Flavour anomalies-collider interplay

by Ben Allanach (DAMTP, University of Cambridge)

- Flavour anomaly overview: $b \to c \tau \bar{\nu}$
- $b \rightarrow s l^+ l^-$ anomalies
- Leptoquarks and searches
- \bullet A simple Z^\prime model and searches

Cambridge Pheno Working Group

Where data and theory collide

Make an effective theory with heavy BSM particle:

$$\mathcal{L}_{WET} = -\frac{2\lambda_1\lambda_2}{M^2} \left(\bar{c}\gamma^{\mu}P_Lb\right) \left(\bar{\tau}\gamma_{\mu}P_L\nu\right) + H.c.$$

Fit to data tells us

$$M = 3.4 \,\,{
m TeV} imes \sqrt{\lambda_1 \lambda_2}$$

Strange *b* Activity

$R_K^{(*)}$ in Standard Model

$$R_{K} = \frac{BR(B \to K\mu^{+}\mu^{-})}{BR(B \to Ke^{+}e^{-})}, \qquad R_{K^{*}} = \frac{BR(B \to K^{*}\mu^{+}\mu^{-})}{BR(B \to K^{*}e^{+}e^{-})}$$

These are rare decays (each BR $\sim O(10^{-7})$) because they are absent at tree level in SM+EW+CKM

Stolen from Capdevila et al, Flavour Anomaly Workshop '21

 $BR(B_s \rightarrow \mu^+ \mu^-)$: $B_s = (\bar{b}s), B^0 = (\bar{b}d)$

 $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$

Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2 \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\text{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + \frac{4}{3} A_{\text{FB}} \sin^2 \theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell$

P_5'

cancel ¹

¹LHCb, 2003.04831

 $B_s \to \phi \mu^+ \mu^-$: $\phi = (s\bar{s})$

11

²Stolen from Capdevila et al, *Flavour Anomaly Workshop '21*

Fits

Alguero et al, 2104.08921; Altmannshofer, Stangl, flavio 2103.13370; Ciuchini et al, HEPfit 2011.01212; Hurth et al, superIso 2104.10058

 $\mathcal{L} = N[C_9(\bar{b}_L\gamma^\mu s_L)(\bar{\mu}\gamma_\mu\mu) + C_{10}(\bar{b}_L\gamma^\mu s_L)(\bar{\mu}\gamma^5\gamma_\mu\mu)] + H.c.$

$b \to s \mu \mu$ Simplified Models

A good few $2 - 4\sigma$ Discrepancies with SM predictions. Computing with look elsewhere effect implies a 4.3σ discrepancy with the SM (conservative theory errors).³

We have tree-level flavour changing new physics options:

³Isidori, Lancierini, Owen and Serra, arXiv:2104.05631

$B_s - \bar{B}_s$ Mixing

Measurement pretty much agrees with SM calculations.

Di-leptoquark Production⁵

LQ necessarily has colour \Rightarrow couples to gluons. Look for two hard jets+di-muons with approximately the same $m_{j\mu}^2 = (p_j + p_\mu)^2$: $m_{LQ} > 1.7$ TeV.

⁵ATLAS 2006.05872

The future of leptoquarks⁶

The Flavour Problem

The Flavour Problem

A Simple Z' Model

BCA, Davighi, 1809.01158: Add complex SM-singlet scalar 'flavon' $\theta_{X\neq 0}$ which breaks gauged $U(1)_X$:

$$\begin{array}{c|c} SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_X \\ & \swarrow \\ \langle \theta \rangle \sim \text{Several TeV} \\ SU(3) \times SU(2)_L \times U(1)_Y \\ & \swarrow \\ \langle H \rangle \sim \text{246 GeV} \\ SU(3) \times U(1)_{em} \end{array}$$

- SM fermion content
- Zero X charges for first two generations
- Solve anomaly cancellation for $U(1)_X$

Unique Solution: $X = Y_3$

$$\begin{bmatrix} X_{Q'_{1,2}} = 0 & X_{u_{R'_{1,2}}} = 0 & X_{d_{R'_{1,2}}} = 0 & X_{L'_{1,2}} = 0 \\ X_{e_{R'_{1,2}}} = 0 & X_{H} = -1/2 & X_{Q'_{3}} = 1/6 & X_{u'_{R3}} = 2/3 \\ X_{d'_{R3}} = -1/3 & X_{L'_{3}} = -1/2 & X_{e'_{R3}} = -1 & X_{\theta} \neq 0 \end{bmatrix}$$

 $\mathcal{L} = Y_t \overline{Q_{3L}'} H t_R' + Y_b \overline{Q_{3L}'} H^c b_R' + Y_\tau \overline{L_{3L}'} H^c \tau_R' + H.c.,$

Y_3 Consequences

- Flavour changing TeV-scale Z' to do NCBAs: couples dominantly to EW eigenstates of quarks and leptons of the third family
- First two fermion families massless at renormalisable level
- Their masses and fermion mixings generated by small non-renormalisable operators

This explains the hierarchical heaviness of the third family and small CKM angles

$$\begin{aligned} \mathcal{L}_{X\psi} &= g_X \quad \left(\frac{1}{6} \overline{\mathbf{u}_{\mathbf{L}}} \Lambda^{(u_L)} \gamma^{\rho} \mathbf{u}_{\mathbf{L}} + \frac{1}{6} \overline{\mathbf{d}_{\mathbf{L}}} \Lambda^{(d_L)} \gamma^{\rho} \mathbf{d}_{\mathbf{L}} - \right. \\ & \left. \frac{1}{2} \overline{\mathbf{n}_{\mathbf{L}}} \Lambda^{(n_L)} \gamma^{\rho} \mathbf{n}_{\mathbf{L}} - \frac{1}{2} \overline{\mathbf{e}_{\mathbf{L}}} \Lambda^{(e_L)} \gamma^{\rho} \mathbf{e}_{\mathbf{L}} + \right. \\ & \left. \frac{2}{3} \overline{\mathbf{u}_{\mathbf{R}}} \Lambda^{(u_R)} \gamma^{\rho} \mathbf{u}_{\mathbf{R}} - \right. \\ & \left. \frac{1}{3} \overline{\mathbf{d}_{\mathbf{R}}} \Lambda^{(d_R)} \gamma^{\rho} \mathbf{d}_{\mathbf{R}} - \overline{\mathbf{e}_{\mathbf{R}}} \Lambda^{(e_R)} \gamma^{\rho} \mathbf{e}_{\mathbf{R}} \right) Z_{\rho}', \end{aligned}$$
$$\Lambda^{(I)} \equiv V_I^{\dagger} \xi V_I, \qquad \xi = \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Z' couplings, $I \in \{u_L, d_L, e_L, \nu_L, u_R, d_R, e_R\}$

A simple limiting case

$$V_{u_R} = V_{d_R} = V_{e_R} = 1$$

for simplicity and the ease of passing bounds.

$$V_{d_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & -\sin \theta_{23} \\ 0 & \sin \theta_{23} & \cos \theta_{23} \end{pmatrix}, \qquad V_{e_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

 $\Rightarrow V_{u_L} = V_{d_L} V_{CKM}^{\dagger}$ and $V_{\nu_L} = V_{e_L} U_{PMNS}^{\dagger}$.

Important Z' Couplings

$$g_{X} \begin{bmatrix} \frac{1}{6} (\overline{d_{L}} \ \overline{s_{L}} \ \overline{b_{L}}) \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin^{2} \theta_{23} & \frac{1}{2} \sin 2 \theta_{23} \\ 0 & \frac{1}{2} \sin 2 \theta_{23} & \cos^{2} \theta_{23} \end{pmatrix} \not{Z}' \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} + \\ -\frac{1}{2} (\overline{e_{L}} \ \overline{\mu_{L}} \ \overline{\tau_{L}}) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \not{Z}' \begin{pmatrix} e_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix} \end{bmatrix}$$

Z - Z' mixing

Because $Y_3(H) = 1/2$, $B - W^3 - X$ bosons mix:

$$\mathcal{M}_{N}^{2} = \frac{1}{4} \begin{pmatrix} g'^{2}v^{2} & -gg'v^{2} & g'g_{X}v^{2} \\ -gg'v^{2} & g^{2}v^{2} & -gg_{X}v^{2} \\ g'g_{X}v^{2} & -gg_{X}v^{2} & 4g_{X}^{2}\langle\theta\rangle^{2}\left(1+\frac{\epsilon^{2}}{4}\right) \end{pmatrix} \begin{pmatrix} -B_{\mu} \\ -W_{\mu}^{3} \\ -W_{\mu}^{3} \\ -(X)_{\mu} \end{pmatrix}$$

- $v\approx 246~{\rm GeV}$ is SM Higgs VEV,
- $\langle \theta \rangle \sim \text{TeV.} M_{Z'} = g_X \langle \theta \rangle.$
- $g_X = U(1)_X$ gauge coupling
- $\epsilon \equiv v/\langle \theta \rangle \ll 1$

Z - Z' mixing angle

$$\sin \alpha_z \approx \frac{g_X}{\sqrt{g^2 + g'^2}} \left(\frac{M_Z}{M_Z'}\right)^2 \ll 1.$$

This gives small non-flavour universal couplings to the Z boson proportional to g_X and:

$$Z_{\mu} = \cos \alpha_z \left(-\sin \theta_w B_{\mu} + \cos \theta_w W_{\mu}^3 \right) + \sin \alpha_z X_{\mu},$$

B/EW Observables

 $\mathsf{SMEFT}(M_{Z'}) \to \mathsf{smelli} \to \mathsf{WET}(M_W) \to \mathsf{obs}(m_B)$

In units of g_X^2/M_X^2 :

WC	value	WC	value	d d d d d d d d d d d d d d d d d d d
C_{ll}^{2222}	$-\frac{1}{8}$	$(C_{lq}^{(1)})^{22ij}$	$\frac{1}{12} \Lambda_{\xi \ ij}^{(d_L)}$	$\overline{\psi_1}$
$(C_{qq}^{(1)})^{ijkl}$	$\Lambda_{\xi ij}^{(d_L)} \Lambda_{\xi kl}^{(d_L)} \frac{\delta_{ik} \delta_{jl} - 2}{72}$	C_{ee}^{3333}	$-\frac{1}{2}$	
C_{uu}^{3333}	$-\frac{2}{9}$	C_{dd}^{3333}	$-\frac{1}{18}$	
C_{eu}^{3333}	2/3	C_{ed}^{3333}	$-\frac{1}{3}$	$D_{\mu}^{\rm SM} \overset{\checkmark}{\qquad} \psi_2 D_{\mu}^{\rm SM} \overset{\checkmark}{\qquad} D_{\mu}^{\rm SM}$
$(C_{ud}^{(1)})^{3333}$	2 9	C_{le}^{2233}	$-\frac{1}{2}$	
C_{lu}^{2233}	$\frac{1}{3}$	C_{ld}^{2233}	$-\frac{1}{6}$	
C_{qe}^{ij33}	$\frac{1}{6}\Lambda^{(d_L)}_{\xi \ ij}$	$(C_{qu}^{(1)})^{ij33}$	$-\frac{1}{9}\Lambda^{(d_L)}_{\xi\ ij}$	$\psi_1 > \sqrt{\psi_2}$
$(C_{qd}^{(1)})^{ij33}$	$\frac{1}{18} \Lambda_{\xi \ ij}^{(d_L)}$	$(C^{(1)}_{\phi l})^{22}$	$\frac{1}{4}$	
$(C_{\phi q}^{(1)})^{ij}$	$-\frac{1}{12}\Lambda^{(d_L)}_{\xi \ ij}$	$C_{\phi e}^{33}$	$\frac{1}{2}$	
$C_{\phi u}^{33}$	$-\frac{1}{3}$	$C_{\phi d}^{33}$	$\frac{1}{6}$	
$C_{\phi D}$	$-\frac{1}{2}$	$C_{\phi \Box}$	$-\frac{1}{8}$	$\overline{\psi_2}$ ψ_4

smelli observables

- 167 quarks: $P_5',\ BR(B_s\to\mu^+\mu^-)$ and others with significant theory errors
- 21 LFU FCNCs: $R_K, R_{K^*}, B \rightarrow di-tau$ decays
- 31 EWPOs from LEP not assuming lepton flavour universality

Theory uncertainties modelled as multi-variate Gaussians: approximated to be independent of new physics.

5101.	data set	χ^2	n	p-value		
	quarks	221.6	167	.003		
	LFU FCNCs	35.3	21	.026		
	EWPOs	35.7	31 🗲	.26		
	global	292.6	219 🧹	.00065		

Global Fits $M_{Z'} = 3 \text{ TeV}$

TFHM Fit, 95% CL

Relies on: smelli-2.2.0 (Aebischer, Kumar, Stangl, Straub, 1810.07698), flavio-2.2.0 (Straub, 1810.08132), Wilson (Aebischer *et al*, 1712.05298)

Z^\prime Decay Modes

Mode	BR	Mode	BR	Mode	BR
$t\bar{t}$	0.42	$b\overline{b}$	0.12	$ u \overline{ u}' $	0.08
$\mid \mu^+\mu^-$	0.08	$\tau^+ \tau^-$	0.30	other $f_i f_j$	$\sim \mathcal{O}(10^{-4})$

$Z' ightarrow \mu \mu$ ATLAS 13 TeV 139 fb $^{-1}$

ATLAS analysis: look for two track-based isolated μ , $p_T > 30$ GeV. One reconstructed primary vertex. Keep only highest scalar sum p_T pair⁷

$$m_{\mu_1\mu_2}^2 = (p_1^{\mu} + p_2^{\mu}) \left(p_{1\mu} + p_{2\mu} \right)$$

CMS also have released⁸ a 139 fb⁻¹ analysis.

⁷1903.06248 ⁸2103.02708

TFHM $Z' \rightarrow \mu^+ \mu^- + SM$ obs

Other Z' Searches⁹

⁹BCA, Banks, 2111.06691

HL-LHC sensitivity¹⁰

¹⁰BCA, Banks, 2111.06691

Flavonstrahlung¹¹

Models of this ilk possess $\mathcal{L} = \lambda H H^{\dagger} \theta \theta^{\dagger} \Rightarrow a$ flavonstrahlung signature:

Why $\bar{b}s\mu^+\mu^-$?

If we take these B-anomalies seriously, we may ask: why are we seeing the first BSM flavour changing effects particularly in the $b \rightarrow s\mu^+\mu^-$ transition, not another one?

Perhaps it's because, in hindsight:

- The largest BSM flavour effects are in heavier generations
- We have many more bs than ts, particularly in LHCb
- Leptons in final states are good experimentally but not (yet) τ s: they are too difficult!

Summary

- The $b \rightarrow s\mu^+\mu^-$ anomalies look very interesting from a BSM point of view: a consistent picture is emerging.
- Independent check awaited from Belle II in Japan in the coming three years or so: $e^+e^-(10.58 \text{ GeV}) \rightarrow \Upsilon(4s) \rightarrow \text{odles of } B$ mesons.
- Tree-level explanations: leptoquarks and Z's.
- In case a leptoquark/Z' is found directly, measuring its couplings may give us an experimental handle on the fermion mass puzzle.

Backup

Belle II Luminosity

Trident Neutrino Process

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z'}/g_{v\mu} \gtrsim 750$ GeV.

Light Z' for $(g-2)_{\mu}$: $L_{\mu} - L_{\tau}$

$B_3 - L_2 \operatorname{model's}^{12} Z'$

¹²Bonilla, Modak, Srivastava, Valle, 1705.00915, Alonso, Cox, Han, Yanagida 1705.03858

Hadronic Uncertainties

► Hadronic effects like charm loop are photon-mediated ⇒ vector-like coupling to leptons just like C₉

- How to disentangle NP \leftrightarrow QCD?
 - Hadronic effect can have different q² dependence
 - Hadronic effect is lepton flavour universal ($\rightarrow R_{K}!$)

Wilson Coefficients c_{ij}^l In SM, can form an EFT since $m_B \ll M_W$:

$$\mathcal{L}_{\text{eff}} = \frac{1}{(36 \text{ TeV})^2} c_{ij}^l (\bar{s}\gamma^\mu P_i b) (\bar{l}\gamma_\mu P_j l)$$
(1)

One loop weak interactions give $c_{ij}^l \sim \pm O(1)$ in SM. $(1/36 \text{ TeV})^2 = V_{tb}V_{ts}^* \alpha/(4\pi v^2)$. From now on, c_{ij}^l refer to *beyond* SM contribution.

TFHM Near best-fit point

Which Ones Work?

Options for a single **BSM** operator:

- c^e_{ij} operators fine for $R_{K^{(*)}}$ but are disfavoured by global fits including other observables.
- c_{LR}^{μ} disfavoured: predicts *enhancement* in both R_K and R_{K^*}
- c_{RR}^{μ} , c_{RL}^{μ} disfavoured: they pull R_K and R_{K^*} in *opposite directions*.
- $c_{LL}^{\mu} = -1.06$ fits well globally¹³.

¹³D'Amico et al, 1704.05438; Aebischer et al 1903.10434.

Invisible Width of $Z \ {\rm Boson}$

 $\Gamma_{\rm inv}^{\rm (exp)} = 499.0 \pm 1.5 ~{\rm MeV}, \, {\rm whereas} ~\Gamma_{\rm inv}^{\rm (SM)} = 501.44 ~{\rm MeV}.$

$$\Rightarrow \Delta \Gamma^{(\rm exp)} = \Gamma^{(\rm exp)}_{\rm inv} - \Gamma^{(\rm SM)}_{\rm inv} = -2.5 \pm 1.5 \ {\rm MeV}.$$

$$\mathcal{L}_{\bar{\nu}\nu Z} = -\frac{g}{2\cos\theta_w} \overline{\nu'_{Le}} Z P_L \nu'_{Le}$$
$$-\overline{\nu'_{L\mu}} \left(\frac{g}{2\cos\theta_w} + \frac{5}{6}g_F \sin\alpha_z\right) Z \nu'_{L\mu}$$
$$-\overline{\nu'_{L\tau}} \left(\frac{g}{2\cos\theta_w} - \frac{8}{6}g_F \sin\alpha_z\right) Z \nu'_{L\tau}.$$

Deformed TFHM

$$\begin{array}{ccccc} F_{Q_i'} = 0 & F_{u_{R_i'}} = 0 & F_{d_{R_i'}} = 0 & F_H = -1/2 \\ F_{e_{R_1'}} = 0 & F_{e_{R_2'}} = 2/3 & F_{e_{R_3'}} = -5/3 \\ F_{L_1'} = 0 & F_{L_2'} = 5/6 & F_{L_3'} = -4/3 \\ F_{Q_3'} = 1/6 & F_{u_{R_3}'} = 2/3 & F_{d_{R_3}'} = -1/3 & F_\theta \neq 0 \end{array}$$

 $\mathcal{L} = Y_t \overline{Q_{3L}'} H t_R' + Y_b \overline{Q_{3L}'} H^c b_R' + H.c.,$

56

Neutrino Masses

At dimension 5:

$$\mathcal{L}_{SS} = \frac{1}{2M} ({L'_3}^T H^c) (L'_3 H^c),$$

but if we add RH neutrinos, then integrate them out

$$\mathcal{L}_{SS} = 1/2 \sum_{ij} (L'_i H^c) (M^{-1})_{ij} (L'_j H^c),$$

where now $(M^{-1})_{ij}$ may well have a non-trivial structure. If $(M^{-1})_{ij}$ are of same order, large PMNS mixing results.

Froggatt Neilsen Mechanism¹⁴

A means of generating the non-renormalisable Yukawa terms, e.g. $X_{\theta}=1/6$:

$$Y_{c}\overline{Q_{L2}^{\prime(F=0)}}H^{(F=-1/2)}c_{R}^{\prime(F=0)} \sim \mathcal{O}\left[\left(\frac{\langle\theta\rangle}{M}\right)^{3}\overline{Q_{L2}^{\prime}}Hc_{R}^{\prime}\right]$$

$$\xrightarrow{\langle\theta^{*}\rangle}\langle\theta^{*}\rangle\langle\theta^{*}\rangle\langle\theta^{*}\rangle\langle H^{0(F=-1/2)}\rangle$$

$$\xrightarrow{\overline{Q_{L2}^{\prime(0)}}, M, M, M, M, M, C_{R2}^{\prime(0)}}Q_{L}^{\prime(0)} \exp\left(\frac{\langle\theta\rangle}{M}\right) \sim 0.2$$

$$\xrightarrow{Q_{L2}^{\prime(1)}, M, M, M, M, M, M, C_{R2}^{\prime(0)}}Q_{L}^{\prime(1+1/6)}Q_{L}^{\prime(1+2/6)}Q_{L}^{\prime(1+3/6)} \Rightarrow Y_{c}/Y_{t} \sim 1/100$$

¹⁴C Froggatt and H Neilsen, NPB**147** (1979) 277