# Simplified models for combined explanations



### **Damir Becirevic** & **David Marzocca**



### Beyond the Flavour Anomalies III - Durham - 26/04/2022

$$\begin{split} \hline R_{D^{(*)}} &= \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& \quad R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{\mathrm{SM}} \\ \hline R_{K^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} e e)} \Big|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\mathrm{SM}} \end{split}$$

$$\begin{split} R_{D^{(*)}}^{\exp} &> R_{D^{(*)}}^{\mathrm{SM}} \\ R_{K^{(*)}}^{\exp} &< R_{K^{(*)}}^{\mathrm{SM}} \end{split}$$

### LFUV

 $\Rightarrow \quad \Lambda_{
m NP} \lesssim 3 \,\, {
m TeV}$  $\Rightarrow \quad \Lambda_{
m NP} \lesssim 30 \,\, {
m TeV}$ 

### $\mathsf{EFT}$ - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[ (1+g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$



$$\mathsf{EFT} - \mathsf{exclusive} \ b \to s\ell\ell$$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[ \sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,\dots} \left( C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right] + C_i'(\mu) \mathcal{O}_i' + C_i'(\mu) \mathcal{O}_i' + C_i'(\mu) \mathcal{O}_i' + C_i'(\mu) \mathcal{O}_i' \right) = -\frac{1}{\sqrt{2}} V_{tb} V_{ts}^* \left[ \sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,\dots} \left( C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right] + C_i'(\mu) \mathcal{O}_i' + C_i'(\mu) \mathcal{$$



 $\mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma^{5}\ell)$  $\mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell)$ 





## Leptoquark is the new SUSY



## A clear trend... Why?





### Leptoquark Renaissance

Deviations observed in **semileptonic** processes, strong bounds from  $\Delta F=2$  & CLFV processes.





### Observables

 $R_{D^{(*)}}$  $R_{K^{(*)}}$  $B \rightarrow K \nu \nu$  $\Delta m_{B_{(s)}}$  $Z \rightarrow \mu \mu$  $Z \rightarrow \tau \tau$  $Z \rightarrow \nu \nu$  $R^{\mu e}{}_D$  $\tau \rightarrow \mu \gamma$  $\tau 
ightarrow \mu \phi$  $R_K \; {
m e}/\mu$  $D_s \rightarrow \mu \nu$  $D_s \to \tau \nu$  $B^+ \to \tau \nu$  $\tau \rightarrow K\nu/K \rightarrow \mu\nu$  $B \rightarrow K \mu \tau$ 

| Model                     | $R_{D^{(*)}}$ | $R_{K^{(*)}}$ | $R_{D^{(*)}} \& R_{K^{(*)}}$ |
|---------------------------|---------------|---------------|------------------------------|
| $S_1 = (\bar{3}, 1, 1/3)$ | $\checkmark$  | ×             | ×                            |
| $R_2 = (3, 2, 7/6)$       | $\checkmark$  | ✓*            | ×                            |
| $S_3 = (\bar{3}, 3, 1/3)$ | ×             | $\checkmark$  | ×                            |
| $U_1 = (3, 1, 2/3)$       | $\checkmark$  | $\checkmark$  | $\checkmark$                 |
| $U_3 = (3, 3, 2/3)$       | ×             | $\checkmark$  | ×                            |





LQ induce semileptonic @ tree level, 4-quark & 4-fermion only at loop level.

2103.12504





| Model                     | $R_{D^{(*)}}$ | $R_{K^{(*)}}$ | $R_{D^{(*)}} \& R_{K^{(*)}}$ |
|---------------------------|---------------|---------------|------------------------------|
| $S_1 = (\bar{3}, 1, 1/3)$ | $\checkmark$  | ×             | ×                            |
| $R_2 = (3, 2, 7/6)$       | $\checkmark$  | ✓*            | ×                            |
| $S_3 = (\bar{3}, 3, 1/3)$ | ×             | $\checkmark$  | ×                            |
| $U_1 = (3, 1, 2/3)$       | $\checkmark$  | $\checkmark$  | $\checkmark$                 |
| $U_3 = (3, 3, 2/3)$       | ×             | $\checkmark$  | ×                            |

### From dilepton spectra at high p<sub>T</sub> Atlas and CMS 2018-2021



### **Example R**<sub>2</sub>

 $\mathcal{L}_{R_2} = y_R^{ij} \overline{Q}_i \ell_{R_j} R_2 - y_L^{ij} \overline{u}_{R_i} R_2 i \tau_2 L_j + \text{h.c.}$ 



2103.12504

| Model                     | $R_{D^{(*)}}$ | $R_{K^{(*)}}$ | $R_{D^{(*)}} \ \& \ R_{K^{(*)}}$ |
|---------------------------|---------------|---------------|----------------------------------|
| $S_1 = (\bar{3}, 1, 1/3)$ | $\checkmark$  | ×             | ×                                |
| $R_2 = (3, 2, 7/6)$       | $\checkmark$  | ✓*            | ×                                |
| $S_3 = (\bar{3}, 3, 1/3)$ | ×             | $\checkmark$  | ×                                |
| $U_1 = (3, 1, 2/3)$       | $\checkmark$  | $\checkmark$  | $\checkmark$                     |
| $U_3 = (3, 3, 2/3)$       | ×             | $\checkmark$  | ×                                |

$$\mathcal{L}_{R_2} = y_R^{ij} \,\overline{Q}_i \ell_{Rj} \, I$$

$$C_9^{kl} = C_{10}^{kl} \stackrel{\text{tree}}{=} -\frac{\pi v^2}{2V_{tb}V_{ts}^* \alpha_{\text{em}}} \frac{y_R^{sl} (y_R^{bk})^*}{m_{R_2}^2}$$

$$y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & 0 \\ 0 & y_L^{t\mu} & 0 \end{pmatrix} , \qquad \qquad y_R = 0$$



 $R_2 - y_L^{ij} \overline{u}_{Ri} R_2 i \tau_2 L_j + \text{h.c.}$ 

$$C_{9}^{kl} = -C_{10}^{kl} \stackrel{\text{loop}}{=} \sum_{u,u' \in \{u,c,t\}} \frac{V_{ub}V_{u's}^*}{V_{tb}V_{ts}^*} y_L^{u'k} (y_L^{ul})^* \mathcal{F}(x_u, x_{u'})$$



### Combining two scalar LQ's



see 2203.10111 for  $R_2 + R_2$  [plus an extra  $R_2$  to capture  $(g-2)\mu$ ]



### Scenario with R<sub>2</sub> & S<sub>3</sub> Leptoquarks

• In flavor basis

• In mass-eigenstates basis

 $\mathcal{L} \supset (V_{\text{CKM}} y_R E_R^{\dagger})^{ij} \bar{u}'_{Li} \ell'_{Rj} R_2^{(5/3)}$  $+ (U_R y_L U_{PMNS})^{ij} \bar{u}'_{Ri} \nu'_{Li} R_2^{(j)}$  $-(y U_{\rm PMNS})^{ij} \bar{d}_{Li}^{\prime C} \nu_{Lj}^{\prime} S_3^{(1/3)}$  $+\sqrt{2}(V_{\text{CKM}}^* y U_{\text{PMNS}})_{ij} \bar{u}_{Li}^{\prime C} \nu_{Li}^{\prime})$ 

and assume

 $y_R = y_R^T$ 

$$y_R E_R^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \ U_R y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}, \ U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

Parameters:  $m_{R_2}$ ,  $m_{S_3}$ ,

 $\mathcal{L} \supset y_R^{ij} \bar{Q}_i \ell_{Rj} R_2 + y_L^{ij} \bar{u}_{Ri} L_j \widetilde{R}_2^{\dagger} + y^{ij} \bar{Q}_i^C i \tau_2 (\tau_k S_3^k) L_j + \text{h.c.}$  $R_2 = (3, 2, 7/6), S_3 = (\bar{3}, 3, 1/3)$ 

$$\begin{split} &+ (y_R \, E_R^{\dagger})^{ij} \, \bar{d}_{Li}' \ell_{Rj}' R_2^{(2/3)} \\ & (2/3) - (U_R \, y_L)^{ij} \, \bar{u}_{Ri}' \ell_{Lj}' R_2^{(5/3)} \\ &- \sqrt{2} \, y^{ij} \, \bar{d}_{Li}'^C \ell_{Lj}' S_3^{(4/3)} \\ &- \sqrt{2} \, y^{ij} \, \bar{d}_{Li}'^C \ell_{Lj}' S_3^{(4/3)} \\ & S_3^{(-2/3)} - (V_{\text{CKM}}^* \, y)_{ij} \, \bar{u}_{Li}'^C \ell_{Lj}' S_3^{(1/3)} + \text{h.c.} \end{split}$$

 $y = -y_L$ 

$$y_{R}^{b au}$$
,  $y_{L}^{c\mu}$ ,  $y_{L}^{c au}$  and  $heta$ 

1806.05689

Effective Lagrangian at  $\mu \approx m_{LQ}$ :

•  $b \to c \tau \bar{\nu}$ :  $\propto \frac{y_L^{c\tau} y_R^{b\tau *}}{m_{R_o}^2} \left[ (\bar{c}_R b_L) (\bar{\tau}_R \nu_L) \right]$ •  $b \rightarrow s \mu \mu$ :  $\propto \sin 2 heta \, rac{|y_L^{c\mu}|^2}{m_{S_2}^2} \, (ar{s}_L \gamma^\mu b_L) (ar{\mu}_L \gamma_\mu \mu_L)$ •  $\Delta m_{B_s}$ :  $\propto \sin^2 2\theta \frac{\left[\left(y_L^{c\mu}\right)^2\right]}{\left[\left(y_L^{c\mu}\right)^2\right]}$ 

 $\Rightarrow$  Suppression mechanism of  $b \rightarrow s \mu \mu$  wrt  $b \rightarrow c \tau \overline{\nu}$  for small  $\sin 2\theta$ .

 $\Rightarrow$  Phenomenology suggests  $\theta \approx \pi/2$  and  $y_R^{b\tau}$  complex

$$\mathbf{NB}. \ \Lambda_{\mathrm{NP}}/g_{\mathrm{NP}} \approx 1 \ \mathrm{TeV}$$
$$+ \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \bigg] + \dots$$

### **NB**. $\Lambda_{\rm NP}/g_{\rm NP} \approx 30 {\rm ~TeV}$

$$\frac{\left[2 + \left(y_L^{c\tau}\right)^2\right]^2}{m_{S_3}^2} (\bar{s}_L \gamma^{\mu} b_L)^2$$



 $\operatorname{Re}[g_{S_L}]$ 

Neutrinos incorporated in 2004.07880

Next week on arXiv...

### **Right now, bounds deduced from** $pp \rightarrow \tau v$ **at high** $p_T$ **not very restrictive**



2111.04748, 2112.14604

### NB: New ATLAS data



Interesting pheno, ex.



$$R_{\nu\nu}^{(*)} = \frac{\mathcal{B}(B \to K^{(*)}\nu\nu)}{\mathcal{B}(B \to K^{(*)}\nu\nu)^{\mathrm{SM}}}$$



Belle-II results imminent (ICHEP22)

cf. U<sub>1</sub> 2103.16558 2009.11296

Other observables next week on arXiv...



## Phenomenology of S<sub>1</sub> and S<sub>3</sub>



Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. <u>1803.10972</u>; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; S. Trifinopoulos, E. Venturini, D.M. [2106.15630]; ETC...

 $\mathcal{L}_{int} \sim \left[ \lambda_{ij}^{\prime \prime} q_{i}^{\prime} \varepsilon l_{i}^{j} + \lambda_{ij}^{\prime \prime \prime} u_{k}^{\prime} e_{k}^{j} \right] S_{1} + \lambda_{ij}^{3 \prime} q_{i}^{\prime} \varepsilon \varepsilon^{\prime} l_{i}^{j} S_{3}^{4} + h.c.$ 

Match SM + S<sub>1</sub>+S<sub>3</sub> to SMEFT @ 1-loop (SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature) [Alonso, Jenkins, Manohar, Trott '13] V. Gherardi, E. Venturini, D.M. [2003.12525] [Dekens, Stoffer 1908.05295]

V. Gherardi, E. Venturini, D.M. [2008.09548]

S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

[Jenkins, Manohar, Stoffer 1711.05270]

Global analysis of B-anomalies + all relevant observables

3) Include 1st gen couplings and study Kaon &  $\mu \rightarrow e$ observables assuming U(2)<sup>5</sup> flavor symmetry.



14

## S<sub>1</sub> and S<sub>3</sub> - benchmarks

Two **benchmark** scenarios:

### LH + RH

**Only LH**  $\lambda^{1\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 5\ell \\ 0 & 0 & b\ell \end{pmatrix} \qquad \lambda^{3\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5\ell & 5\ell \\ 0 & b\ell & b\ell \end{pmatrix}$ -1

$$\mathcal{L}_{int} \sim \left( \lambda_{ij}^{\prime \prime} q_{\ell}^{i} \varepsilon l_{L}^{j} + \lambda_{ij}^{\prime \prime \prime} u_{R}^{i} e_{R}^{j} \right) S_{1} + \lambda_{ij}^{3 \prime} q_{\ell}^{i} \varepsilon \varepsilon^{\prime} l_{L}^{j} S_{3}^{A}$$



$$\lambda^{1R} = \mathbf{0}$$

 $M_{S_{1,3}} \sim 1000$ 









 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 5t \\ 0 & 5t \\ 0 & 0 \end{bmatrix}$ 

O

 $\lambda^{1R} = 0$  $\rightarrow$  Cannot fit (g-2)<sub>µ</sub>

(see backup slides for a  $S_1+S_3$  scenario that addresses also the muon magnetic moment)

 $R(D^{(*)})$ 

 $\lambda^{1L} =$ 











## A hint for a flavor struture: U(2)<sup>5</sup>

In first approximation only the 3rd generation couples to the Higgs.

In this case the theory enjoys a  $U(2)^5$  global symmetry

$$G_F = U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)$$

Barbieri et al. [1105.2296, 1203.4218, 1211.5085]

The **minimal breaking** of this symmetry to reproduce the SM Yukawas is described by a set of **spurions**:

$$Y_{u,d} \sim \begin{pmatrix} \Delta_{u,d} & V_q \\ 0 & 0 & 1 \end{pmatrix}$$



- $)_d \times U(2)_e$





Diagonalizing quark masses, the  $V_q$  doublet spurion is fixed to be  $\mathbf{V}_q = \kappa_q (V_{td}^*, V_{ts}^*)^T$ See also Fuentes-Martin, Isidori, Pagès, Yamamoto [1909.02519]  $\kappa_q \sim O(1)$ 



## U(2)<sup>5</sup> flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:



V : leptonic doublet spurion

 $S_{\rho} = S_{in} \partial_{e}$ : rotation diagonalizing electrons and m

 $x^{1(3)}$ : **O(1)** arbitrary complex parameters.

The leptoquark couplings to first generations are now **fixed** in terms of couplings to the second generation:

$$\chi_{q_{\ell}}^{1(3)L} = \chi_{q_{\ell}}^{1(2)} \begin{pmatrix} e_{L} & \mu_{L} & \tau_{L} \\ \chi_{q_{\ell}}^{1(3)} & S_{e} & V_{\ell} & V_{\ell,d} & \chi_{q_{\ell}}^{1(3)} & V_{\ell} & V_{\ell} \\ \chi_{q_{\ell}}^{1(3)} & S_{e} & V_{\ell} & V_{\ell,s} & \chi_{q_{\ell}}^{1(3)} & V_{\ell} & V_{\ell,s} \\ \chi_{q_{\ell}}^{1(3)} & S_{e} & V_{\ell} & \chi_{q_{\ell}}^{1(3)} & V_{\ell} & \chi_{q_{\ell}}^{1(3)} & V_{\ell,s} \\ \chi_{\ell}^{1(3)} & S_{e} & V_{\ell} & \chi_{q_{\ell}}^{1(3)} & V_{\ell} & \chi_{q_{\ell}}^{1(3)} & V_{\ell,s} \\ \end{pmatrix}$$
nuon masses
$$\begin{cases} \lambda_{\ell,k}^{1(q)L} = \chi_{S,k}^{1(q)L} & V_{\ell,k} \\ V_{\ell,k}^{1(q)L} & S_{\ell} & V_{\ell} \\ V_{\ell,k}^{1(q)L} & S_{\ell} & V_{\ell} \\ V_{\ell,k}^{1(q)L} & S_{\ell} & V_{\ell} \\ \end{pmatrix}$$
Exact relations (selection rules)

### We can now **correlate Kaon physics** observables to **B-anomalies**!







## **Global analysis with U(2)**<sup>5</sup>

We perform a global fit in the U(2)<sup>5</sup> flavour structure. The parameters are consistent with the symmetry: all x's are O(1),  $V_{\ell} \sim 0.1$ ,  $|s_e| \leq 0.02$ 

### $b \rightarrow s \mu \mu$ can be addressed:





### R(D<sup>(\*)</sup>) instead can only be addressed at 2σ:





19

### **Global analysis with U(2)**<sup>5</sup> This is due to the **combination** of the **constraints from Z \rightarrow \tau \tau and K^+ \rightarrow \pi^+ vv**







## Leading effect in Kaon physics



 $K \rightarrow \pi \nu \nu$ 

see also: Bordone, Buttazzo, Isidori, Monnard [1705.10729], Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006], Fajfer, Kosnik, Vale-Silva [1802.00786]

The **phase of NP** contribution is **fixed** to be SM-like:

 $C_{sJV_{r}V_{r}}\left(\overline{V}_{r},\overline{V}_{r},V_{r}\right)\left(\overline{d},\overline{V}_{r},\overline{V}_{r}\right)$  $V_{td} \approx V_{td}^* V_{ts} \left( \frac{|\lambda^1|^2 |x_q^1|^2}{2M_1^2} + \frac{|\lambda^3|^2 |x_q^3|^2}{2M_2^2} \right)$ 

As consequence, the  $K_L \rightarrow \pi^0$  mode is fully correlated and below the KOTO stage-I final sensitivity.

Dominated by tau neutrinos, due to largest couplings.

The **NA62** bound is already very constraining for this setup, future updated will put even more tension with R(D<sup>(\*)</sup>), or eventually a signal could be observed.

The correlation in the full model is stronger than just in EFT.





### Predictions

The large couplings to  $\tau$  imply signatures in **DY tails of pp \rightarrow \tau \tau**, deviations in  $\tau LFU$  tests and  $\tau \rightarrow \mu LFV$  tests (Belle-II).

Large effects are also expected in  $b \rightarrow s \tau \tau$  and  $b \rightarrow s \tau \mu$  transitions:





## S<sub>1</sub>, S<sub>3</sub> & m<sub>W</sub>

 $\mathcal{L}_{LQ} \supset -\left(\lambda_{H13}(H^{\dagger}\sigma^{I}H)S_{3}^{I\dagger}S_{1} + \text{h.c.}\right) - \lambda_{\epsilon H3}i\epsilon^{IJK}(H^{\dagger}\sigma^{I}H)S_{3}^{J\dagger}S_{3}^{K}$ S<sub>1</sub>-S<sub>3</sub> mixing

V. Gherardi, E. Venturini, D.M. [2008.09548] See also 1910.03877, 2006.10758 and 2204.03996

Could these LQ address the m<sub>w</sub> discrepancy recently claimed by CDF? Yes!



The two LQ have potential couplings to the Higgs, these contribute to the EW oblique params S and T

only S<sub>3</sub>

They can fit the anomaly with ~1TeV masses and O(1)couplings







## **Discussion points**

- To LHCb: is  $R_{K^{(*)}} < 1$ ?
- Simplified models aim to provide coherent explanations of observed anomalies with minimal set of couplings, compatibly with all existent constraints. Many predictions are typically derived
- All combined explanations of B-anomalies predict possible large effects in Belle-II:  $\tau LFU, \tau \rightarrow \mu \gamma, \tau \rightarrow 3 \mu \quad b \rightarrow s \tau \tau, b \rightarrow s \tau \mu$ ATLAS, CMS: High-energy tails of  $pp \rightarrow \tau \tau, \tau \nu$
- If couplings to 1st gen are U(2)-like, then expect also possible effects in: NA62, KOTO:  $K \rightarrow \pi \nu \nu$ Mu3e, MEG, Mu2e, COMET:  $\mu \rightarrow 3 e, \mu \rightarrow 3 \gamma, \mu \rightarrow e \text{ conversion}$

• UV completions typically aim at solving also other outstanding SM puzzles (more model dependence):

**Unification**  $[S_3 + R_2 > SU(5); U_1 > Pati Salam],$ **EW hierarchy problem** $<math>[S_1 + S_3 > Comp. Higgs.]$ 



### Backup



### Embedding to SU(5) GUT

- Choice of Yukawas was biased by  $SU(5)\ {\rm GUT}$  as pirations
- Scalars:  $R_2 \in \underline{45}, \underline{50}, S_3 \in \underline{45}$ . SM matter fields in  $5_i$  and  $10_i$
- Operators  $10_i 10_j 45$  forbidden to prevent proton decay [Dorsner et al 2017]
- Available operators

 $10_i 5_j \underline{45} : \qquad y_2^{RL} \overline{u}_R^i R_2^i$   $10_i 10_j \underline{50} : \qquad y_2^{LR} \overline{e}_R^i R_2^i$ 

- While breaking SU(5) down to SM the two R<sub>2</sub>'s mix one can be light and the other (very) heavy. Thus our initial Lagrangian!
- Interestingly the Yukawa couplings determined from flavor physics observables at low energy remain perturbative (below  $\sqrt{4\pi}$ ) up to the GUT scale  $\Lambda_{GUT} = 5 \times 10^{15}$  GeV, if we use 1-loop running [Wise et al 2014]

$$\frac{a}{2}\varepsilon^{ab}L_{L}^{j,b}, \quad \frac{y_{3ij}^{LL}\overline{Q^{c}}_{L}^{i,a}}{\varepsilon^{ab}(\tau^{k}S_{3}^{k})^{bc}L_{L}^{j,c}}$$

$$\frac{a}{2}*Q_{L}^{j,a}$$

### Discriminating power of the angular distribution





2106.09610 In case of mesons  $A_{\rm fb}(q^2)$  and  $\langle A_{\rm fb} \rangle$  can help discriminating  $S_1 - S_3$  model. Cf.

### Discriminating power of the angular distribution





### From data to theories



Full-fledged UV theories, typically many states, symmetries, etc... > Correlates pheno of different states

Assume specific mediators > more correlations, loops, bounds from direct searches

Assume  $M_{NP} \gg E_{exp}$  (or  $M_{NP} \gg m_{EW}$ ) > some correlations among observables, little model dependence

Physical (pseudo-)observables > only basic assumptions, very minimal model dependence













### + e conversion







## **S<sub>1</sub> and S<sub>3</sub> - contributions to anomalies**



 $\mathcal{L}_{int} \sim \left[ \lambda_{ij}^{\prime\prime} q_{i}^{\prime} \varepsilon l_{i}^{\prime} + \lambda_{ij}^{\prime\prime} u_{k}^{\prime} e_{k}^{\prime} \right] \sum_{j} + \lambda_{ij}^{3\prime} q_{i}^{\prime} \varepsilon \varepsilon^{\prime} l_{i}^{\prime} \sum_{3}^{4} + h.c.$ 







## S<sub>1</sub> and S<sub>3</sub> - global analysis

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

### All these are used to build a global likelihood.

$$-2\log \mathcal{L} \equiv \chi^2(\lambda_x, M_x) = \sum_i rac{\left(\mathcal{O}_i(\lambda_x, M_x) - \mu_i
ight)^2}{\sigma_i^2} \; .$$

| Observable           | Experimental bounds            |
|----------------------|--------------------------------|
| Z boson couplings    | App. A.12                      |
| $\delta g^Z_{\mu_L}$ | $(0.3 \pm 1.1)10^{-3} [99]$    |
| $\delta g^Z_{\mu_R}$ | $(0.2 \pm 1.3)10^{-3} [99]$    |
| $\delta g^Z_{	au_L}$ | $(-0.11 \pm 0.61)10^{-3}$ [99] |
| $\delta g^Z_{	au_R}$ | $(0.66 \pm 0.65)10^{-3}$ [99]  |
| $\delta g^Z_{b_L}$   | $(2.9 \pm 1.6)10^{-3} [99]$    |
| $\delta g^Z_{c_R}$   | $(-3.3\pm5.1)10^{-3}$ [99]     |
| $N_{ u}$             | $2.9963 \pm 0.0074$ [100]      |



| Observable                                              | SM prediction                             | Experimental bounds                      |
|---------------------------------------------------------|-------------------------------------------|------------------------------------------|
| $b  ightarrow s\ell\ell$ observables                    |                                           | [37]                                     |
| $\Delta C_9^{sb\mu\mu}$                                 | 0                                         | $-0.43 \pm 0.09$ [79]                    |
| $\mathcal{C}_9^{\mathrm{univ}}$                         | 0                                         | $-0.48 \pm 0.24$ [79]                    |
| $b \to c \tau(\ell) \nu$ observables                    |                                           | [37]                                     |
| $R_D$                                                   | $0.299 \pm 0.003$ [12]                    | $0.34 \pm 0.027 \pm 0.013$ [12]          |
| $R_D^*$                                                 | $0.258 \pm 0.005$ [12]                    | $0.295 \pm 0.011 \pm 0.008$ [12]         |
| $P_{	au}^{D^*}$                                         | $-0.488 \pm 0.018$ [80]                   | $-0.38 \pm 0.51 \pm 0.2 \pm 0.018$ [7]   |
| $F_L$                                                   | $0.470 \pm 0.012$ [80]                    | $0.60 \pm 0.08 \pm 0.038 \pm 0.012$ [81] |
| $\mathcal{B}(B_c^+ \to \tau^+ \nu)$                     | 2.3%                                      | < 10% (95% CL) [82]                      |
| $R_D^{\mu/e}$                                           | 1                                         | $0.978 \pm 0.035 \ [83, 84]$             |
| $b \rightarrow s \nu \nu$ and $s \rightarrow d \nu \nu$ |                                           | [37]                                     |
| $R_K^{\nu}$                                             | 1 [85]                                    | < 4.7 [86]                               |
| $R_{K^*}^{\nu}$                                         | 1 [85]                                    | < 3.2 [86]                               |
| $b \rightarrow d\mu\mu$ and $b \rightarrow dee$         |                                           | App. A.5                                 |
| ${\cal B}(B^0 	o \mu \mu)$                              | $(1.06 \pm 0.09) \times 10^{-10}$ [87,88] | $(1.1 \pm 1.4) \times 10^{-10}$ [89,90]  |
| ${\cal B}(B^+ 	o \pi^+ \mu \mu)$                        | $(2.04 \pm 0.21) 	imes 10^{-8}$ [87, 88]  | $(1.83 \pm 0.24) \times 10^{-8}$ [89,90] |
| $\mathcal{B}(B^0 \to ee)$                               | $(2.48 \pm 0.21) 	imes 10^{-15}$ [87, 88] | $< 8.3 \times 10^{-8}$ [51]              |
| ${\cal B}(B^+ 	o \pi^+ ee)$                             | $(2.04\pm0.24)	imes10^{-8}$ [87, 88]      | $< 8 	imes 10^{-8}$ [51]                 |
| B LFV decays                                            |                                           | [37]                                     |
| $\mathcal{B}(B_d \to \tau^{\pm} \mu^{\mp})$             | 0                                         | $< 1.4 \times 10^{-5}$ [91]              |
| $\mathcal{B}(B_s \to \tau^{\pm} \mu^{\mp})$             | 0                                         | $< 4.2 	imes 10^{-5}$ [91]               |
| ${\cal B}(B^+ 	o K^+ 	au^- \mu^+)$                      | 0                                         | $< 5.4 	imes 10^{-5}$ [92]               |
| $\mathcal{B}(B^+ \rightarrow K^+ \pi^+ \mu^-)$          | $B^+ \rightarrow K^+ \tau^+ u^-) = 0$     | $< 3.3 \times 10^{-5}$ [92]              |
| $b(D \rightarrow K \rightarrow \mu)$                    |                                           | $< 4.5 \times 10^{-5}$ [93]              |
|                                                         |                                           |                                          |
| Observable                                              | SM prediction                             | Experimental bounds                      |

| Observable                             | SM prediction                                     | Experimental bounds                      |
|----------------------------------------|---------------------------------------------------|------------------------------------------|
| D leptonic decay                       |                                                   | [37] and App. A.4                        |
| ${\cal B}(D_s 	o 	au  u)$              | $(5.169 \pm 0.004) \times 10^{-2} \ [94]$         | $(5.48 \pm 0.23) \times 10^{-2}$ [51]    |
| ${\cal B}(D^0 	o \mu \mu)$             | $\approx 10^{-11}$ [95]                           | $< 7.6 	imes 10^{-9}$ [96]               |
| ${\cal B}(D^+	o\pi^+\mu\mu)$           | ${\cal O}(10^{-12})$ [97]                         | $< 7.4 	imes 10^{-8}$ [98]               |
| Rare Kaon decays $(\nu\nu)$            |                                                   | App. A.1                                 |
| ${\cal B}(K^+ 	o \pi^+  u  u)$         | $8.64 	imes 10^{-11}$ [99]                        | $(11.0 \pm 4.0) \times 10^{-11} \ [100]$ |
| ${\cal B}(K_L 	o \pi^0  u  u)$         | $3.4 \times 10^{-11}$ [99]                        | $< 3.6 	imes 10^{-9}$ [101]              |
| Rare Kaon decays $(\ell \ell)$         |                                                   | App. A.3 and A.2                         |
| $\mathcal{B}(K_L \to \mu \mu)_{SD}$    | $8.4 \times 10^{-10}$ [102]                       | $< 2.5 \times 10^{-9}$ [76]              |
| ${\cal B}(K_S 	o \mu \mu)$             | $(5.18 \pm 1.5) \times 10^{-12} \ [76, 103, 104]$ | $< 2.5 	imes 10^{-10}$ [105]             |
| ${\cal B}(K_L 	o \pi^0 \mu \mu)$       | $(1.5 \pm 0.3) \times 10^{-11} \ [106]$           | $< 4.5 \times 10^{-10} \ [107]$          |
| $\mathcal{B}(K_L \to \pi^0 ee)$        | $(3.2^{+1.2}_{-0.8}) \times 10^{-11} \ [108]$     | $< 2.8 	imes 10^{-10} \; [109]$          |
| LFV in Kaon decays                     |                                                   | App. $\Lambda.3$ and $\Lambda.2$         |
| ${\cal B}(K_L 	o \mu e)$               | 0                                                 | $< 4.7 \times 10^{-12} \ [110]$          |
| $\mathcal{B}(K^+ \to \pi^+ \mu^- e^+)$ | 0                                                 | $< 7.9 	imes 10^{-11} [111]$             |
| ${\cal B}(K^+ 	o \pi^+ e^- \mu^+)$     | 0                                                 | $< 1.5 	imes 10^{-11} \ [112]$           |
| CP-violation                           |                                                   | App. A.8                                 |
| $\epsilon_K'/\epsilon_K$               | $(15 \pm 7) \times 10^{-4} \ [113]$               | $(16.6 \pm 2.3) \times 10^{-4} [51]$     |

| Observable                                          | SM prediction                                               | Experimental bounds                                                  |
|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
| $\Delta F = 2$ processes                            |                                                             | [37]                                                                 |
| $B^0 - \overline{B}^0$ : $ C^1_{B_d} $              | 0                                                           | $< 9.1 \times 10^{-7} { m ~TeV^{-2}} [114, 115]$                     |
| $B_s^0 - \overline{B}_s^0$ : $ C_{B_s}^1 $          | 0                                                           | $< 2.0 	imes 10^{-5} { m ~TeV^{-2}} [114, 115]$                      |
| $K^0 - \overline{K}^0$ : $\operatorname{Re}[C_K^1]$ | 0                                                           | $< 8.0 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$                   |
| $K^0 - \overline{K}^0$ : Im $[C_K^1]$               | 0                                                           | $< 3.0 \times 10^{-9} \text{ TeV}^{-2} [114, 115]$                   |
| $D^0 - \overline{D}^0$ : $\operatorname{Re}[C_D^1]$ | 0                                                           | $< 3.6 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$                   |
| $D^0 - \overline{D}^0$ : Im $[C_D^1]$               | 0                                                           | $< 2.2 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$                   |
| $D^0 - \overline{D}^0$ : $\operatorname{Re}[C_D^4]$ | 0                                                           | $< 3.2 \times 10^{-8} { m ~TeV^{-2}} [114, 115]$                     |
| $D^0 - \overline{D}^0$ : Im $[C_D^4]$               | 0                                                           | $< 1.2 \times 10^{-9} \text{ TeV}^{-2} [114, 115]$                   |
| $D^0 - \overline{D}^0$ : $\operatorname{Re}[C_D^5]$ | 0                                                           | $< 2.7 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$                   |
| $D^0 - \overline{D}^0$ : Im $[C_D^5]$               | 0                                                           | $< 1.1 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$                   |
| LFU in $\tau$ decays                                |                                                             | [37]                                                                 |
| $ g_{\mu}/g_{e} ^{2}$                               | 1                                                           | $1.0036 \pm 0.0028$ [116]                                            |
| $ g_	au/g_\mu ^2$                                   | 1                                                           | $1.0022 \pm 0.0030$ [116]                                            |
| $ g_	au/g_e ^2$                                     | 1                                                           | $1.0058 \pm 0.0030$ [116]                                            |
| LFV observables                                     |                                                             | [37]                                                                 |
| ${\cal B}(	au 	o \mu \phi)$                         | 0                                                           | $< 1.00 	imes 10^{-7} [117]$                                         |
| $\mathcal{B}(\tau \to 3\mu)$                        | 0                                                           | $< 2.5 	imes 10^{-8}$ [118]                                          |
| $\mathcal{B}(	au 	o \mu \gamma)$                    | 0                                                           | $< 5.2 	imes 10^{-8}$ [119]                                          |
| ${\cal B}(	au 	o e \gamma)$                         | 0                                                           | $< 3.9 \times 10^{-8}$ [119]                                         |
| ${\cal B}(\mu 	o e \gamma)$                         | 0                                                           | $< 5.0 \times 10^{-13} \ [120]$                                      |
| ${\cal B}(\mu 	o 3e)$                               | 0                                                           | $< 1.2 \times 10^{-12} [121]$                                        |
| $\mathcal{B}_{\mu c}^{(\mathrm{Ti})}$               | 0                                                           | $< 5.1 	imes 10^{-12}$ [122]                                         |
| $\mathcal{B}^{(\mathrm{Au})}_{\mu c}$               | 0                                                           | $< 8.3 	imes 10^{-13}$ [123]                                         |
| EDMs                                                |                                                             | [37]                                                                 |
| $ d_e $                                             | $< 10^{-44} \mathrm{e}\cdot\mathrm{cm}\left[124, 125 ight]$ | $< 1.3 	imes 10^{-29} \mathrm{e} \cdot \mathrm{cm}   [126]$          |
| $ d_{\mu} $                                         | $< 10^{-42}  { m e} \cdot { m cm}  \left[ { m 125}  ight]$  | $< 1.9 	imes 10^{-19}  { m e} \cdot { m cm}  [127]$                  |
| $d_{	au}$                                           | $< 10^{-41} \mathrm{e} \cdot \mathrm{cm}  [125]$            | $(1.15 \pm 1.70) \times 10^{-17} \mathrm{e} \cdot \mathrm{cm}  [37]$ |
| $d_n$                                               | $< 10^{-33} \mathrm{e} \cdot \mathrm{cm}  [128]$            | $< 2.1 \times 10^{-26} e \cdot cm \ [129]$                           |
| Anomalous                                           |                                                             | [37]                                                                 |
| Magnetic Moments                                    |                                                             |                                                                      |
| $a_e - a_e^{SM}$                                    | $\pm 2.3 \times 10^{-13}$ [130, 131]                        | $(-8.9 \pm 3.6) \times 10^{-13}$ [132]                               |
| $a_{\mu} - a_{\mu}^{SM}$                            | $\pm 43 \times 10^{-11}$ [42]                               | $(279 \pm 76) \times 10^{-11} [40, 42]$                              |
| $a_{	au} - a^{SM}_{	au}$                            | $\pm 3.9 \times 10^{-8}$ [130]                              | $(-2.1 \pm 1.7) \times 10^{-7}$ [133]                                |









### Scalar LQ & Higgs: both pseudo-Goldstones? Scalar LQs could arise as pNGB together with the Higgs from the same G/H of the strong sector. [Gripaios 0910.1789, Gripaios, Nardecchia, Renner 1412.1791]

 $\Lambda \sim g_{\rho} f \sim 10 \text{ TeV}$ other resonances Gap  $m_{pNGB} \sim O(1) \text{ TeV}$ Leptoquarks hierarchy problem Higgs

Μ

Having the same origin, it is expected that LQ couplings have same structure as Higgs Yukawa couplings: possible connection with flavour structure

Low-energy phenomenology dominated by the LQs

$$m_{SLQ} \ll \Lambda$$







