Review of muon g-2 in the Standard Model

Aida X. El-Khadra **L**University of Illinois

Annual Theory Christmas Meeting 14-16 December 2021 Durham University

The magnetic moment of charged leptons (e, μ, τ):

Dirac (leading order): g = 2

Anomalous magnetic moment:

Anomalous magnetic moment

 $\vec{\mu} = g \frac{e}{2m} \vec{S}$

e)
$$\bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

Note: $F_1(0) = 1$ and $g = 2 + 2F_2(0)$

$$a \equiv \frac{g-2}{2} = F_2(0)$$

Durham, 14-16 Dec 2021

Muon g-2: history of experiment vs theory

Muon g-2: experiment

- [B. Abi et al, <u>Phys. Rev. Lett. 124, 141801 (2021)</u>]
- \bigcirc Analysis of runs 2 and 3 is now underway.

The Fermilab experiment released the measurement result from their run 1 data on 7 April 2021.

Mon 07/06	Tue 08/06	Wed 09/06	Thu 10/06	Fri 11/06	All days		
		📑 Pri	nt PDF	Full scre	en D	etailed view	Filter

Durham, 14-16 Dec 2021

Muon g-2: experiment

T. Mibe for E34 @ INT g-2 workshop

• 2018:

Stage II approval by IPNS and IMSS directors.

- March 2019: Endorsed by KEK-SAC as a near-term priority
- 2020:

Funding request

• 2024+:

data taking runs

Muon g-2 Theory Initiative

- Maximize the impact of the Fermilab and J-PARC experiments quantify and reduce the theoretical uncertainties on the hadronic corrections
- summarize the theory status and assess reliability of uncertainty estimates
- Image organize workshops to bring the different communities together: First plenary workshop @ Fermilab: 3-6 June 2017 HVP workshop @ KEK: 12-14 February 2018 HLbL workshop @ U Connecticut: 12-14 March 2018 Second plenary workshop @ HIM (Mainz): 18-22 June 2018 Third plenary workshop @ INT (Seattle): 9-13 September 2019 Lattice HVP at high precision workshop (virtual): 16-20 November 2020 Fourth plenary workshop @ KEK (virtual): 28 June - 02 July 2021 Fifth plenary workshop @ Higgs Centre (Edinburgh): 5-9 September 2022
- [T. Aoyama et al, <u>arXiv:2006.04822</u>, Phys. Repts. 887 (2020) 1-166.]
- expect to develop a concrete plan (outline, authors) @ Higgs Centre workshop

Durham, 14-16 Dec 2021

- Gilberto Colangelo (Bern)
- Michel Davier (Orsay) co-chair
- Searchight Aida El-Khadra (UIUC & Fermilab) chair
- Martin Hoferichter (Bern)
- See Christoph Lehner (Regensburg University & BNL) co-chair Laurent Lellouch (Marseille)
- Solution States Lee Roberts (Boston) Fermilab Muon g-2 experiment
- Thomas Teubner (Liverpool)
- Hartmut Wittig (Mainz)

website: <u>https://muon-gm2-theory.illinois.edu</u>

Simon Eidelman

[photo by Hartmut Wittig] (1948-2021)

A. El-Khadra

Muon g-2 Theory Initiative

Steering Committee

Timeline

Muon g-2: SM contributions

$$a_{\mu}(\mathrm{EW}) + a_{\mu}(\mathrm{hadronic})$$

$$116\,584\,718.9\,(1) \times 10^{-11}$$
 0.001 ppm

$153.6(1.0) \times 10^{-11}$ 0.01 ppm

 $92(18) \times 10^{-11}$ 0.15 ppm [20%]

"Hadronic vacuum polarization

$$\Pi(q^2) = \Pi(q^2) - \Pi(0)$$
$$\Pi_{\mu\nu} = \int d^4x e^{iqx} \langle j_{\mu}(x) j_{\nu}(0) \rangle = (q_{\mu}q_{\nu} - q^2 g_{\mu\nu})\Pi(q^2)$$

Leading order HVP correction:

in terms of the hadronic e^+e^- cross section:

$$Im[$$
 \sim \sim \sim

$$a_{\mu}^{\rm HVP,LO} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \,\hat{\Pi}(q^2)$$

• Use optical theorem and dispersion relation to rewrite the integral

Hadronic vacuum polarization

$$\hat{\Pi}(q^2) = \Pi(q^2) - \Pi(0)$$
$$\Pi_{\mu\nu} = \int d^4x e^{iqx} \langle j_{\mu}(x) j_{\nu}(0) \rangle = (q_{\mu}q_{\nu} - q^2 g_{\mu\nu})\Pi(q^2)$$

Leading order HVP correction:

in terms of the hadronic e^+e^- cross section:

$$a_{\mu}^{\rm HVP,LO} = \frac{m_{\mu}^2}{12\pi^3} \int ds \frac{\hat{K}(s)}{s}$$

possible hadronic channels up to ~ 2 GeV

$$a_{\mu}^{\rm HVP,LO} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \,\hat{\Pi}(q^2)$$

• Use optical theorem and dispersion relation to rewrite the integral

Dominant contributions from low energies $\pi^+\pi^-$ channel: 73% of total

• Use direct integration method, summing up cross sections for all

Experimental Inputs to HVP

S. Serednyakov (for SND) @ HVP KEK workshop

A. El-Khadra

Durham, 14-16 Dec 2021

Z. Zhang for DHMZ @ INT g-2 Worksrop Results [A. Keshavarzi et al, arXiv:1908.00921]

A. El-Khadra

		100	
Channel	$a_{\mu}^{\text{had, LO}}[10^{-10}]$		-
$\pi^0\gamma$	$4.29 \pm 0.06 \pm 0.04 \pm 0.07$	10	
$\eta\gamma$	$0.65 \pm 0.02 \pm 0.01 \pm 0.01$	10	-
$\pi^+\pi^-$	$507.80 \pm 0.83 \pm 3.19 \pm 0.60$		
$\pi^+\pi^-\pi^0$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$	1	_
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$		-
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$		
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	0.1	- /
$\pi^{+}\pi^{-}3\pi^{0} (\eta \text{ excl.})$	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	l(s)	-
$3\pi^{+}3\pi^{-}$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	LL 0.01	_
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \text{ excl.})$	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	0.01	-
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.08 \pm 0.01 \pm 0.08 \pm 0.00$		
$\eta \pi^+ \pi^-$	$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	0.001	-
$\eta\omega$	$0.35 \pm 0.01 \pm 0.02 \pm 0.01$		-
$\eta \pi^+ \pi^- \pi^0 (\text{non-}\omega, \phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	0 0001	_
$\eta 2\pi^+ 2\pi^-$	$0.02\pm 0.01\pm 0.00\pm 0.00$	0.0001	-
$\omega\eta\pi^0$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$		
$\omega \pi^0 \ (\omega o \pi^0 \gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	1e–05	
$\omega(\pi\pi)^0 \left(\omega o \pi^0 \gamma ight)$	$0.07 \pm 0.00 \pm 0.00 \pm 0.00$		0.4
$\omega \; ({ m non-} 3\pi, \pi\gamma, \eta\gamma)$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$		
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$		
$K_S K_L$	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$		
$\phi \; ({ m non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$	Ton	sions k
$K\overline{K}\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$		510115 K
$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$		
$K\overline{K}3\pi$ (estimate)	$-0.02 \pm 0.01 \pm 0.01 \pm 0.00$	[M. /	Ablikim et
$\eta\phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$		
$\eta K \overline{K} \pmod{\phi}$	$0.01 \pm 0.01 \pm 0.01 \pm 0.00$		F
$\omega K \overline{K} (\omega \to \pi^0 \gamma)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$		
$\omega 3\pi \ (\omega \to \pi^0 \gamma)$	$0.06 \pm 0.01 \pm 0.01 \pm 0.01$		
$7\pi (3\pi^+ 3\pi^- \pi^0 + \text{estimate})$	$0.02 \pm 0.00 \pm 0.01 \pm 0.00$		
$\frac{1}{J/\psi}$ (BW integral)	6.28 ± 0.07		
$\psi(2S)$ (BW integral)	1.57 ± 0.03		FO
$\frac{7}{R} \text{ data} [3.7 - 5.0] \text{ GeV}$	$\frac{1}{7.29 \pm 0.05 \pm 0.30 \pm 0.00}$		
$\frac{1}{R_{\text{OCD}}} \begin{bmatrix} 1.8 - 3.7 \text{ GeV} \end{bmatrix}_{\text{output}}$	$\frac{33.45 \pm 0.28 \pm 0.65_{\text{dual}}}{33.45 \pm 0.28 \pm 0.65_{\text{dual}}}$		
R_{OCD} [5.0 – 9.3 GeV] _{uds}	6.86 ± 0.04		·
R_{OCD} [9.3 – 12.0 GeV] _{udsch}	1.21 ± 0.01		
$R_{\rm OCD} [12.0 - 40.0 \text{ GeV}]_{udsch}$	1.64 ± 0.00		•
$R_{\text{OCD}} > 40.0 \text{ GeV}_{adech}$	0.16 ± 0.00	260	365 2'
$R_{\text{OCD}} [> 40.0 \text{ GeV}]_t$	0.00 ± 0.00	006	909 9
Sum	$693.9 \pm 1.0 \pm 3.4 \pm 1.6 \pm 0.1_{a/2} \pm 0.7_{OCD}$		
	ψ $\langle \psi \rangle D$		

HVP: data-driven

petween BaBar and KLOE data sets:

al (BES III), arXiv:2009.05011]

- Cross checks using analyticity and unitarity relating pion form factor to $\pi\pi$ scattering
- Combinations of data sets affected by tensions

conservative merging procedure

Conservative merging procedure to obtain a realistic assessment of the underlying uncertainties:

[B. Malaescu @ INT g-2 workshop]

Detailed comparisons by-channel and energy range between direct integration results:

				-					
	DHMZ19	KNT19	Difference	Energy range	ACD18	CHS18	DHMZ19	DHMZ19'	KN
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62	$\leq 0.6 \text{GeV}$		110.1(9)	110.4(4)(5)	110.3(4)	10
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42	$\leq 0.7 \text{GeV}$		214.8(1.7)	214.7(0.8)(1.1)	214.8(8)	21
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31	$\leq 0.8 \text{GeV}$		413.2(2.3)	414.4(1.5)(2.3)	414.2(1.5)	41
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12	$\leq 0.9 \text{GeV}$		479.8(2.6)	481.9(1.8)(2.9)	481.4(1.8)	47
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08	$\leq 1.0 \text{GeV}$		495.0(2.6)	497.4(1.8)(3.1)	496.8(1.9)	49
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22	[0.6, 0.7] GeV		104.7(7)	104.2(5)(5)	104.5(5)	10
$\pi^{0}\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17	[0.7, 0.8] GeV		198.3(9)	199.8(0.9)(1.2)	199.3(9)	19
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46	[0.8, 0.9] GeV		66.6(4)	67.5(4)(6)	67.2(4)	66
[1.8, 3.7] GeV (without $c\overline{c}$)	33.45(71)	34.45(56)	-1.00	[0.9, 1.0] GeV		15.3(1)	15.5(1)(2)	15.5(1)	15
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08	$\leq 0.63 \text{GeV}$	132.9(8)	132.8(1.1)	132.9(5)(6)	132.9(5)	13
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20	[0.6, 0.9] GeV		369.6(1.7)	371.5(1.5)(2.3)	371.0(1.6)	36
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2	$\left[\sqrt{0.1},\sqrt{0.95}\right]\text{GeV}$		490.7(2.6)	493.1(1.8)(3.1)	492.5(1.9)	48

 $\Rightarrow a_{\mu}^{\text{HVP,LO}} = 693.1 \, (2.8)_{\text{exp}} \, (2.8)_{\text{sys}} \, (0.7)_{\text{DV+pQCD}} \times 10^{-10} = 693.1 \, (4.0) \times 10^{-10}$

Durham, 14-16 Dec 2021

HVP. data-driven ARTICLE IN PRESS

Include constraints using unitarity & analyticity constraints for $\pi\pi$ and $\pi\pi\pi$ channels [CHS 2018, Colangelo et al, <u>arXiv:1810.00007</u>; HHKS19, Hoferichter et al, <u>arXiv:1907.01556</u>]

NT19 8.7(9) 3.1(1.2) 2.0(1.7) 8.5(1.8) 3.8(1.9) 4.4(5) 8.9(7) 5.6(3) 5.3(1) 31.2(1.0) 59.8(1.3) 39.5(1.9)

In 2020 WP:

Conservative merging procedure to obtain a realistic assessment of the underlying uncertainties:

- account for tensions between data sets
- account for differences in methodologies for compilation of experimental inputs
- include correlations between systematic errors
- cross checks from unitarity & analyticity constraints [Colangelo et al, 2018; Anantharayan et al, 2018; Davier et al, 2019; Hoferichter et al, 2019]
- Full NLO radiative corrections [Campanario et al, 2019]

HVP: data-driven

Ongoing work:

- BaBar: new analysis of large (7x) data set in $\pi\pi$ channel (1-2) years), also $\pi\pi\pi$, other channels
- SND: new results for $\pi\pi$ channel, other channels in progress
- CMD-3: ongoing analyses for $\pi\pi$ and other channels
- BESIII: new results in 2021 for $\pi\pi$ channel, continued analysis also for $\pi\pi\pi$, other channels
- Belle II: will have high-statistics data for low-energy cross sections.
- Some experiments performing blind analyses to resolve the tensions (esp. for $\pi\pi$ channel)
- Developing NNLO Monte Carlo generators (STRONG 2020 workshop next week https://agenda.infn.it/event/28089/)

Lattice QCD Introduction

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} (\not\!\!D + m_{f}) \psi_{f} + \frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

- discrete Euclidean space-time (spacing a)
- finite spatial volume (L)
- \bullet finite time extent (*T*)

adjustable parameters

- ✤ lattice spacing:
- finite volume, time:
- \diamond quark masses (m_f): tune using hadron masses extrapolations/interpolations

derivatives \rightarrow difference operators, etc...

Integrals are evaluated numerically using monte carlo methods.

$$\sim \hat{\Pi}(q^2)$$

Leading order HVP correction:

• Calculate $a_{\mu}^{\text{HVP,LO}}$ in Lattice QCD

and
$$\hat{\Pi}(Q^2) = 4\pi^2 \int_0^\infty dt \, C(t) \left[\right]$$

Obtain $a_{\mu}^{\text{HVP,LO}}$ from an integral over Euclidean time:

A. El-Khadra

$$a_{\mu}^{\mathrm{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \, \tilde{w}(t) \, C(t)$$

Lattice HVP: Introduction

[B. Lautrup, A. Peterman, E. de Rafael, Phys. Rep 1972; E. de Rafael, Phys. Let. B 1994; T. Blum, PRL 2002]

$$a_{\mu}^{\rm HVP,LO} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \,\hat{\Pi}(q^2)$$

Compute correlation function: $C(t) = \frac{1}{3} \sum \langle j_i(x,t) j_i(0,0) \rangle$ $\left[t^2 - \frac{4}{Q^2}\sin^2\left(\frac{Qt}{2}\right)\right]$

[D. Bernecker and H. Meyer, arXiv:1107.4388, EPJA 2011]

Calculate a_{μ}^{HVP} in Lattice QCD:

(gluon and sea-quark background not shown in diagrams) Note: almost always $m_u = m_d$

- either perturbatively on isospin symmetric QCD background
- or by using QCD + QED ensembles with $m_u \neq m_d$

$$a_{\mu}^{\mathrm{HVP,LO}} = \sum_{f} a_{\mu,f}^{\mathrm{HVP,LO}} + a_{\mu,\mathrm{disc}}^{\mathrm{HVP,LO}}$$

• Separate into connected for each quark flavor + disconnected contributions

$$f \qquad f' \qquad f = ud, s, c, b$$

• need to add QED and strong isospin breaking ($\sim m_u - m_d$) corrections:

Durham, 14-16 Dec 2021

- light-quark connected contribution: $a_{\mu}^{\text{HVP,LO}}(ud) \sim 90\% \text{ of total}$
- *⊆ s,c,b*-quark contributions $a_{\mu}^{\text{HVP,LO}}(s,c,b) \sim 8\%$, 2%, 0.05% of total
- Gisconnected contribution: $a_{\mu,\text{disc}}^{\text{HVP,LO}} \sim 2\% \text{ of total}$
- $\delta a_{\mu}^{\text{HVP,LO}} \sim 1\% \text{ of total}$

 $a_{\mu}^{\text{HVP,LO}} = a_{\mu}^{\text{HVP,LO}}(ud) + a_{\mu}^{\text{HVP,LO}}(s) + a_{\mu}^{\text{HVP,LO}}(c) + a_{\mu,\text{disc}}^{\text{HVP,LO}} + \delta d$

`charm

strange

 a_{μ}

light

 \mathbf{S}^{\dagger} d

 $a_{\mu}^{
m SM}$

HVP from: LM20 BMW20 ETM18/19 Mainz/CLS19 FHM19 PACS19 **RBC/UKQCD18 BMW17 RBC/UKQCD** data/lattice BDJ19 **J17** DHMZ19 **KNT19 WP20**

Lattice QCD + QED

hybrid: combine data & lattice

data driven

+ unitarity/analyticity constraints

-50

-60

HVP: Comparison

$$\left[a_{\mu}^{\text{QED}} + a_{\mu}^{\text{Weak}} + a_{\mu}^{\text{HLbL}}\right]$$

Durham, 14-16 Dec 2021

HVP: lattice

In 2020 WP:

- Lattice HVP average at 2.6 % total uncertainty: $a_{\mu}^{\text{HVP,LO}} = 711.6(18.4) \times 10^{10}$
- BMW 20 (published in 2021)
 first LQCD calculation with sub-percent (0.8 %) error
 but in tension with data-driven HVP (2.1σ)
- Further tensions for intermediate window:

-3.7 σ tension with data-driven evaluation -2.2 σ tension with RBC/UKQCD18

- disentangle systematics/statistics from long distance/FV and discretization effects
- Intermediate window: easy to compute in lattice QCD & with disperse approach
- Internal cross check:

Compute each window separately (in continuum, infinite volume limits,...) and combine: $a_{SD} = a_{V} + a_{V} + a_{U}$

$$a_{\mu} = a_{\mu}^{\rm SD} + a_{\mu}^{\rm W} + a_{\mu}^{\rm LD}$$

In 2020 WP:

- Lattice HVP average at 2.6% total uncertainty: G $a_{\mu}^{\text{HVP,LO}} = 711.6(18.4) \times 10^{10}$
- SMW 20 (published in 2021) first LQCD calculation with sub-percent (0.8 %) error but in tension with data-driven HVP (2.1 σ)
- Further tensions for intermediate window:

 -3.7σ tension with data-driven evaluation -2.2σ tension with RBC/UKQCD18

HVP: lattice

Ongoing work:

Expect new results from RBC/UKQCD, FNAL/MILC, ETMc, Aubin et al, ... in the coming months:

Ind analyses being done in FNAL/MILC and RBC/UKQCD

Including $\pi\pi$ states for refined long-distance computation (Mainz, RBC/UKQCD, FNAL/MILC)

Developing method average for lattice HVP — started at KEK workshop

- (June 2021), based on detailed comparisons
 - list of sub quantities (and their definitions)
 - common prescription for separating QCD & QED
- quality criteria for inclusion

Most groups plan to include smaller lattice spacings to test continuum extrapolations (needs adequate computational resources)

Connections

$\sigma(e^+e^- \rightarrow \text{hadrons}) \Leftrightarrow$

- $\Delta \alpha_{\rm had}(M_Z^2)$ also depends on the hadronic vacuum polarization function, and can be written as an integral over $\sigma(e^+e^- \rightarrow \text{hadrons})$, but weighted towards higher energies.
- \cong a shift in a_{μ}^{HVP} also changes $\Delta \alpha_{\text{had}}(M_Z^2)$: \Longrightarrow EW fits [Crivellin et al 2020, Keshavarsi et al 2020, Malaescu & Scott 2020] If the shift in a_{μ}^{HVP} is in the low-energy region ($\leq 1 \,\text{GeV}$), the impact on $\Delta \alpha_{\text{had}}(M_Z^2)$ and EW fits is small.
- Solution A shift in a_{μ}^{HVP} from low ($\leq 2 \text{ GeV}$) energies $\implies \sigma(e^+e^- \rightarrow \pi\pi)$ must satisfy unitarity & analyticity constraints $\implies F_{\pi}^{V}(s)$ can be tested with lattice calculations [Colangelo, Hoferichter, Stoffer 2021]

Martin Hoferichter @ Lattice HVP workshop

Hadronic running of α and global EW fit

	e^+e^- KNT, DHMZ	EW fit HEPFit	EW fit GFitter	guess based on E
$\Delta lpha_{ m had}^{(5)}(M_Z^2) imes 10^4$	276.1(1.1)	270.2(3.0)	271.6(3.9)	277.8(1.3)
ifference to e^+e^-		$-$ 1.8 σ	-1.1σ	$+1.0\sigma$

• Time-like formulation:

$$\Delta lpha_{
m had}^{(5)}(M_Z^2) = rac{lpha M_Z^2}{3\pi} P \int\limits_{s_{
m thr}}^{\infty} {
m d}s rac{R_{
m had}(s)}{s(M_Z^2-s)}$$

• Space-like formulation:

$$\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) = \frac{\alpha}{\pi} \hat{\Pi}(-M_Z^2) + \frac{\alpha}{\pi} \left(\hat{\Pi}(M_Z^2) - \hat{\Pi}(-M_Z^2) \right)$$

Global EW fit

- Difference between HEPFit and GFitter implementation mainly treatment of M_W
- Pull goes into **opposite direction**

More in talks by M. Passera, B. Malaescu (phenomenology) and K. Miura, T. San José (lattice) ◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Connections

$\sigma(e^+e^- \rightarrow \text{hadrons}) \iff$

- $\Delta \alpha_{\rm had}(M_Z^2)$ also depends on the hadronic vacuum polarization function, and can be written as an integral over $\sigma(e^+e^- \rightarrow \text{hadrons})$, but weighted towards higher energies.
- a shift in a_u^{HVP} also changes $\Delta \alpha_{\text{had}}(M_Z^2)$: EW fits [Crivellin et al 2020, Keshavarsi et al 2020, Malaescu & Scott 2020] If the shift in a_{μ}^{HVP} is in the low-energy region ($\leq 1 \,\text{GeV}$), the impact on $\Delta \alpha_{\text{had}}(M_Z^2)$ and EW fits is small.
- Solution A shift in a_{μ}^{HVP} from low ($\leq 2 \text{ GeV}$) energies $\implies \sigma(e^+e^- \rightarrow \pi\pi)$ must satisfy unitarity & analyticity constraints $\implies F_{\pi}^{V}(s)$ can be tested with lattice calculations [Colangelo, Hoferichter, Stoffer 2021]

$$> a_{\mu}^{\rm HVP} \iff \Delta \alpha_{\rm had} (M_Z^2)$$

Peter Stoffer @ Lattice HVP workshop

Constraints on the two-pion contribution to HVP

arXiv:2010.07943 [hep-ph]

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \text{GeV}}$

- "low-energy" scenario: local changes in cross section of $\sim 8\%$ around ρ
- "high-energy" scenario: impact on pion charge radius and space-like VFF \Rightarrow chance for **independent lattice-QCD** checks
- requires factor ~ 3 improvement over χ QCD result: $\langle r_{\pi}^2 \rangle = 0.433(9)(13) \, \text{fm}^2$

 \rightarrow arXiv:2006.05431 [hep-ph]

Hadronic light-by-light: Target: ≤ 10% total error

- previous estimates "Glasgow consensus" use models of QCD • used to evaluate individual contributions to HLbL scattering tensor theory error not well determined and not improvable

Hadronic Light-by-light

Durham, 14-16 Dec 2021

Hadronic light-by-light: Target: ≤ 10% total error

Dispersive approach:

[Colangelo at al, 2014; Pauk & Vanderhaegen 2014; ...]

- model independent
- significantly more complicated than for HVP
- provides a framework for data-driven evaluations
- ✦ can also use lattice results as inputs

Hadronic Light-by-light

Durham, 14-16 Dec 2021

Contribution	PdRV(09) [471]	N/JN(09) [472, 573]	J(17) [27]	Our estimate
π^0, η, η' -poles	114(13)	99(16)	95.45(12.40)	93.8(4.0)
π , K-loops/boxes	-19(19)	-19(13)	-20(5)	-16.4(2)
S-wave $\pi\pi$ rescattering	-7(7)	-7(2)	-5.98(1.20)	-8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars	_			$\left. \right)$ 1(2)
tensors	_	_	1.1(1)	= 1(5)
axial vectors	15(10)	22(5)	7.55(2.71)	6(6)
<i>u</i> , <i>d</i> , <i>s</i> -loops / short-distance	_	21(3)	20(4)	15(10)
<i>c</i> -loop	2.3		2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

Durham, 14-16 Dec 2021

Comparison:

NLO HLbL contribution:

 $a_{\mu}^{\text{HLbL,NLO}} = 2(1) \times 10^{-11}$

Dispersive approach:

[Colangelo at al, 2014; Pauk & Vanderhaegen 2014; ...]

- model independent
- significantly more complicated than for HVP
- provides a framework for data-driven evaluations
- ✦ can also use lattice results as inputs

Dominant contributions ($\approx 75\%$ of total):

- Well quantified with $\approx 6\%$ uncertainty
- + η, η' pole contributions: Canterbury approximants only
- Ongoing work: consolidation of η, η' pole contributions using disp. relations and LQCD

Hadronic Light-by-light

Ongoing work:

- Implementation of short-distance constraints (now at 2-loop)
- DR implementation for axial vector contributions
- BESIII ramping up $\gamma^{(*)}\gamma^*$ program

Two independent and complete direct calculations of a_{μ}^{HLbL} Lattice QCD+QED:

♦ RBC/UKQCD [T. Blum et al, arXiv:1610.04603, 2016 PRL; <u>arXiv:1911.08123</u>, 2020 PRL] \bullet QCD + QED_L (finite volume) $\rightarrow 1/L^2$ FV effects stochastic evaluation of position space sums

DWF ensembles at/near phys mass, $a \approx 0.08 - 0.2 \,\mathrm{fm}, L \sim 4.5 - 9.3 \,\mathrm{fm}$

- physical mass ensemble (Mainz)

Hadronic Light-by-light

✦ Mainz group [E. Chao et al, <u>arXiv:2104.02632]</u> ◆ QCD + QED (infinite volume & continuum) $rightarrow e^{-m_{\pi}L}$ FV effects semi-analytic QED kernel function

CLS (2+1 Wilson-clover) ensembles $m_{\pi} \sim 200 - 430 \text{ MeV}$, $a \approx 0.05 - 0.1 \text{ fm}$, $m_{\pi}L > 4$

Cross checks between RBC/UKQCD & Mainz approaches in White Paper at unphysical pion mass ✦ Both groups will continue to improve their calculations, adding more statistics, lattice spacings,

 a_{μ}^{HLbL}

Now well-determined in two independent approaches, systematically improvable

Durham, 14-16 Dec 2021

HLbL: Comparison

- ☆ The QED and EW contributions are known very precisely Hadronic contributions determine the uncertainty in the SM prediction. ☆ dispersive HVP: ~0.6% error [0.34ppm] (coming soon).
- ☆ lattice HVP: first LQCD calculation with sub-percent uncertainty by BMWc but in tension with data-driven approach
- ☆ dispersive HLBL: ~20% error [0.15ppm] newly developed dispersive approach with almost fully quantified errors systematically improvable
- ☆ lattice HLbL: two complete lattice calculations consistent with each other and with data-driven result systematically improvable

Summary

based on well-tested experimental data, will be improved with new measurements

high priority for the Lattice community, expect more sub-percent LQCD results soon.

☆ Theory Initiative:

- WP update ~2023 will include any new available results and a method average for lattice HVP, HLbL
- Concrete plans for writing WP update (outline, authors,...) @ next workshop ☆ Progams and plans in place to improve:
 - $\stackrel{\scriptstyle {\scriptstyle \blacksquare}}{\scriptstyle {\scriptstyle \blacksquare}}$ data-driven HVP $\sim 0.3\%$
 - Figure HVP $\leq 0.5 \%$
 - \checkmark dispersive HLbL and lattice HLbL: ~ 10 %
 - ... assuming tensions are resolved.
- * If tensions between data-driven HVP and lattice HVP are resolved, SM predictions will likely reach desired precision
- \Rightarrow Beyond 2025: MUonE (space-like momentum measurement of $\Delta \alpha$) will provide more information/cross checks.

Next workshop of the Muon g-2 Theory Initiative: 5-9 Sep 2022

Outlook

Thank you!

DEPARTMENT OF PHYSICS

UNIVERSITY of WASHINGTON

Office of

Science

INSTITUTE for NUCLEAR THEORY

ILLINOIS

Thank you!

UNIVERSITIES RESEARCH URA ASSOCIATION

HIM **HELMHOLTZ**

Appendix

Updated WP Summary Table

Contribution

Experimental average (E989+E821)

HVP LO (e^+e^-) HVP NLO (e^+e^-) HVP NNLO (e^+e^-) HVP LO (lattice, *udsc*) HLbL (phenomenology) HLbL NLO (phenomenology) HLbL (lattice, *uds*) HLbL (phenomenology + lattice)

QED

Electroweak

HVP (e^+e^- , LO + NLO + NNLO)

HLbL (phenomenology + lattice + NLO) Total SM Value

Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$

website: <u>https://muon-gm2-theory.illinois.edu</u>

	Value $\times 10^{11}$	References
	116592061(41)	Phys.Rev.Lett. 124, 141801
	6931(40)	Refs. [2–7]
	-98.3(7)	Ref. [7]
	12.4(1)	Ref. [8]
	7116(184)	Refs. [9–17]
	92(19)	Refs. [18–30]
	2(1)	Ref. [31]
	79(35)	Ref. [32]
	90(17)	Refs. [18–30, 32]
	116 584 718.931(104)	Refs. [33, 34]
	153.6(1.0)	Refs. [35, 36]
	6845(40)	Refs. [2–8]
)	92(18)	Refs. [18–32]
	116 591 810(43)	Refs. [2–8, 18–24, 31–36]
	251(59)	

Muon g-2: SM contributions

$$a_{\mu} = a_{\mu}(\text{QED}) +$$

$$a_{\mu}(\text{QED}) = A_1 + A_2 \left(\frac{m_{\mu}}{m_e}\right) + A_2 \left(\frac{m_{\mu}}{m_{\tau}}\right)$$
$$A_i = \sum_{n=0}^{\infty} \left(\frac{\alpha}{\pi}\right)^n A_i^{2n}$$

n	# of diagrams	Contribution x 10 ¹¹
1	1	116140973.32
2	7	413 217.63
3	71	30141.90
4	891	381.00
5	12672	5.08

 $a_{\mu}(\text{QED}) = 116\,584\,718.9\,(1) \times 10^{-11}$

[T. Aoyama et al, arXiv:1205.5370, PRL;

T. Aoyama, T. Kinoshita, M. Nio, Atoms 7 (1) (2019) 28]

 $a_{\mu}(\mathrm{EW}) + a_{\mu}(\mathrm{hadronic})$

QED

$$+ A_3\left(\frac{m_{\mu}}{m_e}, \frac{m_{\mu}}{m_{\tau}}\right)$$

A. El-Khadra

$$a_{\mu_{H}}(EW) + a_{\mu}(hadronic)$$

 $a_{\mu}(\text{EW}) = 153.6(1.0) \times 10^{-11}$

[A. Czarnecki et al, hep-ph/0212229, PRD; C. Gnendinger et al, arXiv:1306.5546, PRD]

Durham, 14-16 Dec 2021

Muon g-2: SM contributions

$$a_{\mu} = a_{\mu}(\text{QED}) + a_{\mu}(\text{EW}) + a_{\mu}(\text{hadronic})$$

leading hadronic

The hadronic contributions are written as:

 $a_{\ell}(\text{hadronic}) = a_{\ell}^{\text{HVP}}$

 α^2

 $\sim 10^{-7}$

A. El-Khadra

Durham, 14-16 Dec 2021

$$a^{P, LO} + a_{\ell}^{HVP, NLO} + a_{\ell}^{HVP, NNLO} + \dots + a_{\ell}^{HLbL} + a_{\ell}^{HLbL, NLO} + \dots$$

$$\frac{\alpha^3}{\alpha^4} = \alpha^4$$

- See Target: ~ 0.2% total error
- Challenges:

 - ✓ finite volume corrections
 - growth of statistical errors at long-distances
 - Continuum extrapolation
 - scale setting
 - disconnected contribution
 - QED and strong isospin breaking corrections ($m_u \neq m_d$)
- Solution Focus on windows in Euclidean times [T. Blum et al, arXiv:1801.07224, 2018 PRL]
 - valuable cross checks

✓ needs ensembles with (light sea) quark masses at their physical values

disentangle systematics/statistics from long distance/FV and discretization effects

intermediate window easy to compute & compare with disperse methods

Durham, 14-16 Dec 2021

Continuum extrapolation

Christoph Lehner (RBC/UKQCD) @ Lattice 2021

 $m_{-} = m_{\nu} = m_{-} \approx 420 \,\mathrm{MeV}$ ▶ Third lattice spacing for strange data ($a^{-1} = 2.77$ GeV with $m_{\pi} = 234$ MeV with sea light-quark mass corrected from global fit):

 $(a^{-1} = 2.77 \text{ GeV} \text{ with } m_{\pi} = 139 \text{ MeV})$

I A. El-Khadra

► For light quark use new 96I ensemble at physical pion mass. Data still being generated on Summit in USA and Booster in Germany

Hartmut Wittig (Mainz) @ Lattice 2021

• Mainz and ETMc perform combined chair and continuum extrapolaiton

Long-distance tail

 $G(t) = \frac{1}{3} \sum_{i,x} \langle j_i(x,t) j_i(0,0) \rangle$

• Use noise reduction me

Shaun Lahert
 (Fermilab-HPQCD-MILC)
 <u>attice 2021</u>

 First calculation with staggered multi-pion operators

10

 $Jm(E_n, A_n)$ in dedicated study using additional

41). A more sophisticated approach in the absence of detailed spectrum via the Lüscher formalism [379,380] applied to the

15

10

Hadronic vacuum polarization

- use CERN M2 muon beam (150 GeV)
- Physics beyond colliders program @ CERN
- LOI June 2019
- pilot run in 2021
- full apparatus in 2023-2024

LOI June 2019 [P. Banerjeei et al, <u>arXiv:2004.13663</u>, Eur.Phys.J.C 80 (2020)]

Durham, 14-16 Dec 2021