<u>Toward UV complete models</u> [addressing the B-physics anomalies]

> Gino Isidori [University of Zürich]

General EFT considerations

- General model-building considerations
- ►UV completions: 4321 and beyond
- Predictions @ low- & high-energies
- Conclusions

European Research Council Established by the European Commission

General EFT considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupl. [compete with SM tree-level] in $b(3^{rd}) c(2^{nd}) \rightarrow \tau(3^{rd}) v_{\tau}(3^{rd})$
- Small coupl. [compete with SM loop-level] in $b(3^{rd}) s(2^{nd}) \rightarrow \mu(2^{rd}) \mu(2^{rd})$

<u>General EFT considerations</u>

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

General EFT considerations

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

• O(10⁻¹) suppress. for each 2^{nd} gen. l_L

General EFT considerations

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

• O(10⁻¹) suppress. for each 2^{nd} gen. l_L

General EFT considerations

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

- O(10⁻¹) suppress. for each 2^{nd} gen. q_L or l_L
- ✓ Nice consistency among the 2 sets of anomalies

General EFT considerations

Beyond the Flavour Anomalies III – April 2022

Ignoring the (less convincing) CC anomaly other paths are certainly possible...

Beyond the Flavour Anomalies III – April 2022

General model-building considerations

General odel-building considerations

To move from the EFT toward more complete/ambitious models, we need to address two general aspects: the *flavor structure* of the underlying theory, and the nature of the possible *mediators*

Beyond the Flavour Anomalies III – April 2022

General odel-building considerations

The old (Minimal Flavor Violation) paradigm:

Main idea:

- Concentrate on the Higgs hierarchy problem
- Postpone (*ignore*) the flavor problem

3 gen. = "identical copies" up to high energies

Beyond the Flavour Anomalies III – April 2022

General odel-building considerations

Multi-scale picture @ origin of flavor:

Barbieri '21 Allwicher, GI, Thomsen '20 ... Bordone *et al.* '17 Panico & Pomarol '16 ... Dvali & Shifman '00

Main idea:

- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

Beyond the Flavour Anomalies III – April 2022

General odel-building considerations

General odel-building considerations

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

General odel-building considerations

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

Pattern emerging from data:

• O(10⁻¹) for each 2^{nd} gen. q_L or l_L

 Nice consistency among the two sets of anomalies

What we do <u>not</u> see (*seem to call for an additional loop suppression*):

- ***** Four-quarks ($\Delta F=2$)
- ***** Four-leptons ($\tau \rightarrow \mu v v$)
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)

 $\Delta g_{\tau} \sim (C^{33\tau\tau}) \log(\Lambda/m_{\star})$

General odel-building considerations

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

Pattern emerging from data:

• O(10⁻¹) for each 2^{nd} gen. q_L or l_L

 Nice consistency among the two sets of anomalies

What we do <u>not</u> see (*seem to call for an additional loop suppression*):

- ***** Four-quarks ($\Delta F=2$)
- ***** Four-leptons ($\tau \rightarrow \mu v v$)
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)

Leptoquarks

General odel-building considerations

Which LQ explains which anomaly?				
	Model	R _{K^(*)}	R _{D(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$
	$S_1 = (3, 1)_{-1/3}$	×	✓	×
alars	$R_2 = (3, 2)_{7/6}$	×	✓	×
SC	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
	$S_3 = (3, 3)_{-1/3}$	\checkmark	×	×
CTOL	$U_1 = (3, 1)_{2/3}$	\checkmark	\checkmark	\checkmark
Ve	$∽$ $U_3 = (3, 3)_{2/3}$	\checkmark	×	×

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

• mediator: U_1

Barbieri, GI, Pattori, Senia '15

- → <u>flavor structure</u>: U(2)ⁿ
- <u>UV completion</u>: SU(4) [\rightarrow quark-lepton unification]

We identifid this path back in 2015, as a motivated simplfied model... ...after 7 years, this is one of the very few options still in place for combined explanations & we understood much better its possible <u>UV completion</u>

UV completions: 4321 & beyond

First observation: | the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the massive LQ that is a good mediator for <u>both</u> anomalies:

Pati-Salam group: $SU(4) \times SU(2)_L \times SU(2)_R$

Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

$$SU(4) \sim \begin{bmatrix} SU(3)_C & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & LQ \\ LQ & \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix}$$

UV completions: 4321 & beyond

First observation: the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>massive LQ</u> that is a good mediator for <u>both</u> anomalies:

Heeck, Teresi, '18

Pati-Salam group: $SU(4) \times SU(2)_L \times SU(2)_R$

Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

The problem of the "original PS model" are the strong bounds on the LQ couplings to 1st & 2nd generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Attempts to solve this problem simply adding
extra fermions or scalarsCalibbi, Crivellin, Li, '17;
Fornal, Gadam, Grinstein, '18

UV completions: 4321 & beyond

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

UV completions: 4321 & beyond

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

UV completions: 4321 & beyond

An ambitious attempt to construct a *full theory of flavor* has been obtained embedding (a variation of the) Pati-Salam gauge group into an extra-dimensional construction:

Flavor ↔ special position (*topological defect*) in an extra (compact) space-like dimension

Dvali & Shifman, '00

Higgs and SU(4)-breaking fields with oppositely-peaked profiles, leading to the desired flavor pattern for masses & anomalies Bordone, Cornella, GI, Javier-Fuentes '17

<u>UV completions: 4321 & beyond</u>

An ambitious attempt to construct a *full theory of flavor* has been obtained embedding (a variation of the) Pati-Salam gauge group into an extra-dimensional construction:

Flavor \leftrightarrow special position (topological defect) in an extra (compact) space-like dimension

Dvali & Shifman, '00

Higgs and SU(4)-breaking fields with oppositely-peaked profiles, leading to the desired flavor pattern for masses & anomalies

Bordone, Cornella, GI, Javier-Fuentes '17

* Anarchic neutrino masses via inverse see-saw mechanism Fuentes-Martin, GI, Pages, Stefanek '22

* "Holographic" Higgs from appropriate choice of bulk/brane gauge symm. $[G_{bulk-23} = SU(4)_3 \times SU(3)_{1,2} \times U(1) \times SO(5)]$ $G_{IR} = SU(3)_c \times U(1)_{B-I} \times SO(4)$

→ Light Higgs as pseudo Goldstone Agashe, Contino, Pomarol '05 Fuentes-Martin, Stangl '20 Fuentes-Martin, GI, Lizana, Selimovic, Stefanek '22

The role of vector-like fermions

Even in ambitious UV completions, collider and low-energy pheno are controlled by the 4321 gauge group that rules TeV-scale dynamics \rightarrow new heavy mediators [G' & Z']

χ

 ψ_{3L}

 $SU(4)_h \times SU(3)_l \times [SU(2)_L \times U(1)']$

The role of vector-like fermions

Even in ambitious UV completions, collider and low-energy pheno are controlled by the 4321 gauge group that rules TeV-scale dynamics \rightarrow new heavy mediators [G' & Z']

A key role is played by at least one family of *vector-like fermions* (= fermions with both chiralities having same gauge quantum numbers) that mix with the 3 familes of chiral fermions

χ

 Ψ_{3L}

The role of vector-like fermions

Even in ambitious UV completions, collider and low-energy pheno are controlled by the 4321 gauge group that rules TeV-scale dynamics \rightarrow new heavy mediators [G' & Z']

A key role is played by at least one family of *vector-like fermions* (= fermions with both chiralities having same gauge quantum numbers) that mix with the 3 familes of chiral fermions

 $SU(4)_h \times SU(3)_1$

The role of vector-like fermions

Even in ambitious UV completions, collider and low-energy pheno are controlled by the 4321 gauge group that rules TeV-scale dynamics \rightarrow new heavy mediators [G' & Z']

A key role is played by at least one family of *vector-like fermions* (= fermions with both chiralities having same gauge quantum numbers) that mix with the 3 familes of chiral fermions

- Positive features the EFT reproduced
- Calculability of ΔF=2 processes
- Precise predictions for high-pT data

consistent with present data

Predictions @ low- & high-energies

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." [Feynman]

Beyond the Flavour Anomalies III – April 2022

Predictions @ low- & high energies

I General predcitons of U₁ exchange @ <u>high-energies</u> [Very general, directly connected to the EFT analysis]

 $pp \rightarrow \tau \tau$

Beyond the Flavour Anomalies III – April 2022

Beyond the Flavour Anomalies III – April 2022

Predictions @ low- & high energies

II General predcitons of U₁ exchange @ <u>low-energies</u>
[UV insensitive observables, closely connected to the EFT analysis]

Predictions @ low- & high energies

III General predcitons of 4321 models @ <u>high-energies</u> [More model dependent, <u>not</u> directly connected to the EFT analysis]

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21 Fuentes-Martin, GI, Konig, Selimovic, '20

Conclusions

- The nice *picture* that emerged in 2015 of connecting the two sets of anomalies with the <u>origin of the SM flavor hierarchies</u>, and <u>quark-lepton</u> <u>unification</u> is still valid, and has become possibly more appealing...
- A new (theoretical) ingreideint that emerged in the last few years is the possibility of connecting this picture also to a <u>solution of the EW hierarchy</u> <u>problem</u>: non-trivial flavor dynamics around the TeV scale, involving mainly the 3rd family + multi-scale picture at the origin of flavor hierarchies
- <u>No contradiction</u> with existing low- & high-energy data, <u>but new non-</u><u>standard effects should emerge soon</u> in both these areas

