A path to break degeneracies among New Physics patterns in $b \rightarrow s \ell \ell$

Joaquim Matias Universitat Autònoma de Barcelona

Motivation and goals

My starting point:

The results on global fits to 254 observables presented in Bernat's talk

Motivation and goals

My starting point:

The results on global fits to 254 observables presented in Bernat's talk

Problem to face in this talk:

Only by adding more and more statistics blindly in some observables of the global analyses it will be very difficult to disentangle **the scenario realized in Nature among the preferred ones.** Our goal:

To identify the **key observables** that can help to truly change the present paradigm guiding global fits and breaking degeneracies.

... and learn also about hadronic physics (if not marginal).

$b \rightarrow s \ell \ell$ in the weak effective theory

► Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff, SM}^{bs\ell\ell} + \mathcal{H}_{eff, NP}^{bs\ell\ell}$

$$\mathcal{H}_{\text{eff, NP}}^{bs\ell\ell} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i + \text{h.c.}$$

We also include a small λ_u contribution.

► From the set of operators (ℓ = e, µ)

$$\begin{split} O_{7}^{bs} &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} , \qquad O_{7}^{\prime bs} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu} , \\ O_{9}^{bs\ell\ell} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) , \qquad O_{9}^{\prime bs\ell\ell} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell) , \\ O_{10}^{bs\ell\ell} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) , \quad O_{10}^{\prime bs\ell\ell} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) , \end{split}$$

O7,7' (even if constrained by radiative decays important to let them float)

1 $\mathcal{B}_{B_{s} \to \mu^+ \mu^-}$ exhibits a small (but persistent) deviation from the SM. It requires $C_{10\mu}^{\rm NP}$ positive (small) or $C_{10\mu}^{\rm NP}$ negative or both or a scalar contribution.

- 1 $\mathcal{B}_{B_{s} \to \mu^+ \mu^-}$ exhibits a small (but persistent) deviation from the SM. It requires $C_{10\mu}^{\rm NP}$ positive (small) or $C_{10\mu}^{\rm NP}$ negative or both or a scalar contribution.
- 2 P'_5 requires a large (absolute value) negative contribution to $C_{9\mu}^{\rm NP}$

- 1 $\mathcal{B}_{B_{s} \to \mu^+ \mu^-}$ exhibits a small (but persistent) deviation from the SM. It requires $C_{10\mu}^{NP}$ positive (small) or $C_{10\mu}^{NP}$ negative or both or a scalar contribution.
- 2 P'_5 requires a large (absolute value) negative contribution to $C_{9\mu}^{\rm NP}$
- **3** *R*_X signals the **presence of LFUV** and

it admits many solutions with $C_{9\mu}$ and $C_{10\mu}$ that gives similar results. ... difficult to disentangle among preferred scenarios.

- 1 $\mathcal{B}_{B_{s} \to \mu^+ \mu^-}$ exhibits a small (but persistent) deviation from the SM. It requires $C_{10\mu}^{NP}$ positive (small) or $C_{10\mu}^{NP}$ negative or both or a scalar contribution.
- 2 P'_5 requires a large (absolute value) negative contribution to $C_{9\mu}^{\rm NP}$
- **3** *R*_X signals the **presence of LFUV** and

it admits many solutions with $C_{9\mu}$ and $C_{10\mu}$ that gives similar results. ... difficult to disentangle among preferred scenarios.

For a long time there was a discussion among two scenarios:

a $C_{9\mu}$ large (abs.val.) and negative that can explain P'_5 and all the anomalies $(\mathcal{B}_{B_5 \rightarrow \mu^+ \mu^-}$ requires a scalar contribution).**Caveat**: difficult for model-building. b $C_{9\mu} = -C_{10\mu}$ small that can explain some anomalies but **totally fails** with P'_5 $(\mathcal{B}_{B_5 \rightarrow \mu^+ \mu^-}$ is explained with $C_{10\mu}$). Model-building welcome.

.... now this discussion is superseded (we will see why)

IPPP conference, 16th April 2022

Present picture

The global fits to 254 observables presented in Bernat's talk \Rightarrow

Present picture

The global fits to 254 observables presented in Bernat's talk \Rightarrow

Two main conclusions:

 \blacktriangleright Iteration after iteration the $\text{Pull}_{\rm SM}$ of most hypotheses ...have been confirmed or increased.

Present picture

The global fits to 254 observables presented in Bernat's talk \Rightarrow

Two main conclusions:

- ► Iteration after iteration the Pull_{SM} of most hypotheseshave been **confirmed or increased**.
- The preferred scenarios in terms of Pull_{SM}:
 - All contain the coefficient of the semileptonic operator $O_{o}^{bs\ell\ell}$
 - They remain packed within a narrow range

1D hypothesis:

For the complete fit, the $\mathsf{Pull}_{\mathrm{SM}}$:

- $C_{9\mu}^{\text{NP}}$ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
- $C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$: 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

1D hypothesis:

For the complete fit, the $\mathsf{Pull}_{\mathrm{SM}}$:

- ▶ $C_{9\mu}^{\text{NP}}$ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
- ► $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}}$: 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$C_{9'\mu}$	$C_{10'\mu}$
Bfp	+0.01	-1.21	+0.15	+0.01	+0.37	-0.21
1σ	[-0.02, +0.04]	[-1.38, -1.01]	[+0.00, +0.34]	[-0.02, +0.03]	[-0.12, +0.80]	[-0.42, +0.02]
2σ	[-0.04, +0.06]	[-1.52, -0.83]	[-0.11, +0.49]	[-0.03, +0.05]	[-0.51, +1.12]	[-0.60, +0.23]

Or for the 6D fits:

▶ Pull_{SM} : 5.1 σ [2019] → 5.8 σ [2020] → 6.6 σ [2021] (49.9%)

1D hypothesis:

For the complete fit, the $\mathsf{Pull}_{\mathrm{SM}}$:

- ▶ $C_{9\mu}^{\text{NP}}$ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
- ▶ $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}}$: 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

Or for the 6D fits:

	$C_7^{\rm NP}$	$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	$C_{10\mu}^{\rm NP}$	$C_{7'}$	$C_{9'\mu}$	$C_{10'\mu}$
Bfp	+0.01	-1.21	+0.15	+0.01	+0.37	-0.21
1σ	[-0.02, +0.04]	[-1.38, -1.01]	[+0.00, +0.34]	[-0.02, +0.03]	[-0.12, +0.80]	[-0.42, +0.02]
2σ	[-0.04, +0.06]	[-1.52, -0.83]	[-0.11, +0.49]	[-0.03, +0.05]	[-0.51, +1.12]	[-0.60, +0.23]

▶ Pull_{SM} : 5.1 σ [2019] → 5.8 σ [2020] → 6.6 σ [2021] (49.9%)

Some of the most relevant 2D hypotheses:

Hyp V*: ($C_{9\mu} = -1.15$, $C_{9'\mu} = -C_{10'\mu} = +0.17$) are **5.9** [2019], **6.6** [2020], **7.1** [2021]

Scn 8: $(C_{9\mu}^{V} = -C_{10\mu}^{V} = -0.34, C_{9}^{U} = -0.82)$ are **5.7** [2019], **6.5** [2020], **7.2** [2021]

Notice that RHCs are only $\mathcal{O}(15\%)$ w.r.t. the dominant $\mathcal{C}_{9\mu}$

This brings three main intertwined questions:

- Q1. What is **the reason** of this degeneracy?
- Q2. Can we **break** this degeneracy?

Q3. Is the degeneracy **linked** to the NP structure of $C_{9\mu}$?

Q1: Reason of the degeneracy

The LFUV central observables:

..., R_{κ} and $R_{\kappa*}$ (to a lesser extent) have the structure in the bin [1.1,6] GeV²

$$\begin{aligned} R_{\mathcal{K}} &= \left[1 - \mathbf{0.26}(\mathcal{C}_{10\mu} + \mathcal{C}_{10'\mu}) + \mathbf{0.23}(\mathcal{C}_{9\mu} + \mathcal{C}_{9'\mu}) + \mathbf{S}_{\mu}^{\mathcal{K}}\right] / \\ & \left[1 - \mathbf{0.26}(\mathcal{C}_{10e} + \mathcal{C}_{10'e}) + \mathbf{0.23}(\mathcal{C}_{9e} + \mathcal{C}_{9'e}) + \mathbf{S}_{e}^{\mathcal{K}}\right], \end{aligned}$$

The equal weight of all contributions (semileptonic and rhcs) ...is at the origin of the **degeneracy problem**

Q1: Reason of the degeneracy

The LFUV central observables:

... R_{K} and R_{K*} (to a lesser extent) have the structure in the bin [1.1,6] GeV²

$$\begin{aligned} R_{K} &= & \left[1 - \mathbf{0.26}(\mathcal{C}_{10\mu} + \mathcal{C}_{10'\mu}) + \mathbf{0.23}(\mathcal{C}_{9\mu} + \mathcal{C}_{9'\mu}) + S_{\mu}^{K}\right] / \\ & \left[1 - \mathbf{0.26}(\mathcal{C}_{10e} + \mathcal{C}_{10'e}) + \mathbf{0.23}(\mathcal{C}_{9e} + \mathcal{C}_{9'e}) + S_{e}^{K}\right], \end{aligned}$$

The equal weight of all contributions (semileptonic and rhcs) ...is at the origin of the **degeneracy problem**

To find an observable with a different structure is required....

Q3: The structure of $C_{9\mu}$

Let's focus on the different contributions of the semileptonic coefficient $C_{9\mu}$

$$\mathcal{C}_{9\mu}^{\mathrm{eff}} \to \mathcal{C}_{9\mu}^{\mathrm{eff}} = \mathcal{C}_{9\mu\,\mathrm{pert}}^{\mathrm{SM}} + \frac{\mathcal{C}_{9\mu}^{\mathrm{NP}}}{\mathcal{C}_{9\mu j}} + \mathcal{C}_{9\mu j}^{\mathrm{cc}\bar{c}\,B \to K^*}$$

- $\blacktriangleright \ {\cal C}_{9\mu\,{\rm pert}}^{\rm SM}$ stands for the perturbative SM contribution

where in our conservative parametrization:

 $C_{9j}^{c\bar{c}B \to K^*} = s_j C_{9j \text{ KMPW}}^{c\bar{c}B \to K^*}$ with s_i nuisance parameters from -1 to 1

Other estimates of long-distance charm would require a separated analysis.

Q2 and Q3: The structure of $C_{9\mu}$

In [Algueró, Capdevila, Descotes-Genon, Masjuan, JM, PRD'19, 1809.08447] it was proposed: to remove hypothesis that NP is purely LFUV

$$egin{array}{rcl} C_{ie}^{\mathrm{NP}} &=& egin{array}{cc} C_{i}^{\mathrm{NP}} &=& egin{array}{cc} C_{i\mu}^{\mathrm{NP}\,\mathrm{V}} &=& egin{array}{cc} C_{i\mu}^{\mathrm{NP}\,\mathrm{V}} + egin{array}{cc} C_{i\mu}^{\mathrm{U}} \end{array} \end{array}$$

• Common contribution C_i^{U} to all charged leptons.

In particular (i = 9):

• $C_{9\mu}^{\rm NP}$ is then splited in two pieces: $C_{9\mu}^{\rm NP\,V}$ and $C_{9\mu}^{\rm U}$

Can we disentangle/measure in an efficient way these two different pieces?

$\mathcal{C}_{9\mu}^{\rm V}$ Lepton Flavour Universal Violating piece

 Q^2 and Q^3 : $\mathcal{C}_{9\mu}^{V}$

Solution: We need an LFUV $C_{9\mu}^V$ -dominated observable.

This is Q_5 : \rightarrow excellent disentangling properties like R_K (contrary to R_{K^*})

$$\begin{array}{lll} Q_5 & = & Q_5^{\rm SM} - \textbf{0.25} \mathcal{C}_{9\mu}^{V} + \textbf{0.20} \mathcal{C}_{10\mu}^{V} - 0.02 \mathcal{C}_{10\mu}^{V} \\ & & -0.04 \mathcal{C}_{9\mu}^{V} + 0.03 \mathcal{C}_{9\mu}^{V}^{-2} - 0.03 \mathcal{C}_{9\mu}^{V} \mathcal{C}_{9'\mu}^{Q} + \mathcal{R}_{\mathcal{C}} \end{array}$$

▶ $C_{i\mu}^{V} = C_{i\mu} - C_{ie}$, R_{C} is marginal, redefine $\tilde{C}_{9\mu}^{V} = C_{9\mu}^{V} - 0.8C_{10\mu}^{V}$ (absorb RHC).

where $\tilde{\mathcal{C}}_{\mathbf{9}\mu}^{\mathrm{V}}$ is obtained using

$$Q_5\simeq Q_5^{
m SM}-0.25 {\tilde {\cal C}}_{9\mu}^{
m V}~~and~~Q_5^{
m SM}=-0.0074\pm 0.0007$$

But in global fits strong correlation of sign of $C_{10'}\sim -0.2$ and $C_{9\mu}\sim -1$ Lower bound on the absolute value of $|\mathcal{C}_{9\mu}^V|$

$$|\mathcal{C}_{9\mu}^{\rm NP\,V}|\simeq |\tilde{\mathcal{C}}_{9\mu}^{\rm V}+0.8\mathcal{C}_{10'\mu}^{\rm V}|\geq |\tilde{\mathcal{C}}_{9\mu}^{\rm V}|$$

Q₅ classifies scenarios in two groups:

- ▶ Q_5 large \rightarrow all scenarios with large $C_{9\mu}^V$ (negligible C_9^U)
- Q₅ small → scenarios with small C^V_{9µ} and large C^U₉.

All top scenarios $C_{9\mu}^V \sim -1$

IPPP conference, 16th April 2022

Most preferred scenarios predicts R_{k} far away from one.

One of the most interesting scenarios (8) predicts Q_5 quite close to $0 \Rightarrow P_5'^{\mu} \sim P_5'^{e} \neq SM$.

 $R_K \sim 0.8$ and $Q_5 \sim 0.1$ with tiny experimental uncertainties would be great news!!!

 $\mathcal{C}_{9\mu}^{\text{V}}$ is an undoubtedly signal of New Physics

$\mathcal{C}_9^{\textit{U}}$ Lepton Flavour Universal piece

Q3: Measuring the whole $C_{9\mu} = C_{9\mu}^{V} + C_{9}^{U}$ to get C_{9}^{U}

The observable that best measures the whole NP piece of the semileptonic coefficient $C_{9\mu}$ is $P'_{5\mu}$

$$\begin{array}{ll} P_{5\mu}^{\prime\,[1.1,6]} &=& P_{5\mu}^{\prime\,\mathrm{SM}} - \textbf{0.25}\mathcal{C}_{9\mu} + \textbf{0.20}\mathcal{C}_{10^{\prime}\mu} - \textbf{0.02}\mathcal{C}_{10\mu} \\ && -0.04\mathcal{C}_{9^{\prime}\mu} + \textbf{0.03}\mathcal{C}_{9\mu}^2 - \textbf{0.03}\mathcal{C}_{9\mu}\mathcal{C}_{9^{\prime}\mu} \end{array}$$

Q3: Measuring the whole $C_{9\mu} = C_{9\mu}^{V} + C_{9}^{U}$ to get C_{9}^{U}

The observable that best measures the whole NP piece of the semileptonic coefficient $C_{9\mu}$ is $P'_{5\mu}$

$$\begin{aligned} P_{5\mu}^{\prime\,[1.1,6]} &= P_{5\mu}^{\prime \rm SM} - \textbf{0.25}\mathcal{C}_{9\mu} + \textbf{0.20}\mathcal{C}_{10'\mu} - 0.02\mathcal{C}_{10\mu} \\ &- 0.04\mathcal{C}_{9'\mu} + 0.03\mathcal{C}_{9\mu}^2 - 0.03\mathcal{C}_{9\mu}\mathcal{C}_{9'\mu} \end{aligned}$$
Approximating $P_5^{\prime\mu} \simeq P_5^{\prime\mu\,\rm SM} - 0.25\tilde{\mathcal{C}}_{9\mu}$ (with $\tilde{\mathcal{C}}_{9\mu} = \mathcal{C}_{9\mu} - 0.8\mathcal{C}_{10'\mu}$)

J. Matias (UAB)

Q3: Measuring the whole $C_{9\mu} = C_{9\mu}^{V} + C_{9}^{U}$ to get C_{9}^{U}

The observable that best measures the whole NP piece of the semileptonic coefficient $C_{9\mu}$ is $P'_{5\mu}$

$$\begin{aligned} P_{5\mu}^{\prime\,[1.1,6]} &= P_{5\mu}^{\prime \text{SM}} - \textbf{0.25}\mathcal{C}_{9\mu} + \textbf{0.20}\mathcal{C}_{10'\mu} - 0.02\mathcal{C}_{10\mu} \\ &- 0.04\mathcal{C}_{9'\mu} + 0.03\mathcal{C}_{9\mu}^2 - 0.03\mathcal{C}_{9\mu}\mathcal{C}_{9'\mu} \end{aligned}$$
Approximating $P_5^{\prime\mu} \simeq P_5^{\prime\mu\,\text{SM}} - 0.25\tilde{\mathcal{C}}_{9\mu}$ (with $\tilde{\mathcal{C}}_{9\mu} = \mathcal{C}_{9\mu} - 0.8\mathcal{C}_{10'\mu}$)

A C_{9µ} of O(−1) is required to explain P'^[1,1,6]_{5µ} and C_{10µ} is marginal in P'₅
 C_{9µ} = −C_{10µ} fails ⇐ it forces a too small C_{9µ} due to B_s → µµ constrain on C_{10µ}.

Q3: Measuring the whole $C_{9\mu} = C_{9\mu}^V + C_9^U$ to get C_9^U

The observable that best measures the whole NP piece of the semileptonic coefficient $C_{9\mu}$ is $P'_{5\mu}$

$$P_{5\mu}^{\prime [1.1,6]} = P_{5\mu}^{\prime \text{SM}} - \mathbf{0.25}C_{9\mu} + \mathbf{0.20}C_{10'\mu} - 0.02C_{10\mu} \\ -0.04C_{9'\mu} + 0.03C_{9\mu}^2 - 0.03C_{9\mu}C_{9'\mu}$$
Approximating $P_5^{\prime \mu} \simeq P_5^{\prime \mu \text{ SM}} - 0.25\tilde{C}_{9\mu}$ (with $\tilde{C}_{9\mu} = C_{9\mu} - 0.8C_{10'\mu}$)

• A $C_{9\mu}$ of $\mathcal{O}(-1)$ is required to explain $P_{5\mu}^{\prime [1.1,6]}$ and $C_{10\mu}$ is marginal in P_5^{\prime}

► $C_{9\mu} = -C_{10\mu}$ fails \Leftarrow it forces a too small $C_{9\mu}$ due to $B_s \to \mu\mu$ constrain on $C_{10\mu}$.

a) If data only from Q_5 and $P_5'^{\mu}$ we obtain a lower bound on the universal piece:

$$|\mathcal{C}_9^{\textit{U}}| \simeq |\tilde{\mathcal{C}}_{9\mu} - \tilde{\mathcal{C}}_{9\mu}^{\textit{V}} + 0.8(\mathcal{C}_{10'\mu} - \mathcal{C}_{10'\mu}^{\textit{V}})| \geq |\tilde{\mathcal{C}}_{9\mu} - \tilde{\mathcal{C}}_{9\mu}^{\textit{V}}|$$

Q3: Measuring the whole $C_{9\mu} = C_{9\mu}^V + C_9^U$ to get C_9^U

The observable that best measures the whole NP piece of the semileptonic coefficient $C_{9\mu}$ is $P'_{5\mu}$

$$P_{5\mu}^{\prime [1.1,6]} = P_{5\mu}^{\prime \text{SM}} - 0.25C_{9\mu} + 0.20C_{10'\mu} - 0.02C_{10\mu} \\ -0.04C_{9'\mu} + 0.03C_{9\mu}^2 - 0.03C_{9\mu}C_{9'\mu}$$

Approximating $P_5^{\prime\mu} \simeq P_5^{\prime\mu\,\rm SM} - 0.25 \tilde{C}_{9\mu}$ (with $\tilde{C}_{9\mu} = C_{9\mu} - 0.8 C_{10^\prime\mu}$)

• A $C_{9\mu}$ of $\mathcal{O}(-1)$ is required to explain $P_{5\mu}^{\prime [1.1,6]}$ and $C_{10\mu}$ is marginal in P_5^{\prime} • $C_{9\mu} = -C_{10\mu}$ fails \Leftarrow it forces a too small $C_{9\mu}$ due to $B_s \rightarrow \mu\mu$ constrain on $C_{10\mu}$.

a) If data only from Q_5 and $P_5^{\prime\mu}$ we obtain a lower bound on the universal piece:

$$|\mathcal{C}_9^U| \simeq |\tilde{\mathcal{C}}_{9\mu} - \tilde{\mathcal{C}}_{9\mu}^V + 0.8(\mathcal{C}_{10'\mu} - \mathcal{C}_{10'\mu}^V)| \ge |\tilde{\mathcal{C}}_{9\mu} - \tilde{\mathcal{C}}_{9\mu}^V|$$

b) if also data on $P_5^{\prime e}$ is provided by LHCb then

$$|\mathcal{C}_9^{\textit{U}}| \simeq |\tilde{\mathcal{C}}_{9e} + 0.8 \mathcal{C}_{10'e}| \geq |\tilde{\mathcal{C}}_{9e}|$$

 $P_1(Q_1)$ can also help in the disentangling strategy:

c) informing on presence of RHCs (Hyp.V) d) turning $\tilde{\mathcal{C}} \to \mathcal{C}$ & bound \to measurem.

This observable measures $\tilde{\mathcal{C}}_{9\mu}^{\rm NPV} + \tilde{\mathcal{C}}_{9}^{U}$ that in absence of RHC is $\mathcal{C}_{9\mu}^{\rm NPV} + \mathcal{C}_{9}^{U}$

An explanation of P'_5 purely in terms of hadronic SM is simply wrong ($C_{9\mu}^{\rm NP\,V} \neq 0$ for R_{κ}).

C_9^U Possible Origins?

C_9^U Possible Origins?

Non-exclusive (and non-exhaustive) possibilities

C_9^U Possible Origins?

Non-exclusive (and non-exhaustive) possibilities

Direct NP contribution.... a Z'?

C_9^U Possible Origins?

Non-exclusive (and non-exhaustive) possibilities

- Direct NP contribution.... a Z'?
- Loop-effects with SM particles
 - τ -loops with or without connection with $R_{D(*)}$.

C_9^U Possible Origins?

Non-exclusive (and non-exhaustive) possibilities

- Direct NP contribution.... a Z'?
- Loop-effects with SM particles
 - τ -loops with or without connection with $R_{D(*)}$.
- Contrived hadronic contribution beyond those already included
 - Unlikely considering recent theoretical progress.
 - ▶ Nicely it can be bounded using info on Q_5 , $b \rightarrow s\tau\tau$ (or other LFU NP sources).

LFU via tau-loops: An EFT interpretation SMEFT

Connect $b \to s\ell\ell$ and $b \to c\ell\nu$ anomalies within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEET} = \mathcal{L}_{SM} + \mathcal{L}_{d > A}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

▶ FCCC part of $\mathcal{O}_{2333}^{(3)}$ can describe $R_{D(*)}$ (rescaling of G_F for $b \to c\tau\nu$)

- FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2333}^{(1)} = C_{2333}^{(3)}$ (assumed $C_{33}^{(3)} = 0$) [Capdevila, Crivellin, SDG, Hofer, Matias]
 - Avoids bounds from $B \to K^{(*)}\nu\nu$, Z decays, direct production in $\tau\tau$
 - Large NP contribution b → sττ through C^V_{9τ} = −C^V_{10τ}
 - Through radiative effects, NP contribution to C^U₀

Hyp: link between charged-neutral anomalies in SMEFT in scenario 8: $C_9^V = -C_{10}^V, C_9^U$ Huge $B_s \to \tau^+ \tau^-$ and $B \to K^{(*)} \tau^+ \tau^ \downarrow \downarrow$ off-shell photon penguin with $O_9^{\tau\tau}$ generates LFU-NP in C_9 Combining all leads to:

IPPP conference, 16th April 2022

Hypothesis: link between charged and neutral anomalies in SMEFT in scenario 8 Huge $B_s \rightarrow \tau^+ \tau^-$ and $B \rightarrow K^{(*)} \tau^+ \tau^ \downarrow \downarrow$ off-shell photon penguin with $\mathcal{O}_9^{\tau\tau}$ generates LFU-NP in \mathcal{C}_9

Furthermore if the link with $R_{D(*)}$ exists it should fulfill:

... also without R_D connection

Also a more general link between C_9^U and $b \to s \tau \tau$ is possible(without R_D connection)

Mixing of $\mathcal{O}_9^{\tau\tau}$ into \mathcal{O}_9^U

$$\mathcal{C}_9^{\tau\tau} \to \mathcal{C}_9^U$$
 (1)

IF assumed that LQs is the most plausible solution also $C_{10}^{\tau\tau}$ is present

•
$$C_9^{\tau\tau} = C_{10}^{\tau\tau}$$
 in case of S_2 LQ

• $C_9^{\tau\tau} = -C_{10}^{\tau\tau}$ in case of U_1 or $S_1 + S_3$ LQs

In both cases same plots of C_9^U versus $\mathcal{B}_{B_s \to \tau \tau}$ and $\mathcal{B}_{B \to K^* \tau \tau}$ holds (but not $R_{D(*)}$)

Anything else?

Once identified:

- $C_{9\mu}^V$ from Q_5
- C_9^U from $(P_5'^{\mu} Q_5 = P_5'^e)$

 Δ between C_9^U from $P_5^{\prime e}$ and $C_9^{\rm NP U}$ generated from τ -loops or other LFU NP sources:

quantitative upper bound on the existence (or not) of some marginal non-perturbative contribution.

A raw estimate of it is the difference between:

- C_9^U from global fit without the connection with R_{D,D^*}
- C_9^{NPU} from τ -loop with R_{D,D^*} link (at a scale of $\Lambda = 2 \text{ TeV}$)

With present data this amount in scenario 8 to an upper bound of $|\Delta| < 0.3$

- Compatible with zero at 1σ
- The larger the A scale the smaller the contribution
- Other LFU-NP sources may contribute and further reduce Δ

Disentangling scenarios

Conclusions

$C_{9\mu}$ decision tree

or in words...

- We pointed out that:
 - the degeneracy among dominant scenarios (Pull_{SM} > 7σ) is due to the similar weight of WC entering R_X observables.
 - $\blacktriangleright\,$ the breaking of this degeneracy requires a $\mathcal{C}_{9\mu}\text{-}\text{dominated observable}$
- Understanding the structure of NP of $C_{9\mu}^{NP} = C_{9\mu}^{V} + C_{9}^{U}$ is crucial to disentangle the two main scenarios:
 - Hypothesis V \rightarrow ($C_{9\mu}, C_{9'\mu} = -C_{10'\mu}$)
 - ▶ Scenario 8 → $(C_{9\mu}^V = -C_{10\mu}^V, C_9^U)$
- ▶ Size of $C_{9\mu}^V$ can be determined (up to a small RHC) by Q_5
- Size of C_9^U can be determined (up to a small RHC) by $P_5^{\prime e}$ (or Q_5 and $P_5^{\prime \mu}$)
 - If the link between $\frac{R_D^{(*)}}{R_D^{(*)}SM}$ and $b \to s\ell\ell$ holds a large $b \to s\tau\tau$ is generated.
 - ▶ C_9^{UNP} can be induced by τ -loops and connected with $\mathcal{B}_{B_s \to \tau^+ \tau^-}$ and $\mathcal{B}_{B \to K^* \tau^+ \tau^-}$
 - ▶ Other NP sources of LFU are possible (Z').
- ► The difference between C₉^U and C₉^{UNP} (if any) is all the possible space for a marginal extra hadronic contribution.

Questions:

- ▶ What is the expected precision achievable for Q₅ in the short and long-term?
- ▶ How large have to be $B_s \rightarrow \tau \tau$ and $B \rightarrow K^* \tau \tau$ to be measurable at LHCb? What are the short term perspectives?