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Votivation

Some important themes in 20th century
theoretical physics:

* Entropy counts microscopic degrees of freedom!
‘Boltzmann]

* Black holes have entropy!
Bekenstein and Hawking]

* |n certain cases can be matched microscopically!
Strominger and Vafa: SUSY + CFT]




Votivation

Area of the horizon,
a special sphere
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Number of ways a (highly supersymmetric)
string can carry momentum P

[Hardy-Ramanujan formula for partitions]



Votivation

Quantum entanglement promises to be an organizing
orinciple for 21st century physics.

Entanglement is an obstruction to factorizing quantum
states. A simple example is: [¢) = | D 1) + | L) 4)

In many-body physics often have a very complicated
wavefunction of many spins etc. How to characterize”

The entanglement in the wave function between
geometrically separated degrees of freedom has
proven to be a very useful piece of information.



Viotivation
|[Bombelli et al.,

Local interactions < ‘area law’ entanglement Srednicki, ...

With local interactions, most
entanglement in the wavefunction
IS short range. Easy to simulate!

[Kitaev-PreskKill,

Gauge interactions «‘topological’ entanglement Levin-Wen, ...]
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Votivation

In ‘holography’ dynamical spacetime emerges from
the quantum state of a non-Abelian gauge theory.

Gravity is a collective excitation of this state, much
as sound waves are collective excitations of solids.

How to characterize this guantum state?

Recent-ish development:

—mergent spacetime requires a lot of entanglement
Ryu-Takayangi, Lewkowyck-Maldacena, ...]




Votivation

If space is divided by a minimal surface:

St = - matter contribution
EE Ten

Major generalization of
Bekenstein-Hawking entropy.

What is the microscopic (bulk) origin of
this entanglement?

How Is spacetime actually made”
Needed: Strominger-Vafa for the 21st century.




| arge N matrices

* [he simplest version of the non-Abelian gauge
theories that appear in holography are large N
matrix guantum mechanics.

* Would like to understand the entanglement of
matrix wavefunctions. Will look at simple low
dimensional models that do not give rise to gravity
but do have an emergent space.

* Very simplest example: understood since 90's how
a single large N matrix gives rise to an emergent
one dimensional space.




Baby model: single matrix

* Singlet sector of £ ~ tr [MQ — V(M)} described by

eigenvalues {A} of M.

Density
fluctuations

* Eigenvalues are non-

interacting fermions. Fermi \
sea builds 1d space. Fermi sea

 Entanglement of interval [A1,A2] using conventional
many-body methods. Matches emergent 1+1
tachyon’ field [Das 95, Hartnoll-Mazenc 15]:
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Beyond one matrix

* Eigenvalues are not enough.
‘Off-diagonal’” modes stretching
between coincident branes |
essential for ‘grown up’ holography |~
[ct Maldacenal].

* Noted by [Das-Kaushal-Mandal-Trivedi 20] that a
class of proto-geometric partitions are obtained by
diagonalizing one of the matrices (e.g. X1).

* Eigenvalues of X1 dealt with as in the single matrix
case. Induces a block decomposition of the remaining
matrices.



Plan

e Solvable matrix guantum mechanics with two
matrices.

 Compute the entanglement of a geometric partition.
reatment of off-diagonal modes inspired by

entanglement in gauge theories. This analogy was
emphasized by [Hampapura-Harper-Lawrence 20]

* Obtain emergent 2d ‘area law’ and topological-like
subleading correction.

Work with Alex Frenkel: 2111.05967



Quantum Hall Matrix Model

Quantum Hall phases: incompressible droplet
supporting emergent Chern-Simons dynamics.

Minimal microscopic realization:
discretize the area- preservmg
diffeos of the droplet into U(N

[Susskind 01]

|IR-regulated version by [Polychronakos 01]:
H =tr (X2 + Y2) [Xaba ch] — i(sad(sbc

(Gauss law)  —i[X, Y]+ 0¥t =k



Quantum Hall Matrix Model

* Ground state [Hellerman-Van Raamsdonk 01]:
k
g) = e v wd (w12t - (w2, ] o)

Here Z = X + 1Y.

o State simple in terms of variables {x,U,W} where

X=UzU', U =UV
(det U)* | [ (za — o) 6—%&%1‘[{175 P21k
a<b C

[Karabali-Sakita 01]



Quantum Hall Matrix Model

* Wavetunction factorizes — allows computation of
two contributions to the entanglement due to a
vertical (fixed X) partition of the droplet:

C

.

o

) A ‘collective field’ contribution from tluctuations
- the x eigenvalues. Physically: correlations due to
niral boundary mode.

(2) A ‘gauge theoretic’ contribution from an
associated block partition of the U. Physically:
nonlocal correlations due to the Gauss law.



Quantum Hall Matrix Model

entanglement
cut

off-diagonal 11"
gauge modes yf{FHEEEEE]
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Collective field entropy

e Similar to computations of the entanglement in
single-matrix models. But we used a new method.

* In terms of the collective field n(z) = d(z — za)

the wavefunction [n] = e

k+1 1
Sn| = % dridron(xi)n(xe)log |z — xa| — §/da;n(:v)a:2

s strongly peaked on the Wigner semi-circle:

no(zr) = —/R2—22, R?>=2N(k+1)



Collective field entropy

e Fluctuations about the semi-circle n(z) = ny(z) + dn(x)
are described by the Gaussian wavefunction:

k41

plon] = e 2 J dz1dz2dn(z1)dn(x2) log |1 —z2|

* Using steps from [Jackiw-Strominger 81] one can
express this wave function in terms of a chiral
boson ¢:

plon] = /nge—fd7d9[i87¢89¢+(39¢)2]—ifdeqb(e)én(e)



Collective field entropy

* Can show that the ‘target space’ entanglement of

the elgenvalues is equal to the usual entanglement
of the chiral boson.

* This is fixed by conformal invariance.

* Finite N cuts off the mode expansion of the
boundary chiral field so that:

1 Matches Chern-Simons
“bdy = Elog(N?) T result of [Belin-lgbal-Krutoff]

Length of cut with radius
normalized to one.



|_attice gauge theory

* The gauge-invariant variables (Wilson loops) of a
gauge theory are not local. Defining a geometric
partition therefore requires some work.




|_attice gauge theory

* [Donnelly 12]: links crossing the boundary are
assigned to both regions. In simple situations the
two copies of the holonomy on the link are required
by gauge invariance to be maximally entangled.

X (Z uz>uz>> = As ~ L log(dim R)




Partitioning the matrices

* In the full theory, the U degrees of freedom are
‘oure gauge’ and do (almost) nothing.

* We will see however, that when the system Is
partitioned some of the U’s acquire dynamics. We
follow the method of [Donnelly-Freidel 16] here.

* For example, suppose in Chern-Simons theory we
split the Lagrangian in spatial regions:

d d
I = / d%eabAaiAb: / d’xe® A, — Ay + / d’xe® A, — A,
Vv dt M dt Mo dt



Partitioning the matrices

* Then If we restrict to a given subregion, pure gauge
modes that don't vanish on the common boundary
acquire dynamics:

SA, = 0,6 — 6L:/ 8, 0;
O M-

A similar things happens in the matrix case. Write
the kinetic term in the Lagrangian as a sum (the
trace is like the integral previously)

J

1 1
Lyin = 1 tr <(—)ZT(_Z T (1 — @)ZT(_Z> — LL kin LRkin

dt dt



Partitioning the matrices

* Here © projects to the space of lowest M
eigenvalues of X. One finds:

d d These are the
Lixin =yr—21 + = (YT YRL)

dt RL gt ~__ off-diagonal

Z

2

d z
LRxin = yr— R + 5 (Yng YLR) — Mmodes that live
INn both regions

e The Gauss law fixes

Y, . = Yry = UrYSLU! Y = yabap — i

(It is important only to consider U = U Ur that respect the
block partition)



Partitioning the matrices

To make a long-ish story short (details on arXiv!):

* On each side of the cut UL and Ur become families of
harmonic oscillators, constrained to fixed energy.

e The energy is set by the singular values of Y3} .

 (Gauge invariance forces these oscillators to be
maximally entangled across the cut.

e The oscillators are ‘identical’. This is inherited from the
fact that U must not include permutations that re-order
the eigenvalues.



Gauge theoretic entropy

 [he gauge-theoretic e
computed with Hardy-
the dimension of the e

(NE)'/2log(NL)

ntanglement entropy can be
Ramanujan formula to count

ntangled oscillator space

'same counting problem arises in CS theory, chiral
modes on the entanglement cut!|. Find:

S —

L

V6

 Area law, regulated by finite N — emergent geometry!

e Logarithmic violation is related to cut intersecting the
boundary of the droplet.



Radial partition

* We also looked at a radial partition,
using a similar framework.

Find:

(Nk)1/2
V6

5 = Co — 21og[(Nk)'2C] + - --

 No logarithmic violation of area law here, related
to cut not intersecting the boundary.

* Jrust subleading term in this case. Reminiscent of
topological entanglement terms.



Conclusions

* What partition of matrix degrees of freedom
captures the partition of an emergent geometry?

e [he
loca
eme

matrix Hamiltonian does not have spatial
ity. But the wavefunction should contain an

rgent locality.

* \We have defined a partition in a very simple two-
matrix model and computed the corresponding
entropy (subtleties: role of permutations and ‘partial
gauge fixing’).



Conclusions

 We found two contributions that match the
expected emergent locality:

1. a logarithmic entanglement from eigenvalues
— chiral boundary mode

2. an area-law gauge-theoretic entanglement
— bulk Chern-Simons field

 Now have the understanding to move on to a more
complicated model with compressible bulk
dynamics.



