Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

HVP lattice calculation for g-2

Bálint C. Tóth

University of Wuppertal

Budapest–Marseille–Wuppertal-collaboration (BMWc)

Sz. Borsanyi, Z. Fodor, J. N. Guenther, C. Hoelbling, S. D. Katz,
L. Lellouch, T. Lippert, K. Miura, L. Parato, K. K. Szabo,
F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst

[Muon g-2 Theory Initiative, Phys.Rept. 887 (2020) 1-166]

[Budapest-Marseille-Wuppertal-coll., Nature 593 (2021) 7857]

[Muon g-2 coll., Phys. Rev. Lett. 126, 141801 (2021)]

Durham, 15 Dec 2021

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

• Hadronic light-by-light (HLbL, $\left(\frac{\alpha}{\pi}\right)^3$)

 pheno a^{HLbL}_μ = 9.2(1.9) [Colangelo, Hoferichter, Kubis, Stoffer et al '15-'20]
 lattice a^{HLbL}_μ=7.9(3.1)(1.8) or 10.7(1.5) [RBC/UKQCD '19 and Mainz '21]

Hadronic vacuum polarization (HVP) of photon

- In QED, $\alpha = \frac{e^2}{4\pi} \approx \frac{1}{137} \ll 1 \longrightarrow$ rapidly converging series $\left(\frac{g-2}{2}\right) = \left(\frac{\alpha}{\pi}\right)a^{(1)} + \left(\frac{\alpha}{\pi}\right)^2 a^{(2)} + \left(\frac{\alpha}{\pi}\right)^3 a^{(3)} + \dots$
- In QCD, at low energies: $\alpha_s = O(1)$
- - Data driven approach (R-ratio)
 - Lattice QCD

HUGE: is about 2× electroweak contribution

For new physics:

For no new physics:

- FNAL(plan) + same theory errors 6σ
- FNAL(plan) + HLbL 10% + HVP 0.2% 11σ
 - 4% larger HVP, $a_{\mu}^{\text{LO-HVP}} = 720.0(6.8)$
 - 360% larger HLbL, $a_{\mu}^{\text{HLbL}} = 37.9(7.1)$

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

HVP from Lattice QCD

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
	●000000			

Lattice QCD: examples

Wuppertal–Budapest-collaboration, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675-678

 Budapest–Marseille–Wuppertal-collaboration, Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455

Budapest–Marseille–Wuppertal-collaboration, Ab-initio Determination of Light Hadron Masses, Science 322 (2008) 1224-1227

Wuppertal–Budapest-collaboration, Lattice QCD for Cosmology, Nature 539 (2016) 7627, 69-71

Introduction	HVP from Lattice QCD ○●○○○○○	Challenges & improvements	Results 0000	Conclusions & Outlook	
Lattice	QCD				

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method
- Discretize space-time with lattice spacing: a

- quarks on sites, gluons on links
- olicity discretize action + operators

$$\int \mathrm{d}^4 x \quad \longrightarrow \quad a^4 \sum_x$$

 $\partial_{\mu} \longrightarrow \text{finite differences}$

• To get physical results, need to perform:

Infinite volume limit $(V \to \infty) \longrightarrow$ numerically or analytically Continuum limit $(a \to 0) \longrightarrow$ min. 3 different *a*

Introduction	HVP from Lattice QCD	Challenges & improvements	Results 0000	Conclusions & Outlook O	
Lattice	QCD				

Integrate over all classical field configurations

$$\int [\mathrm{d} U] \, [\mathrm{d} \overline{\psi}] \, [\mathrm{d} \psi] \, O \, e^{-S_{\mathrm{g}}(U) - \overline{\psi} \, \mathsf{M}(U) \, \psi}$$

- E.g. $96^3 \times 144$ lattice $\longrightarrow \approx 4 \cdot 10^9$ dimensional integral
- Stochastic integration

• 100000 years for a laptop \longrightarrow 1 year for supercomputer

Hadronic vacuum polarization

•
$$\Pi_{\mu
u}(q) = \left(q_{\mu}q_{
u} - g_{\mu
u}q^2
ight)\Pi(q^2)$$
 analytic + branch-cut

- Minkowski from R-ratio experiments
- Euclidean from lattice QCD or exp. like MUonE
- Minkowski \rightarrow Euclidean via dispersion relation ($Q^2 = -q^2$) $\Pi(Q^2) = \int_{\mathrm{Sth}}^\infty ds \; rac{Q^2}{s(s+Q^2)} rac{1}{\pi} \mathrm{Im} \Pi(s)$

$a_{\mu}^{\text{LO-HVP}}$ from lattice QCD

get Π from Euclidean current-current correlator

[Blum '02]

$$\Pi_{\mu\nu} = \int dx \ e^{iQx} \langle J_{\mu}(x) J_{\nu}(0) \rangle = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2 \right) \Pi(Q^2)$$

$$a_{\!\mu}^{ extsf{HVP}}=rac{lpha^2}{\pi^2}\int d extsf{Q}^2 \ k_{\!\mu}(extsf{Q}^2) \ \Pi(extsf{Q}^2)$$

 $k_{\mu}(Q^2)$ describes the leptonic part of diagram

- Q is available at discrete momenta only
- smooth interpolation in Q and prescription for Π(0)

[Bernecker, Meyer '11], [HPQCD'14], ...

$$C(t) = \frac{1}{3} \sum_{i=1}^{3} \langle J_i(t) J_i(0) \rangle$$

K(t) describes the leptonic part of diagram

[Bernecker, Meyer '11], [HPQCD'14], ...

t [fm]

$$K(t) = \int_0^{Q_{\text{max}}^2} \frac{dQ^2}{m_{\mu}^2} \omega \left(\frac{Q^2}{m_{\mu}^2}\right) \left[t^2 - \frac{4}{Q^2}\sin^2\left(\frac{Qt}{2}\right)\right]$$
$$\omega(r) = \left[r + 2 - \sqrt{r(r+4)}\right]^2 / \sqrt{r(r+4)}$$

• only integrate up to $Q_{max}^2 = 3 \,\text{GeV}^2$

• $Q^2 > Q_{max}^2$: perturbation theory

Durham, 15 Dec 2021

Introduction	HVP from Lattice QCD 000000●	Challenges & improvements	Results 0000	Conclusions & Outlook
<u></u>				

Simulation setup

- 6 lattice spacings: $0.13 \text{ fm} 0.064 \text{ fm} \longrightarrow \text{controlled continuum limit}$
- Box size: L ~ 6 fm
 - $L \sim 11 \text{ fm}$ at one lattice spacing \longrightarrow FV effects

 $1\,\text{fm} = 10^{-15}\,\text{m} \sim \text{size of proton}$

Quark masses bracketing their physical values

β	a[fm]	L×T	#conf
3.7000	0.1315	48×64	904
3.7500	0.1191	56 imes 96	2072
3.7753	0.1116	56×84	1907
3.8400	0.0952	64 imes 96	3139
3.9200	0.0787	80 × 128	4296
4.0126	0.0640	96 × 144	6980

Ensembles for dynamical QED:

β	a[fm]	$L \times T$	#conf
3.7000	0.1315	24×48	716
		48×64	300
3.7753	0.1116	28×56	887
3.8400	0.0952	32×64	4253

Durham, 15 Dec 2021

Introduction	HVP from Lattice QCD	Challenges & improvements	Results 0000	Conclusions & Outlook

Challenges & Improvements

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
		00000000000		

Key improvements

[BMWc'17] [BMWc'20]

Incorporated many improvements and recent developments in lattice techniques

Reduced uncertainty by factor 3.4 compared to [BMWc '17]

Introduction 0000	HVP from Lattice QCD	Challenges & improvements	Results 0000	Conclusions & Outlook

Noise reduction – LMA

- noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances
- Treat lowest eigenmodes of Dirac operator exactly (LMA) $\longrightarrow \lambda_i, v_i$

[Neff et.al. 2001] [Giusti et.al. 2004] [Li et.al. 2010] ...

Decompose propagator

$$M^{-1} = M_{e}^{-1} + M_{r}^{-1}$$

$$M_{e}^{-1} = \sum_{i} \frac{1}{\lambda_{i}} v_{i} v_{i}^{\dagger} \quad \longleftarrow \text{ exactly}$$

$$M_{r}^{-1} = M^{-1} \left(1 - \sum_{i} v_{i} v_{i}^{\dagger} \right) \quad \longleftarrow \text{ stochastically}$$

• $L = 6 \text{ fm} \approx 1000 \text{ eigenvectors}$ up to $\approx m_s/2$ $L = 11 \text{ fm} \approx 6000 \text{ eigenvectors}$

- Truncated Solver method (AMA) [Bali et.al. 2010] [Blum et.al. 2013]
 - Stop after 400 iterations
 - Compute correction to high precision on every 32nd vector

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
		00000000000		

Noise reduction – bounds

• Replace C(t) by upper/lower bounds above t_c [Lehner 2016] [Borsanyi et.al. 2017]

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

- \rightarrow factor 5 gain in precision
- \longrightarrow bounding t_c : 3 fm \rightarrow 4 fm
- → few permil accuracy on each ensemble

0000	0000000	00000000000	0000	0
Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

Lattice spacing *a* enters into a_{μ} determination:

- physical values of m_{μ}, m_{π}, m_{K}
- $\rightarrow \Delta_{\text{scale}} a_{\mu} \sim 1.8 \cdot \Delta(\text{scale})$ [Della Morte *et.al.* '17]
 - If the set th
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate m_q dependence
 - Can be precisely determined on the lattice
 - For separation of isospin breaking effects:
 w0 scale setting

 No experimental value
 [Lüscher 2010] [BMWc 2012]
 - \longrightarrow Determine value of w_0 from $M_\Omega \cdot w_0$

 $w_0 = 0.17236(29)(63)[70]$ fm

Introduction 0000	HVP from Lattice QCD	Challenges & improvements	Results 0000	Conclusions & Outlook

M_{Ω} determination

- Staggered baryon operators [Golterman & Smit 1985] [Bailey 2007]
- 2 fit ranges with 4-state fits
- mass extraction using GEVP [Aubin & Orginos 2011] [DeTar & Lee 2015]
- include all O(e²) QED effects
- $\approx 0.1\%$ precision on each ensemble

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
0000	000000	00000000000	0000	

Finite-size effects: lattice

- Typical lattice runs use $L \leq 6$ fm, earlier model estimates gave O(2)% FV effect
- FV correction in two steps

 $a_{\mu}(\infty) - a_{\mu}(\text{ref}) = [a_{\mu}(\text{big}) - a_{\mu}(\text{ref})]_{4\text{HEX}} + [a_{\mu}(\infty) - a_{\mu}(\text{big})]_{\text{XPT}}$

 $L_{\rm ref} = 6.272 \, {\rm fm}$

Choose action with small taste splitting

- 4 steps of HEX smearing
- DBW2 gauge action
- $\beta = 0.73, a = 0.112 \, \text{fm}$
- $M_{\pi} = 104 \, \text{MeV}$ and $M_{\pi} = 121 \, \text{MeV}$
- Interpolate to $M_{\pi} = 110 \,\mathrm{MeV}$

$$\longrightarrow$$
 $M_{\pi,\text{HMS}}^{-2} \equiv \frac{1}{16} \sum_{\alpha} M_{\pi,\alpha}^{-2} = M_{\pi^0,\text{phys}}^{-2}$

 $L_{\rm big} = 10.752\,{\rm fm}$

 $a_{\mu}(\text{big}) - a_{\mu}(\text{ref}) = 18.1(2.0)_{\text{stat}}(1.4)_{\text{cont}}$

[Aubin et.al, '16]

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
		00000000000		

Finite-size effects: non-lattice

Comparison to non-lattice approaches

- NLO and NNLO Chiral perturbaion theory (XPT)
 - [Gasser & Leutwyler 1985] [Bijnens et.al. 1999]

[Gounaris & Sakurai 1968] [Lellouch & Lüscher 2001] [Meyer 2011] [Francis *et.al.* 2013]

Hansen–Patella approach

MII GS-model

Rho-pion-gamma model (RHO)

[Hansen & Patella 2019,2020]

[Sakurai 1960], [Jegerlehner & Szafron 2011] [Chakraborty et.al. 2017]

 $\frac{|\text{NLO XPT}| \text{NNLO XPT}| \text{MLLGS}| \text{HP}| \text{RHO}}{a_{\mu}(\text{big}) - a_{\mu}(\text{ref})| 11.6 | 15.7 | 17.8 | 16.7 | 15.2}$ $a_{\mu}(\text{big}) - a_{\mu}(\text{ref}) = 18.1(2.0)_{\text{stat}}(1.4)_{\text{cont}}$

2. $a_{\mu}(\infty) - a_{\mu}(big)$

- NLO XPT: 0.3
- NNLO XPT: 0.6

 $a_{\mu}(\infty) - a_{\mu}(\text{ref}) = 18.7(2.0)_{\text{stat}}(1.4)_{\text{cont}}(0.3)_{\text{big}}(0.6)_{l=0}(0.1)_{\text{qed}}[2.5]$

- Take isospin symmetric gluon configurations: U
- Measure $O_0(U)$ and $O'_m(U)$
- For each gluon field, generate guenched photon fields: A
- Measure $O'_1(U,A)$, $O''_2(U,A)$, $\frac{d_1(U,A)}{d_1(U)}$ and $\frac{d_2(U,A)}{d_1(U)}$

0000 0000000 000000 000 0000 0000 0	Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
			0000000000000		

Isospin breaking contributions

$$\langle O \rangle_{\text{QCD+QED}} \approx \langle O \rangle_0 + \frac{\delta m}{m_l} \cdot \langle O \rangle'_m + e_v^2 \cdot \langle O \rangle''_{20} + e_v e_s \cdot \langle O \rangle''_{11} + e_s^2 \cdot \langle O \rangle''_{02}$$

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
0000	000000	00000000000000	0000	

Isospin breaking calculations

- $O'_1(U, A)$ and $O''_2(U, A)$: compute as finite differences
 - Measure O(0), $O(\frac{1}{3}e_*)$, $O(-\frac{1}{3}e_*)$
- $O'_m(U)$
 - Iight connected: as derivative
 - disconnected: as finite difference: $O(m_l, 0)$, $O(0.9 m_l, 0)$
 - - 1 photon field on each gluon configuration: same as in $O'_1(U, A)$
 - Exact trace on low-lying eigenspace
 - 12000 random sources
 - Reduce UV noise by exact rewriting using HPE
- - 2000 photon fields on each gluon configuration
 - 12 random sources on each photon field
 - Contact term is treated as d_1/d_0

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

Introduction	HVP from Lattice QCD	Challenges & improvements	Results 0000	Conclusions & Outlook

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
		00000000000000		

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
		0000000000000		

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
		0000000000000		

	from Lattice QCD	Challenges & Improvements	Results	Conclusions & Outlook
0000 0000	0000	000000000000000	0000	

Continuum limit – Taste improvement

Controlled $a \rightarrow 0$ extrapolation

- 6 lattice spacings: 0.132 fm \rightarrow 0.064 fm
- Leading cutoff effects at large *t* are taste breaking effects → mass effects
- Distortion in spectrum: cured by taste improvement rho-pion-gamma model (SRHO)
 [Sakurai '60][Bijnens et.al. '99][Jegerlehner et.al. '11][Chakraborty et.al. '17]
- Our data confirms: Taste violation according to SRHO describes most of the lattice artefacts in a^{light}_μ
- Central value obtained using SRHO improvement
- At t > 1.3 fm add and subtract (NNLO SRHO) [Aubin et.al. '20]
- Error corresponding to this variation
 - → Add to systematic error in quadrature

0000 0000000 000000000 000 0	Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
			000000000000		

Continuum limit – Global fit procedure

For full result: physical point is set via

 ${\small { \bullet } }$ For IB-decomposition: match QCD+QED and QCD $_{iso}$ via

$$w_0, \quad M_{ss}^2, \quad \Delta M^2 = M_{dd}^2 - M_{uu}^2, \quad M_{\pi_{\chi}}^2 = \frac{1}{2} \left(M_{uu}^2 + M_{dd}^2 \right) \quad \longleftarrow \text{Type-II}$$

Expand observable around physical point

$$Y = A + BX_l + CX_s + DX_{\delta m} + Ee_v^2 + Fe_ve_s + Ge_s^2$$

• Combined
$$\chi^2$$
 fit for all components

 Several hundreds of thousands of analyses, combined using histogram method

linear vs. quadratic, a^2 vs $a^2 \alpha_s (1/a)^3$ [Husung *et.al* 2020] cuts in lattice spacing, hadron mass fit ranges, ...

 Uncertainty arising from choice of taste improvement: Added to systematic error in quadrature

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

Results

Overview of contributions

Introduction HVP from Lattice QCD Challenges & improvements Occolusions & Outlook

Comparison with other determinations of HVP

- $a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy
- Compatible with other lattice calculations
- First lattice calculation with errors comparable to R-ratio results

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
			0000	

Window observable

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- Less challenging than full a_µ
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook
			0000	

Window observable – Overlap crosscheck

- L = 3 fm
- Valence: overlap fermions, local current
- Sea: 4stout staggered

Continuum limit is consistent with staggered valence

Durham, 15 Dec 2021

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

Conclusions & Outlook

<u> </u>				
				•
Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook

Conclusions & Outlook

- Important to have crosschecks from other lattice groups
- Important to understand disagreement with R-ratio, in particular in the window

Introduction	HVP from Lattice QCD	Challenges & improvements	Results	Conclusions & Outlook