

1

Smoking guns involving measurements of tau couplings

Lakshan Madhan¹, Hanaé Tilquin²

Beyond the Flavour Anomalies 26/04/22

¹University of Bristol, UK ²Imperial College London, UK

- SM gauge sector does not differentiate between lepton flavours
- Studied using an Effective Field Theory (EFT) approach, short-distance (and heavy NP) encoded in Wilson coefficients and couplings (C_i and g_i)
- > The operators $\mathcal{O}_{\mathcal{O}}$ describe long-distance physics

2

: NP

The Anomalies

- Deviations from SM seen in $b \rightarrow s \mu \mu$
 - Branching fraction and angular observables
 - Lepton Flavour Universality (LFU) test using R_K shows anomalies at ~3 σ
- > Also in $b \rightarrow c\ell v$
 - LFU test using $R(D^{(*)})$ and $R(J/\psi)$ show discrepancies at the 2-3 σ level.

Combined interpretation

- ➢ Hints at a hierarchical NP effect
- > $b \rightarrow s\ell\ell$ anomalies suggest NP contribution to SM V A operator, which change the normalisation of $b \rightarrow c\ell v$ transitions

$$rac{R_{J/\psi}}{R_{J/\psi}^{SM}} = rac{R_D}{R_D^{SM}} = rac{R_{D^*}}{R_{D^*}^{SM}}$$
 (in line with experimental observations)

> $SU(2)_{L}$ invariance of dim-6 operators for left-handed fermions generates similar contributions for $b \rightarrow s\tau\tau$ and $b \rightarrow c\tau v$

$$[ar{c}_L\gamma_\mu b_L][ar{ au}_L\gamma_\mu
u_ au]\,+\,[ar{s}_L\gamma_\mu b_L][ar{ au}_L\gamma_\mu au_L]$$

au

 μ

e

Combined interpretation

 $R(D^{(*)})$ measurements predict a large enhancements to rare $b \rightarrow s \tau \tau$ decays.

au

 μ e

Experimentaltools

- > τ is short-lived
- Neutrinos in final state
- Harder to reconstruct
- More sources of background

LHCb

- Forward detector, lacks precise knowledge of production energies
 - Issues with neutrinos
- Large number of collected B decays
- Experimentally challenging to account for backgrounds
- Access to baryonic decay modes

4π detector, precise knowledge of production energies

Belle II

- Missing momentum more easily reconstructible
- Lower statistics
- Cleaner collisions with less background

Experimentaltools

- > τ is short-lived
- Neutrinos in final state
- Harder to reconstruct
- More sources of background

2010

7

~ 7 m

~ 7.5 m

Tau decay modes

Pionic (3-prong) decay mode

- Can easily reconstruct tau end-vertex
- ▶ Presence of pions \Rightarrow lots of background

Muonic decay mode

- Only specific topologies allow to reconstruct tau decays
- Less background associated with muons

b → stt decays

 $\mathcal{B}(B o K au au)^{[15,22]}_{SM} = (1.2 \pm 0.12) imes 10^{-7} < 2.25 imes 10^{-3} ext{ at } 90\% \, CL \, (ext{BaBar}) ext{ [PRL 118, 031802 (2017)]} \ \mathcal{B}(B o K^* au au)^{[15,19]}_{SM} = (0.98 \pm 0.10) imes 10^{-7} < 2.0 imes 10^{-3} ext{ at } 90\% \, CL \, (ext{Belle}) ext{ [arXiv: 2110.03871]} \ ext{ capdevila et al. PRL 120, 181802 (2018)}$

> Large enhancements $\mathcal{O}(10^3)$ driven by $R(D^{(*)})$ anomalies

Improving these sensitivities is one of the most important experimental tasks for the near future

- > Measurement will allow determination of lepton non-universal $C_{9(10)}^{\tau\tau}$
- Hadronic effects less of a concern due to potentially large NP effects
- ➤ Will also be able to set bounds on scalar, vector and tensor NP Wilson coefficients Bobeth et al. APPB Vol. 44 (2013) 127-176

$b \rightarrow s\tau\tau: B \rightarrow K^{(*)}\tau\tau$

 $\mathcal{B}(B o K au au)_{SM}^{[15,22]} = (1.2 \pm 0.12) imes 10^{-7} < 2.25 imes 10^{-3} ext{ at } 90\% \, CL \, (ext{BaBar}) ext{ [PRL 118, 031802 (2017)]} \ \mathcal{B}(B o K^* au au)_{SM}^{[15,19]} = (0.98 \pm 0.10) imes 10^{-7} < 2.0 imes 10^{-3} ext{ at } 90\% \, CL \, (ext{Belle}) ext{ [arXiv: 2110.03871]} \ ext{ capdevila et al. PRL 120, 181802 (2018)}$

- Current expected experimental sensitivities are at the level of expected enhancements
- New experimental ideas are imperative to further improve precision

Discovery would be a smoking gun of NP

B→Kττ imprints in B→Kµµ $_{\text{[Cornella et al. EP]C 80 1095 (2020)]}}$

LHCb sensitivities

Scenario	\mathcal{C}_9^{τ} (90% CL)	$\mathcal{B}\left(C_{10\tau}=-C_{9\tau}\right)$	$\mathcal{B} (C_{10\tau} = 0)$
Run I-II dataset	533	$2.7 imes 10^{-3}$	$0.8 imes 10^{-3}$
Run I-V dataset	139	$1.8 imes 10^{-4}$	$0.5 imes10^{-4}$
Run I-II dataset, improved form factors	533	2.7×10^{-3}	$0.8 imes 10^{-3}$
Run I-V dataset, improved form factors	127	$1.5 imes 10^{-4}$	$0.5 imes 10^{-4}$

Br. indirectly constrained by determining Wilson coefficients from data

 $m_{\mu\mu}$ [MeV]

LFU tests with b→CℓV $R_H = \frac{\mathcal{B}(B \to H\tau\nu)}{\mathcal{B}(B \to Hl\nu)}$; $H = D^{(*)}, J/\psi$

- $R(D), R(D^{*}) \text{ and } R(J/\Psi) \text{ away from SM}$
 - LFU tests with W bosons SM-like [Nature Phys. 17 (2021) 813–818] [EPIC 77 (2017) 367] [EP 10 (2016) 030]
 - BF ratios between *e* and µ modes close to unity
 ⇒ new physics could be hierarchical [arXiv:1702.01521]


```
Baryonic LFU test at LHCb
```

$$R(\Lambda_c) \ = \ rac{\mathcal{B}(\Lambda_b o \Lambda_c au ar
u)}{\mathcal{B}(\Lambda_b o \Lambda_c \mu ar
u)} \ = \ 0.242 \pm 0.026 \pm 0.040 \pm 0.059$$

Guy Wormser@LP2021

$$R(\Lambda_c)_{exp} \leq R(\Lambda_c)_{SM}$$
 interpretation?

$b \rightarrow c\ell v decays - future prospects$

> Future holds promising results for $b \rightarrow c \ell v$ LFU tests

- > Br. recovered from fit from kinematic information
- ▶ Polarization of τ and D^* obtained from angular analysis of $B \rightarrow D^* \tau v$ will provide crucial information

$B \rightarrow D^{(*)} \tau v$ angular observables

$B \rightarrow D^{(*)} \tau v$ angular observables

> Angular analysis extracts couplings (g_i) and form factor parameters directly from fit to data

- > D^* meson polarization $F_L^{D^*}$ sensitive to g_{PT}
- > τ polarization asymmetry $P_{\tau}(D^*)$ sensitive to g_{PT}
- > τ polarization asymmetry $P_{\tau}(D)$ sensitive to g_{ST}
- > and other observables Bečirević et al. arXiv: 1602.03030

Improved measurements important to better understand b \rightarrow stt enhancements

EVENTS/(0.333

26/04/2022

$b \rightarrow svv decays: B^+ \rightarrow K^{(*)}vv$

Decay	SM prediction Buras et al. arXiv:1409.4557	90% CL	90% CL upper limit Belle II (63 fb ⁻¹ , 11±0.4 Belle II (63 fb ⁻¹ , 11±0.4	
		Belle (II)	BaBar [PRD 87 (2013) 112005]	Belle (711 fb ⁻¹ , SL)
$\mathscr{B}(B^+ \to K^+ vv)$	(3.98±0.43±0.19)×10 ⁻⁶	<4.1×10 ⁻⁵ (Belle II) [PRL 127, 181802 (2021)]	<3.7×10 ⁻⁵	$= \frac{\text{Belle (711 fb}^{-1}, \text{Had})}{\text{Babar (429 fb}^{-1}, \text{Had}+\text{SL})}$
$\mathscr{B}(B^0 \to K^{*0} v v)$	(9.19±0.86±0.50)×10 ⁻⁶	<5.5×10 ⁻⁵ (Belle) [PRD 87 (2013) 111103]	<9.3×10 ⁻⁵	$\begin{bmatrix} 0 & 2 & 4 & 6 & 8 & 10 \\ & 0 & 2 & 4 & 6 & 8 & 10 \\ & 10^5 \times \operatorname{Br}(\mathrm{B}^+ \to \mathrm{K}^+ \nu \bar{\nu}) \end{bmatrix}$

- → All neutrino flavours included in $B^+ \rightarrow K^{(*)}vv$ decays ⇒ stringent limits will constrain expected size of NP effects in $b \rightarrow s\tau\tau$ decays Buras et al. arXiv:1409.4557
- Expect much better sensitivity with Belle II using inclusive tagging approach [Prog. Theor. Exp. Phys. 2019, 123C01]
 - Observation expected from Belle II soon
 - $_{\circ}$ With 50 ab⁻¹ absolute precision expected to be ~5×10⁻⁷

Current limits close to SM suggest NP effects are small in $b \rightarrow svv$ decays

$$(g-2)_{\tau} and \tau EDM$$

$$\mu = g \frac{q}{2m} s$$
Magnetic moment of
spin ½ particle
$$\int_{\tau^+}^{\tau^-} \int_{\tau^+}^{\gamma} \int_{\tau^+}^{\tau^-} \int_{\tau^+}^{\tau^-} f_{\tau^+}$$

$$g = 2 + loop corrections + NP$$

$$a_{\tau} = (g - 2)_{\tau}/2$$

$$a_{\tau}^{SM} = 0.00117721(5); a_{\tau}^{exp} = -0.018(17)$$
Eidelman et al. MPL A22 (2007 DELPHI, IEPIC 35 (2004) 159-1701 159-179)
Small τ lifetime makes these dif

Electric dipole moment (EDM) describes the distribution of charge in a system

Non-zero EDM (d₋) implies **CP violation**

Beresford et al. PRD 102 $|d_{ au}|_{SM} pprox ~ 10^{-33}$ (2020) 113008 $Re(d_{ au})_{exp} \; = (1.15 \pm 1.7) imes 10^{-17} \, e \, cm$ $Im(d_{ au})_{exp} = (-0.83 \pm 0.86) \, imes 10^{-17} \, e \, cm$

BELLE, [PLB 55 1-2 (2003)]

fficult to measure

$(g-2)_{\tau}$ and τ EDM Belle II prospects

≻ (g−2)_τ

- Belle II expected to reduce absolute uncertainty from 0.017 (DELPHI) to 0.012
- \succ t EDM competitive:
 - 40 times gain compared to current results, leading to $[Re, Im(d_{\tau})] < 10^{-18} 10^{-19}$ [Prog. Theor. Exp. Phys. 2019, 123C01]

 $(g-2)_{\tau}$ and τ EDM at LHC

 τ pairs from photon fusion

Different moments modifies lepton p_T distribution

$(g-2)_{\tau}$ and τ EDM: current results

- > Latest measurements by CMS and ATLAS do not include τ EDM
- > τ EDM measured by Belle [PLB 551 (2003) 16-26]

 $Re(d_{\tau}) = (1.15 \pm 1.70) \times 10^{-17} e \,\mathrm{cm},$ $Im(d_{\tau}) = (-0.83 \pm 0.86) \times 10^{-17} e \,\mathrm{cm}$

$(g-2)_{\tau}$ and τ EDM: LHC prospects

Analyses with Pb-Pb collisions at the LHC expected to Beresford et al. PRD 102 (2020) 113008

- 10-fold enhancements compared to DELPHI for (g-2)_r (20 nb⁻¹)
- $|d_{\tau}| < 3.4 \times 10^{-17} e \text{ cm}$ at 95% CL assuming a_{τ} SM-like (2 nb⁻¹)

Possibility of simultaneous measurement of a_r and d_r ?

LFV decays

- Lepton flavour violating decays not necessary for NP to exist
- Measurements help reduce spectrum of NP models
- \blacktriangleright $\mathscr{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} \text{ at } 90\% \text{ CL}$ [HEP 06 (2020) 129]
- $\mathcal{B}(B_s \to \tau^{\pm} \mu^{\mp}) < 4.2 \times 10^{-5} \text{ at } 95\% \text{ CL assuming no}$ contributions from $B^0 \to \tau^{\pm} \mu^{\mp}$ decays [PRL 123 (2019) 211801]

Limits close to predictions from some NP scenarios, any signal would be proof of NP

BELLE II and LHCb expected to improve sensitivities by an order of magnitude

[Prog. Theor. Exp. Phys. 2019, 123C01] [LHCb-PUB-2022-012]

Concluding remarks

- > BELLE II and LHCb expect promising increase in precision of $b \rightarrow c\tau v$ LFU tests
 - Differential information of the decays offering complimentary information
- > Large NP enhancements expected in $b \rightarrow s\tau\tau$
 - Enhancements make observation within experimental reach
 - The large enhancements also reduce importance of hadronic uncertainties
- \succ (g-2), and tau EDM accessible at BELLE II and LHC
 - Precision expected to improve at least by an order magnitude
- LFV measurements also improving to reduce NP parameter space

Tau modes are the frontier of flavour physics for the next decade

https://www.pinterest.com/pin/655696026976436346/

Discussion points

- $\gg R(\Lambda_c)_{exp} < R(\Lambda_c)_{SM}$ interpretation
- > LHC wide combination of $(g-2)_{\tau}$ and τ EDM Complementarity with high p_T taus in ATLAS/CMS and low p_T taus in LHCb
 - Simultaneous measurement of both values? 0

- Complementarity to CP observables
 - Usefulness of measuring CP asymmetries through imaginary Wilson coefficients in $b \rightarrow s\tau\tau$ Ο
 - Link to tau FDM? 0

Backup

$b \rightarrow s\tau\tau$ decays: $B_s \rightarrow \tau\tau$

 $\mathcal{B}(B_s o au au)_{ ext{SM}} = (7.73 \pm 0.49) imes 10^{-7} \ll 6.8 imes 10^{-3} ext{ at } 90\% ext{ CL}$

Assumption: no contribution from $B^0\!\!\rightarrow\tau\tau$

- > Expect large NP enhancements $\mathcal{O}(10^3)$ driven by $R(D^{(*)})$ anomalies
- LHCb Run 2 result expected soon
- ➢ BELLE II projected to have sensitivities of 𝒪(10⁻⁴) with 50 ab⁻¹ [Prog. Theor. Exp. Phys. 2019, 123C01]
- LHCb with 300 fb⁻¹ will give a 5-fold increase in sensitivity [LHCb-PUB-2022-012]

No hadronic uncertainties

$B \longrightarrow K\tau\tau \text{ imprints in } B \longrightarrow K\mu\mu \text{ [Cornella et al. EPIC 80 1095]}$

Caveat: If a huge destructive phase exists for the 2 particle charm states (DD, DD^{*}, D^{*}D^{*}) sensitivity to the tau loop could be diluted.

$b \rightarrow u \tau v transitions$

- Doubly Cabibbo-suppressed, very sensitive to NP \succ
- $\mathscr{B}(B^+ \rightarrow \tau v)$ HFLAV result in agreement with SM predictions [EPIC (2021) 81: 226] \succ
 - Expect 8-fold increase in precision with 50 ab⁻¹ BELLE II [Prog. Theor. Exp. Phys. 2019, 123C01] 0
 - Offers information on scalar Wilson coefficients 0
- Upper limit obtained for $\mathscr{B}(B^0 \rightarrow \pi \tau v)$ by Belle also in agreement with the SM [PRD 93 (2016) 032007] \succ

Construct

$$R_{\pi} = rac{{\cal B}(B o \pi au
u)}{{\cal B}(B o \pi l
u)}$$

BELLE II hopes observation of the tau mode and measurement of R_{\perp}

Tight constraints expected for Wilson coefficients

b→dττ transitions

- > $b \rightarrow d\ell\ell$ more suppressed than $b \rightarrow s\ell\ell$ ($V_{td} < V_{ts}$)
- > $\mathscr{B}(B^0 \to \tau \tau)$ predicted to be (2.22±0.19)×10⁻⁸ in the SM [PRL 112 (2014) 101801]
 - $\mathscr{B}(B^0 \to \tau \tau) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ CL (LHCb)}$ [PRL 118 (2017) 251802]
 - Much looser than limits for muonic mode [PRL 118 (2017) 191801]
 - Belle II expected to improve sensitivities by 2 orders of magnitude [Prog. Theor. Exp. Phys. 2019, 123C01]
 - LHCb with 300 fb⁻¹ will give a 5-fold increase in sensitivity <u>ILHCb-PUB-2022-0121</u>
- > $B^{0,+} \rightarrow \pi^{0,+} \tau \tau$ SM branching fraction of $\mathscr{O}(10^{-9})$ [IHEP 06 (2014) 040]
 - Theoretical input from Lattice QCD exists [PRL 115(15) 152002 (2015

$b \rightarrow d\mu\mu$ currently SM-like, tau mode still work in progress

Backgrounds in b→cℓv decays

Larger sources of background associated with tau/semi-leptonic decays because of invisible particles

$$m^2_{
m miss}\,=\,(p_B-p_{D^*}-p_{\mu})^2$$

Coupling dependence on angular observables in b→cℓv decays

Quantity	g_V	g_A	g_S	g_P	g_T
A^D_{FB}	×	-	***	-	*
$A^D_{\lambda_ au}$	×	-	* * *	-	**
$A_{FB}^{D^*}$	*	***	-	***	*
$A^{D^*}_{\lambda_ au}$	×	×	-	**	*
$R_{L,T}$	×	×	-	**	**
A_5	**	**	-	*	* * *
C_{χ}	*	×		**	**
S_{χ}	* * *	***		×	* * *
A_8	**	**		**	***
A_9	*	*	-	**	**
A_{10}	**	**		×	**
A_{11}	×	×	—	**	**

[arXiv: 1602.03030]

 $(g-2)_{T}$ double interval

Interference of SM and BSM amplitudes results in double interval in observed limits [Jakub Kremer@QM2022]

LFU measurements of τ decays

- Some NP models explaining *B* anomalies suggest changes in W couplings to taus [PLB 826 (2022) 136903]
 - Current results in agreement with SM prediction of 1

 $\frac{\mathcal{A}\left[\tau \to \mu\nu\bar{\nu}\right]}{\mathcal{A}\left[\mu \to e\nu\bar{\nu}\right]}\Big|_{\mathrm{EXP}} = 1.0029 \pm 0.0014 \qquad \frac{\mathcal{A}\left[\tau \to \mu\nu\bar{\nu}\right]}{\mathcal{A}\left[\tau \to e\nu\bar{\nu}\right]}\Big|_{\mathrm{EXP}} = 1.0018 \pm 0.0014 \qquad \frac{\mathcal{A}\left[\tau \to e\nu\bar{\nu}\right]}{\mathcal{A}\left[\mu \to e\nu\bar{\nu}\right]}\Big|_{\mathrm{EXP}} = 1.0010 \pm 0.0014$

[arXiv: 2201.08170] [EPJC (2021) 81: 226]

• NP models suggest shifts of around 0.1%, potentially accessible with future experiments [PLB 826 (2022) 136903]

> Tau mass and lifetime come in as parameters in SM

- Important for many precision measurements and predictions
- Current PDG averages [Prog. Theor. Exp. Phys. (2020) 083C01 and 2021 update]:
 - m_r : 1776.86±0.12 MeV (6.8×10⁻⁵ relative uncertainty compared to 2.3×10⁻⁸ for muons)
 - t_{r} : (290.3±0.5)×10⁻¹⁵ s (1.7×10⁻³ relative uncertainty compared to 1.0×10⁻⁶ for muons)
- More statistics in the future \Rightarrow reduction in uncertainties