans for Run 3

- Expected to start around May 2022 and last for at least three years
- First task will be to qualify HEEP ID and single electron trigger
 - Will be running with upgraded Pixel and HCAL detectors
- Expect Run 3 to have similar calibration quality to ultra legacy due to calibration improvements, including a move from twice weekly laser calibration to once a spill
- Also expect these improvements to be pushed to HLT
 - Better resolution, more stable rates and energy scales
 - Therefore, performance closer to offline reconstruction

Backup

HEEP ID using Ultra Legacy Data (Endcap)

High Level Trigger

- High level trigger (HLT) is a software implemented trigger that reduces the rate in CMS by O(1000)
- HEEP ID efficiency is measured using tag and probe
- Require the tag to be in the barrel, pass the HEEP ID and a 32 GeV electron trigger
- As electron ET has changed during ultra legacy the HLT turn on curve has changed from EOY

HLT_Ele35_WPTight effciency rereco (runBCDEF)

Trigger turn on curve for HLTEle35 using 2017 EOY data

EOY trigger turn on curve for HLTEle32 using 2017 Run D ultra legacy data

Resolution for more Frequent Transparency Corrections

- Resolution is significantly better (narrower width) and energy scale closer to UL (mean closer to 0)
 - Significant improvements seen in both EB and EE

Preliminary results of this study were presented at the	e <u>TSG/STEAM meeting</u> by Yash
---	------------------------------------

ECAL DPG Meeting, 13/10/2021

From: <u>ECAL DPG</u> meeting

More Details on UL

Step 1

Time-dependent corrections to make response flat in time [₽] Laser PN drift corrections (EB) [₽] α studies (EE)

New for Run 2

Step 2

Step 3

Absolute η -scale derivation (equalization wrt MC using Z \rightarrow ee events)

From: monitoring and calibration report

HEEP ID 2017D Ultra Legacy (Barrel)

HEEP ID 2017 EOY (Barrel)

From CMS AN-2018/143

Run 2 Z' Search, Separating ee and uu

From <u>arXiv:1803.06292</u>

2017 Datasets

EOY:

Datasets

/SingleElectron/Run2017B-17Nov2017-v1/MINIAOD /SingleElectron/Run2017C-17Nov2017-v1/MINIAOD /SingleElectron/Run2017D-17Nov2017-v1/MINIAOD /SingleElectron/Run2017E-17Nov2017-v1/MINIAOD /SingleElectron/Run2017F-17Nov2017-v1/MINIAOD Sum

UL:

/SingleElectron/Run2017B-09Aug2019_UL2017-v1/MINIAOD /SingleElectron/Run2017C-09Aug2019_UL2017-v1/MINIAOD /SingleElectron/Run2017D-09Aug2019_UL2017-v1/MINIAOD /SingleElectron/Run2017E-09Aug2019_UL2017-v1/MINIAOD /SingleElectron/Run2017F-09Aug2019_UL2017_rsb-v2/MINIAOD integrated luminosity (fb⁻¹) 4.802 9.629 4.235 9.268 13.433

41.368

2017 UL Monte Carlo Datasets

Correct Summer20 2017 UL Sample	Cross Section (pb)
/DYJetsToLL M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIISummer20UL17MiniAODv2-Pilot_106X_mc2017_realistic_v9-v1/MINIAODSIM	6416
/DYJetsToLL M-50 HT-70to100 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X mc2017 realistic v9-v1/MINIAODSIM	139.3
DYJetsToLL_M-50_HT-100to200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	140.2
/DYJetsToLL_M-50_HT-200to400_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	38.39
/DYJetsToLL M-50 HT-400to600 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X mc2017 realistic v9-v1/MINIAODSIM	5.212
DYJetsToLL_M-50_HT-600to800_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	1.269
/DYJetsToLL M-50 HT-800to1200 TuneCP5 PSweights 13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X mc2017 realistic v9-v1/MINIAODSIM	0.5696
DYJetsToLL_M-50_HT-1200to2500_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	0.1331
/DYJetsToLL M-50_HT-2500toInf_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	0.002983
/WJetsToLNu TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X mc2017 realistic v9-v1/MINIAODSIM	53550
TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	687.1
TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	687.1
/ST tW top 5f NoFullyHadronicDecays TuneCP5 13TeV-powheg-pythia8/RunIISummer20UL17MiniAODv2-106X mc2017 realistic v9-v1/MINIAODSIM	32.45
/ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	32.51
/GJets_DR-0p4_HT-100To200_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	5036
/GJets_DR-0p4_HT-200To400_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	1128
/GJets_DR-0p4_HT-400To600_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	126.4
/GJets_DR-0p4_HT-600ToInf_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	41.24
/WW_TuneCP5_13TeV-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	75.90
/WZ TuneCP5 13TeV-pythia8/RunIISummer20UL17MiniAODv2-106X mc2017 realistic v9-v1/MINIAODSIM	27.56
/ZZ_TuneCP5_13TeV-pythia8/RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9-v1/MINIAODSIM	12.14

N-1 Tests – H/E Example

From CMS AN-2018/143