Theoretical perspectives

Sébastien Descotes-Genon

IJCLab CNRS & Université Paris-Saclay, Orsay, France Laboratoire de Physique des 2 Infinis Irène Joliot-Curie http://www.ijclab.in2p3.fr

Beyond Flavour Anomalies, 26/4/22

Laboratoire de Physique des 2 Infinis

S. Descotes-Genon (IJCLab)

An interpretation of the organisers' request

First of all, regrets for not being in Durham (I missed my flight due to the dreadful chaos that is called Orly)

- Long-standing $b \rightarrow s\ell\ell$ anomalies (10 years next year !)
- Different approaches for the fits yields a very consistent picture
- More data awaited from LHCb, Belle II, CMS, ATLAS...
- Starting discussions for the workshop

An interpretation of the organisers' request

First of all, regrets for not being in Durham (I missed my flight due to the dreadful chaos that is called Orly)

- Long-standing $b \rightarrow s\ell\ell$ anomalies (10 years next year !)
- Different approaches for the fits yields a very consistent picture
- More data awaited from LHCb, Belle II, CMS, ATLAS...
- Starting discussions for the workshop

Unlikely : "perspectives"

An interpretation of the organisers' request

First of all, regrets for not being in Durham (I missed my flight due to the dreadful chaos that is called Orly)

- Long-standing $b \rightarrow s\ell\ell$ anomalies (10 years next year !)
- Different approaches for the fits yields a very consistent picture
- More data awaited from LHCb, Belle II, CMS, ATLAS...
- Starting discussions for the workshop

Unlikely : "perspectives"

Likely : "ramblings"

Recent additions to $b ightarrow s\ell\ell$

2019-2020

• LHCb : $R_{K}^{[1,1.6]}$ and angular analysis of $B \to K^* \mu \mu$

Belle

- *R_K* in [1,6] and above 14.18
- *R*_{*K**} in [0.015,1.1], [1,1.6], [15,19]

2021-2022

LHCb

- $R_{K}^{[1.1,6]}$ with deviation from SM above 3 σ
- $R_{K_s}^{[1.1,6]}$ and $R_{K^{*+}}^{[0.045,6]}$ consistent with SM at 2σ but below 1
- $Br(B_s \rightarrow \mu\mu)$ SM-like
- angular analysis and Br for $B_s \rightarrow \phi \mu \mu$
- angular analysis for $B o K^* ee$ at low q^2
- angular analysis for $B^+ o K^{*+} \mu \mu$

CMS

- A_{FB} and F_L for $B^+ o K^{*+} \mu \mu$
- angular analysis for ${\it B}^+
 ightarrow {\it K}^+ \mu\mu$
- Belle: R_K in bins and Br for $B \rightarrow K \mu \mu$ (isospin asymmetry ?)
- Belle II: R_{K^*} in [1.1,6.0] (below 1) and Br for $B \to K^* \mu \mu$

Some favoured scenarios

NP in $b
ightarrow s \mu \mu$ only

- *C*^{NP}_{9μ}
- $\bullet \ \mathcal{C}^{\textit{NP}}_{9\mu}, \mathcal{C}^{\textit{NP}}_{10\mu}$
- and in particular $\mathcal{C}_{9\mu}^{\textit{NP}}=-\mathcal{C}_{10\mu}^{\textit{NP}}$

•
$$C_{9\mu}^{NP}, C_{9'\mu}^{NP} = -C_{10'\mu}^{NP}$$

 $\begin{array}{l} \text{NP in } b \rightarrow see \text{ and } b \rightarrow s\mu\mu; \\ \mathcal{C}_{ie}^{NP} = \mathcal{C}_{i}^{U} \qquad \mathcal{C}_{i\mu}^{NP} = \mathcal{C}_{i}^{U} + \mathcal{C}_{i}^{V} \\ \bullet \ \mathcal{C}_{9}^{V} = -\mathcal{C}_{10}^{V}, \ \mathcal{C}_{9}^{U} \\ \bullet \ \mathcal{C}_{9}^{V} = -\mathcal{C}_{10}^{V}, \ \mathcal{C}_{9}^{U} = \mathcal{C}_{10}^{U} \\ \bullet \ \mathcal{C}_{9}^{V}, \ \mathcal{C}_{10}^{U} \\ \bullet \ \mathcal{C}_{9}^{V}, \ \mathcal{C}_{10'}^{U} \end{array}$

 Increase of significance for some scenarios, but same hierarchies

- Increase of significance for some scenarios, but same hierarchies
- Reduction of the internal tensions of the fit
 - for *P*'₅

for some of the scenarios

- Increase of significance for some scenarios, but same hierarchies
- Reduction of the internal tensions of the fit
 - for *P*'₅
 - between P'_5 and R_K

for some of the scenarios

- Increase of significance for some scenarios, but same hierarchies
- Reduction of the internal tensions of the fit
 - for P'_5
 - between P'_5 and R_K

for some of the scenarios

p-value of SM decreased

Non-SM operators

Most of the scenarios involve the operators already present in the SM

- Right-handed currents
 - Possibility of $C_{9'}$ or $C_{10'}$ in some of the fits (but subleading)
 - But no need for significant $C_{7'}$: most recently from γ pol in $\Lambda_b \to \Lambda \gamma$
- Scalar/pseudoscalar contributions
 - $B_s \rightarrow \mu \mu$ (and $B_d \rightarrow \mu \mu$) rather SM-like according to LHCb
 - Effective lifetime not measured precisely enough to give more info
 - $C_{S,P}$ and $C_{S',P'}$ if compensation, but not needed

Two sources of hadronic uncertainties

$$\mathcal{A}(\mathcal{B} \to \mathcal{M}\ell\ell) = \frac{\mathcal{G}_{F}\alpha}{\sqrt{2}\pi} \mathcal{V}_{tb} \mathcal{V}_{ts}^* [(\mathcal{A}_{\mu} + \mathcal{T}_{\mu})\bar{u}_{\ell}\gamma^{\mu} v_{\ell} + \frac{\mathcal{B}_{\mu}\bar{u}_{\ell}\gamma^{\mu}\gamma_5 v_{\ell}]$$

Two sources of hadronic uncertainties

$$\mathcal{A}(B \to M\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + \frac{B_\mu}{\bar{u}_\ell} \gamma^\mu \gamma_5 v_\ell]$$

Form factors (local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle \mathbf{M}|\bar{\mathbf{s}}\sigma_{\mu\nu}\mathbf{P}_{R}b|\mathbf{B}\rangle + \mathcal{C}_{9}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \\ \mathbf{B}_{\mu} &= \mathcal{C}_{10}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \end{aligned}$$

S. Descotes-Genon (IJCLab)

Two sources of hadronic uncertainties

$$\mathcal{A}(B \to M\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + \frac{B_\mu}{\bar{u}_\ell} \gamma^\mu \gamma_5 v_\ell]$$

Form factors (local)

Charm loop (non-local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{array}{lll} \mathbf{A}_{\mu} & = & -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle \mathbf{M}|\bar{\mathbf{s}}\sigma_{\mu\nu}\mathbf{P}_{R}\mathbf{b}|\mathbf{B}\rangle + \mathcal{C}_{9}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}\mathbf{b}|\mathbf{B}\rangle \\ \mathbf{B}_{\mu} & = & \mathcal{C}_{10}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}\mathbf{b}|\mathbf{B}\rangle \end{array}$$

• Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

S. Descotes-Genon (IJCLab)

Hadronic uncertainties: form factors

3 form factors for K, 7 form factors for K* and ϕ

Iow recoil: lattice QCD

[Horgan, Liu, Meinel, Wingate; HPQCD collab]

• large recoil: Light-Cone Sum Rules (B-meson or light-meson DAs)

B-meson LCSR + lattice

Light-meson LCSR + lattice

correlations among the form factors needed from

- direct determination and/or combined fit to low and large recoils
- EFT with $m_b \rightarrow \infty + O(\alpha_s) + O(1/m_b)$

[Jäger, Camalich; Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

• optimised observables *P_i* to reduce impact of form factor unc

S. Descotes-Genon (IJCLab)

Questions on form factors

Systematics of the methods

- Uncertainty B-meson LCSR 3 times larger than light-meson LCSR
- One lattice result for B → K^{*}, B_s → φ, two for B → K (2013-15), only for a limited large-q² region, any update ?
- Combination with lattice QCD data: statistical combination decreasing the uncertainties + systematics correlation ?
- Lattice for the normalisation and LCSR for the q² dependence ?

Narrow-width approx for form factors

- Not problem for K or φ, but for K* ?
- Lattice : Not much known (a few % ?)
- *K**-meson LCSR: not able to catch the effect (need to use *K*π DAs)
- B-meson LCSR: universal 10% effect, increasing SM discrepancy

[Khodjamirian, SDG, Virto]

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $\mathcal{C}_{9\ell}$
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $\mathcal{C}_{9\ell}$
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

Several approaches agree at low- q^2

LCSR estimates

[Khodjamirian, Mannel, Pivovarov, Wang; Gubenari, Van Dyk]

• order of magnitude estimate for the fits (LCSR or Λ/m_b)

[Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

• fit of sum of resonances to the data

[Blake, Egede, Owen, Pomery, Petridis]

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $\mathcal{C}_{9\ell}$
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

Several approaches agree at low- q^2

LCSR estimates

[Khodjamirian, Mannel, Pivovarov, Wang; Gubenari, Van Dyk]

• order of magnitude estimate for the fits (LCSR or Λ/m_b)

[Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

- fit of sum of resonances to the data
- fit of q²-parametrisation to the data

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG, Hofer, Matias]

• dispersive repr/z-exp + J/ψ , ψ (2*S*) data

[Bobeth, Chrzaszcz, van Dyk, Virto]

[Blake, Egede, Owen, Pomery, Petridis]

S. Descotes-Genon (IJCLab)

Questions on charm loops

Estimate of $c\bar{c}$ contribution at $q^2 < 0$

- Several cc̄ contributions, with hard (QCD fact) and soft gluons (LCSR)
- Soft-gluon correction from LCSR smaller than thought, due to cancellations among three-particle contribs and model inputs

Extrapolate at higher q^2 or interpolate up to charmonium ?

- polynomial in q²
- dispersion relation [Khodjarmiran et al]
- z-exp with bounds on coeffs

[Bobeth, Chrzaszcz, van Dyk, Virto, Gubernari, Reboud]

 \implies Impact of parametrisations with fewer theoretical inputs ?

S. Descotes-Genon (IJCLab)

[Khodjamirian et al; Gubernari, Van Dyk, Virto]

LFU fits: $R_X + B_s \rightarrow \mu\mu + b \rightarrow s\gamma$

[Altmanshoffer, Stanol]

- Still some residual sensitivity to hadronic uncertainties. especially modes with several helicity amplitudes $(B \to K^* \ell \ell, B_s \to \phi \ell \ell)$
- $c\bar{c}$ loops do not cancel in R_X , entering NP interpretation: bin- and process-dep addition to C_9 , e.g. in C_1^{SM} in linearised $O(m_{\ell}, C_7, C_{NP})$ expression

$$R_X \simeq 1 + \operatorname{Re} \left[2 \frac{\mathcal{C}_L^{\mu} - \mathcal{C}_L^{e}}{\mathcal{C}_L^{SM}} + \eta_X \frac{\mathcal{C}_{L'}^{\mu} - \mathcal{C}_{L'}^{e}}{\mathcal{C}_L^{SM}}
ight]$$
 with $\mathcal{C}_{L(')} = \mathcal{C}_{9(')} - \mathcal{C}_{10(')}$

[Hiller, Schmaltz; Isidori, Lancierini, Mathad, Owen, Serra, Coutinho]

- Models for these contributions: effective ndof for LFU fits lower than naive number (echo of global CKM fits) [Isidori et al]
- Interpretation of χ^2_{min} with naive ndof actually conservative

S. Descotes-Genon (IJCLab)

Well-trodden paths?

- *R_K*, *R_{K*}* at high *q*²: completely different systematics, similar predictions for all scenarios (around 0.75)
- *R*_{\phi}: no issue with final state width, consistency check
- Q_5 : distinguish $C_9^V = -C_{10}^V, C_9^U$ from other scenarios
- Anything LFU ratio with several intermediate states (like R_{pK}) complicated : interferences, form factors, or sum rule analysis...
- S-wave: data available from the differential decay rate
 - if info on scalar form factors obtained
 - or reexpressed in terms of P-wave observables

[Algueró, Alvarez-Cartelle, Matias, Patel, Petridis; Khodjamirian, SDG, Vos, Virto]

More modes

Different info and systematics in angular distributions known for

- $B \to K^{*J}(\to K\pi)\ell^+\ell^-$
- $\Lambda_b \to \Lambda(\to N\pi)\ell^+\ell^-$
- $\Lambda_b \rightarrow \Lambda(1520) (\rightarrow NK) \ell^+ \ell^-$

[Lu, Wang; Gratrex, Hopfer, Zwicky; Dey; Das, Kindra, Kumar, Mahajan]
 [Böer, Feldmann, van Dyk; Detmold, Meinel; Das; Blake, Kreps]
 [Amhis, SDG, Marin Benito, Novoa Brunet, Schune; Das, Das]

- Form factors poorly known [Detmold, Lin, Meinel, Wingate, Rendon; SDG, Khodjamirian, Virto]
- Large recoil: factorisation, *cc* contributions
- Low recoil: estimate of quark-hadron duality violation
- Pending issue of $b \rightarrow \Lambda_b$ fragmentation fraction

[T. Blake, S. Meinel, D. van Dyk]

S. Descotes-Genon (IJCLab)

More observables

[SDG, Virto; Novoa Brunet, Vos]

Effective connections

 $\begin{array}{l} \text{SMEFT} (\Lambda_{NP} \gg m_{t,W,Z}) \quad \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4} \\ \text{with higher-dim ops involving only SM fields and SM gauge sym} \end{array}$

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

- provides constraints between scalar/pseudoscalar coefficients and rules out tensor contributions
- if only left-handed vector NP, two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

so natural connection with other processes from the quark and lepton doublets, in particular $b \rightarrow c\tau\nu$, $b \rightarrow s\tau\tau$, $b \rightarrow s\nu\nu$

- but requires a flavour model to connect the different lepton families
- obviously, connections to other flavour anomalies/processes if we enter model building in a more elaborate manner

- 10-15% enhancement compared to SM in LFU R_D , R_{D^*} (mainly driven by Babar) + enhancement for $R_{J/\psi}$ (LHCb)
- no clear sign of NP in angular obs (but large uncertainties)
- LHCb: LFU in $\Lambda_b \rightarrow \Lambda_c$ compatible with SM but central value 25% lower, in disagreement with model-indep expectations [Blanke et al]

- 10-15% enhancement compared to SM in LFU R_D , R_{D^*} (mainly driven by Babar) + enhancement for $R_{J/\psi}$ (LHCb)
- no clear sign of NP in angular obs (but large uncertainties)
- LHCb: LFU in $\Lambda_b \rightarrow \Lambda_c$ compatible with SM but central value 25% lower, in disagreement with model-indep expectations [Blanke et al]
- If we focus on SMEFT vector ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

- 10-15% enhancement compared to SM in LFU R_D , R_{D^*} (mainly driven by Babar) + enhancement for $R_{J/\psi}$ (LHCb)
- no clear sign of NP in angular obs (but large uncertainties)
- LHCb: LFU in $\Lambda_b \rightarrow \Lambda_c$ compatible with SM but central value 25% lower, in disagreement with model-indep expectations [Blanke et al]
- If we focus on SMEFT vector ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

• FCCC part of $\mathcal{O}^{(3)}_{2333}$ describe $R_{D^{(*)}}$ (rescale G_F for $b \to c \tau \nu$)

- 10-15% enhancement compared to SM in LFU R_{D} , R_{D*} (mainly driven by Babar) + enhancement for $R_{J/\psi}$ (LHCb)
- no clear sign of NP in angular obs (but large uncertainties)
- LHCb: LFU in $\Lambda_b \rightarrow \Lambda_c$ compatible with SM but central value 25% lower, in disagreement with model-indep expectations [Blanke et al]
- If we focus on SMEFT vector ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

- FCCC part of $\mathcal{O}_{2333}^{(3)}$ describe $R_{D^{(*)}}$ (rescale G_F for $b \to c\tau\nu$) FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2333}^{(1)} = C_{2333}^{(3)}$ (Capdevila et al.
- [Capdevila et al,]
 - Large NP contribution $b \rightarrow s\tau\tau$ through $C_{q_{\tau}}^{V} = -C_{10\tau}^{V}$
 - Avoids bounds from $B \to K^{(*)}\nu\nu$, Z decays, direct production in $\tau\tau$

S. Descotes-Genon (IJCLab)

- 10-15% enhancement compared to SM in LFU R_{D} , R_{D*} (mainly driven by Babar) + enhancement for $R_{J/\psi}$ (LHCb)
- no clear sign of NP in angular obs (but large uncertainties)
- LHCb: LFU in $\Lambda_b \rightarrow \Lambda_c$ compatible with SM but central value 25% lower, in disagreement with model-indep expectations [Blanke et al]
- If we focus on SMEFT vector ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

- FCCC part of $\mathcal{O}_{2333}^{(3)}$ describe $R_{D^{(*)}}$ (rescale G_F for $b \to c\tau\nu$) FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2333}^{(1)} = C_{2333}^{(3)}$ [Capdevila et al.
- [Capdevila et al,]
 - Large NP contribution $b \to s\tau\tau$ through $C_{9\tau}^{V} = -C_{10\tau}^{V}$
 - Avoids bounds from $B \to K^{(*)}\nu\nu$, Z decays, direct production in $\tau\tau$
 - Through radiative effects, (small) NP contribution to C_{α}^{U}

S. Descotes-Genon (IJCLab)

 $m{b}
ightarrow m{c} au
u$, $m{b}
ightarrow m{s} \mu \mu$, $m{b}
ightarrow m{s} au au$

Interesting combined NP scenario

- $C_{9\mu}^{V} = -C_{10\mu}^{V}$ from small \mathcal{O}_{2322} [$b \rightarrow s\mu\mu$]
- C_9^U from rad corr to large \mathcal{O}_{2333} [$b \rightarrow c \tau \nu, b \rightarrow s \mu \mu$]
- No contrib from *O*₃₃₃₃ [EWPO, direct LHC searches in τ⁺τ⁻]

Generic flavour struct, NP scale Λ

$$\begin{array}{lll} \mathcal{C}_9^{\rm U} &\approx & 7.5 \left(1-\sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)};{\rm SM}}}}\right) \\ & \times \left(1+\frac{\log(\Lambda^2/(1{\rm TeV}^2))}{10.5}\right) \end{array}$$

• Huge enhancement of $b \to s \tau \tau$ modes $O(10^{-4})$, also distorting $b \to s \mu \mu$ spectrum in charmonia region [Capdevila et al, Cornella et al]

S. Descotes-Genon (IJCLab)

 $b \rightarrow s \nu \nu$

SMEFT with vector left- and right-handed ops.

[SDG, Fajfer, Kamenik, Novoa-Brunet]

• Blue: (G)MFV case

[Kagan, Volansky, Zupan]

- 1 σ region allowed by
 b → sµµ transitions
 - Green: NP only in muons
 - Purple: Opposite NP effects in μ and τ
 - Red: Hierarchical NP effects according to the generation, proportional to m_{ℓ}
- Grey: no information on $b \rightarrow s \mu \mu$ and significant NP couplings to 1, 2, 3 ν

CP-violation

[Biswas, Nandi, Ray, Kumar Patra; Altmannshoffer, Stangl]

- Complex Wilson coefficients (NP weak phases)
- CP-asymmetries available for $B \to K^* \mu \mu$, $B_s \to \phi \mu \mu \dots$
- Favoured scenarios with real and imaginary parts in C_{9μ,9'μ,10μ}
- Large imaginary parts are allowed (Im C₉ enhances rates)
- Interplay with strong phases (provided by cc̄ contributions), enhanced near charmonium peak
 [Bečirević, Fajfer, Košnik, Smolkovič]

S. Descotes-Genon (IJCLab)

Thanks for your attention

S. Descotes-Genon (IJCLab)