
IPPP conference, 16th April 2022

A path to break degeneraciesamong New Physics patterns in b → s``
Joaquim Matias Universitat Autònoma de Barcelona



Motivation and goals

My starting point:
The results on global fits to 254 observables presented in Bernat’s talk

Problem to face in this talk:

Only by adding more and more statistics blindly in some observablesof the global analyses it will be very difficult to disentangle
the scenario realized in Nature among the preferred ones.
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Our goal:
To identify the key observables that can help to truly change the present paradigm

guiding global fits and breaking degeneracies.

... and learn also about hadronic physics (if not marginal).
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b → s`` in the weak effective theory
I Effective Hamiltonian at scale mb: Hbs``eff = Hbs``eff, SM +Hbs``eff, NP

Hbs``eff, NP = −4GF√2 VtbV∗ts ∑
i
CiOi + h.c.

We also include a small λu contribution.
I From the set of operators (` = e, µ)

Obs7 =
e16π2 mb(s̄σµνPRb)Fµν , O′bs7 =

e16π2 mb(s̄σµνPLb)Fµν ,
Obs``9 =

e2
16π2 (s̄γµPLb)(¯̀γµ`) , O′bs``9 =

e2
16π2 (s̄γµPRb)(¯̀γµ`) ,

Obs``10 =
e2

16π2 (s̄γµPLb)(¯̀γµγ5`) , O′bs``10 =
e2

16π2 (s̄γµPRb)(¯̀γµγ5`) ,

O7,7′ (even if constrained by radiative decays important to let them float)

J. Matias (UAB) IPPP conference, 16th April 2022 3/27



What the most relevant observables tell us?

1 BBs→µ+µ− exhibits a small (but persistent) deviation from the SM. It requires
CNP10µ positive (small) or CNP10′µ negative or both or a scalar contribution.

2 P′5 requires a large (absolute value) negative contribution to CNP9µ

3 RX signals the presence of LFUV andit admits many solutions with C9µ and C10µ that gives similar results.... difficult to disentangle among preferred scenarios.

For a long time there was a discussion among two scenarios:
a C9µ large (abs.val.) and negative that can explain P′5 and all the anomalies(BBs→µ+µ− requires a scalar contribution).Caveat: difficult for model-building.
b C9µ = −C10µ small that can explain some anomalies but totally fails with P′5(BBs→µ+µ− is explained with C10µ). Model-building welcome.

.... now this discussion is superseded (we will see why)
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Present picture

The global fits to 254 observables presented in Bernat’s talk⇒

Two main conclusions:

I Iteration after iteration the PullSM of most hypotheses...have been confirmed or increased.
I The preferred scenarios in terms of PullSM:

I All contain the coefficient of the semileptonic operator Obs``9
I They remain packed within a narrow range
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Time-evolution of global fits

1D hypothesis:
For the complete fit, the PullSM:

I CNP9µ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
I CNP9µ = −CNP10µ : 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

Or for the 6D fits:
CNP7 CNP9µ CNP10µ C7′ C9′µ C10′µ

Bfp +0.01 -1.21 +0.15 +0.01 +0.37 -0.211 σ [−0.02,+0.04] [−1.38,−1.01] [+0.00,+0.34] [−0.02,+0.03] [−0.12,+0.80] [−0.42,+0.02]2 σ [−0.04,+0.06] [−1.52,−0.83] [−0.11,+0.49] [−0.03,+0.05] [−0.51,+1.12] [−0.60,+0.23]

I PullSM: 5.1σ [2019]→ 5.8σ [2020]→ 6.6σ [2021] (49.9%)
Some of the most relevant 2D hypotheses:

Hyp V∗: (C9µ=−1.15, C9′µ=−C10′µ = +0.17) are 5.9 [2019], 6.6 [2020], 7.1 [2021]
Scn 8: (CV9µ=−CV10µ=−0.34, CU9 =−0.82) are 5.7 [2019], 6.5 [2020], 7.2 [2021]

Notice that RHCs are only O(15%) w.r.t. the dominant C9µ

J. Matias (UAB) IPPP conference, 16th April 2022 6/27



Time-evolution of global fits
1D hypothesis:

For the complete fit, the PullSM:
I CNP9µ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
I CNP9µ = −CNP10µ : 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

Or for the 6D fits:
CNP7 CNP9µ CNP10µ C7′ C9′µ C10′µ

Bfp +0.01 -1.21 +0.15 +0.01 +0.37 -0.211 σ [−0.02,+0.04] [−1.38,−1.01] [+0.00,+0.34] [−0.02,+0.03] [−0.12,+0.80] [−0.42,+0.02]2 σ [−0.04,+0.06] [−1.52,−0.83] [−0.11,+0.49] [−0.03,+0.05] [−0.51,+1.12] [−0.60,+0.23]

I PullSM: 5.1σ [2019]→ 5.8σ [2020]→ 6.6σ [2021] (49.9%)
Some of the most relevant 2D hypotheses:

Hyp V∗: (C9µ=−1.15, C9′µ=−C10′µ = +0.17) are 5.9 [2019], 6.6 [2020], 7.1 [2021]
Scn 8: (CV9µ=−CV10µ=−0.34, CU9 =−0.82) are 5.7 [2019], 6.5 [2020], 7.2 [2021]

Notice that RHCs are only O(15%) w.r.t. the dominant C9µ

J. Matias (UAB) IPPP conference, 16th April 2022 6/27



Time-evolution of global fits
1D hypothesis:

For the complete fit, the PullSM:
I CNP9µ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
I CNP9µ = −CNP10µ : 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

Or for the 6D fits:
CNP7 CNP9µ CNP10µ C7′ C9′µ C10′µ

Bfp +0.01 -1.21 +0.15 +0.01 +0.37 -0.211 σ [−0.02,+0.04] [−1.38,−1.01] [+0.00,+0.34] [−0.02,+0.03] [−0.12,+0.80] [−0.42,+0.02]2 σ [−0.04,+0.06] [−1.52,−0.83] [−0.11,+0.49] [−0.03,+0.05] [−0.51,+1.12] [−0.60,+0.23]

I PullSM: 5.1σ [2019]→ 5.8σ [2020]→ 6.6σ [2021] (49.9%)

Some of the most relevant 2D hypotheses:
Hyp V∗: (C9µ=−1.15, C9′µ=−C10′µ = +0.17) are 5.9 [2019], 6.6 [2020], 7.1 [2021]

Scn 8: (CV9µ=−CV10µ=−0.34, CU9 =−0.82) are 5.7 [2019], 6.5 [2020], 7.2 [2021]
Notice that RHCs are only O(15%) w.r.t. the dominant C9µ

J. Matias (UAB) IPPP conference, 16th April 2022 6/27



Time-evolution of global fits
1D hypothesis:

For the complete fit, the PullSM:
I CNP9µ has been 4.5 [2016], 5.8 [2018], 5.6 [2019], 6.3 [2020], 7.0 [2021].
I CNP9µ = −CNP10µ : 4.2 [2016], 5.3 [2018], 5.2 [2019], 5.8 [2020], 6.5 [2021].

Or for the 6D fits:
CNP7 CNP9µ CNP10µ C7′ C9′µ C10′µ

Bfp +0.01 -1.21 +0.15 +0.01 +0.37 -0.211 σ [−0.02,+0.04] [−1.38,−1.01] [+0.00,+0.34] [−0.02,+0.03] [−0.12,+0.80] [−0.42,+0.02]2 σ [−0.04,+0.06] [−1.52,−0.83] [−0.11,+0.49] [−0.03,+0.05] [−0.51,+1.12] [−0.60,+0.23]

I PullSM: 5.1σ [2019]→ 5.8σ [2020]→ 6.6σ [2021] (49.9%)
Some of the most relevant 2D hypotheses:

Hyp V∗: (C9µ=−1.15, C9′µ=−C10′µ = +0.17) are 5.9 [2019], 6.6 [2020], 7.1 [2021]
Scn 8: (CV9µ=−CV10µ=−0.34, CU9 =−0.82) are 5.7 [2019], 6.5 [2020], 7.2 [2021]

Notice that RHCs are only O(15%) w.r.t. the dominant C9µ
J. Matias (UAB) IPPP conference, 16th April 2022 6/27



This brings three main intertwined questions:

Q1. What is the reason of this degeneracy?

Q2. Can we break this degeneracy?

Q3. Is the degeneracy linked to the NP structure of C9µ?
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Q1: Reason of the degeneracy

The LFUV central observables:...RK and RK∗ (to a lesser extent) have the structure in the bin [1.1,6] GeV2

RK = [1− 0.26(C10µ + C10′µ) + 0.23(C9µ + C9′µ) + SK
µ]/

[1− 0.26(C10e + C10′e) + 0.23(C9e + C9′e) + SKe ] ,

The equal weight of all contributions (semileptonic and rhcs)...is at the origin of the degeneracy problem

To find an observable with a different structure is required....
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Q3: The structure of C9µ

Let’s focus on the different contributions of the semileptonic coefficient C9µ

Ceff9µ → Ceff9µ = CSM9µ pert + CNP9µ + Ccc̄ B→K∗9µ j
I CSM9µ pert stands for the perturbative SM contribution
I Ccc̄ B→K∗9µ helicity & q2-dependent, contains long-distance charm and inside Ceff9µ(one soft-gluon exchange)

where in our conservative parametrization:
Ccc̄ B→K∗9 j = sjCcc̄ B→K∗9 jKMPW with si nuisance parameters from -1 to 1

Other estimates of long-distance charm would require a separated analysis.
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Q2 and Q3: The structure of C9µ

In [Algueró, Capdevila, Descotes-Genon, Masjuan, JM, PRD’19, 1809.08447] it was proposed:... to remove hypothesis that NP is purely LFUV
CNPie = CUiCNPiµ = CNPViµ + CUi

I Common contribution CUi to all charged leptons.
In particular (i = 9):

• CNP9µ is then splited in two pieces: CNPV9µ and CU9µ
Can we disentangle/measure in an efficient way these two different pieces?
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CV9µ Lepton Flavour Universal Violating piece
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Q2 and Q3: CV9µ
Solution: We need an LFUV CV9µ-dominated observable.

This is Q5:→ excellent disentangling properties like RK (contrary to RK∗ )
Q5 = QSM5 − 0.25CV9µ + 0.20CV10′µ − 0.02CV10µ

−0.04CV9′µ + 0.03CV9µ2 − 0.03CV9µCV9′µ + RC
I CViµ = Ciµ − Cie, RC is marginal, redefine C̃V9µ = CV9µ − 0.8CV10′µ (absorb RHC).

where C̃V9µ is obtained using
Q5 ' QSM5 − 0.25C̃V9µ and QSM5 = −0.0074± 0.0007

But in global fits strong correlation of sign of C10′ ∼ −0.2 and C9µ ∼ −1
Lower bound on the absolute value of |CV9µ|

|CNPV9µ | ' |C̃V9µ + 0.8CV10′µ| ≥ |C̃V9µ|
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Q5 classifies scenarios in two groups:
I Q5 large→ all scenarios with large CV9µ (negligible CU9 )
I Q5 small→ scenarios with small CV9µ and large CU9 .

0.0

0.1

0.2

0.3

I C9µ = −1.01
I C9µ = −1.12, C9′µ = +0.36
I C9µ = −1.15, C10′µ = −0.26
I Hyp 1: C9µ = −C9′µ = −1.01

C10µ = C10′µ = +0.31
I Hyp 5: C9µ = −1.15

C9′µ = −C10′µ = +0.17
I Scn 10: CV9µ = −0.98, CU10 = +0.27
I Scn 11: CV9µ = −1.06, CU10′ = −0.23
I Scn 13: CV9µ = −1.11, CV9′ = +0.37
CU10 = +0.28, CU10′ = +0.03

I Scn 8: CV9µ = −CV10µ = −0.34
CU9 = −0.82

I Scn 6: CV9µ = −CV10µ = −0.52
CU9 = CU10 = −0.38Q[1,6]5 = 0.656± 0.485± 0.103 (Belle PRL 2017)

All top scenarios CV9µ ∼ −1
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Most preferred scenariospredicts RK far away from one.
One of the most interestingscenarios (8) predicts Q5 quiteclose to 0⇒ P′µ5 ∼ P′e5 6= SM.
RK ∼ 0.8 and Q5 ∼ 0.1 with tinyexperimental uncertaintieswould be great news!!!
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CV9µ is an undoubtedly signal of New Physics
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CU9 Lepton Flavour Universal piece
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Q3: Measuring the whole C9µ = CV9µ + CU9 to get CU9
The observable that best measures

the whole NP piece of the semileptonic coefficient C9µ is P′5µ
P′ [1.1,6]5µ = P′SM5µ − 0.25C9µ + 0.20C10′µ − 0.02C10µ

−0.04C9′µ + 0.03C29µ − 0.03C9µC9′µ

Approximating P′µ5 ' P′µ SM5 − 0.25C̃9µ (with C̃9µ = C9µ − 0.8C10′µ)
I A C9µ of O(−1) is required to explain P′ [1.1,6]5µ and C10µ is marginal in P′5
I C9µ = −C10µ fails⇐ it forces a too small C9µ due to Bs → µµ constrain on C10µ.

a) If data only from Q5 and P′µ5 we obtain a lower bound on the universal piece:
|CU9 | ' |C̃9µ − C̃V9µ + 0.8(C10′µ − CV10′µ)| ≥ |C̃9µ − C̃V9µ|

b) if also data on P′e5 is provided by LHCb then
|CU9 | ' |C̃9e + 0.8C10′e| ≥ |C̃9e|

P1 (Q1) can also help in the disentangling strategy:
c) informing on presence of RHCs (Hyp.V) d) turning C̃ → C & bound→measurem.
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This observable measures C̃NPV9µ + C̃U9that in absence of RHC is CNPV9µ + CU9

An explanation of P′5 purely in terms ofhadronic SM is simply wrong (CNPV9µ 6= 0
for RK) .
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All details in [Algueró, Capdevila, Crivellin, Matias] to appear in arXiv

CU9 Possible Origins?

Non-exclusive (and non-exhaustive) possibilities
I Direct NP contribution.... a Z′?
I Loop-effects with SM particles

I τ -loops with or without connection with RD(∗) .
I Contrived hadronic contribution beyond those already included

I Unlikely considering recent theoretical progress.
I Nicely it can be bounded using info on Q5 , b→ sττ (or other LFU NP sources).
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LFU via tau-loops: An EFT interpretation SMEFT
Connect b→ s`` and b→ c`ν anomalies within SMEFT (ΛNP � mt,W,Z)
LSMEFT = LSM + Ld>4 with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]
I Two ops. with left-handed doublets

O(1)ijkl = [Q̄iγµQj][L̄kγµLl] O(3)ijkl = [Q̄iγµ~σQj][L̄kγµ~σLl]

I FCCC part of O(3)2333 can describe RD(∗) (rescaling of GF for b→ cτν)
I FCNC part of O(1,3)2333 with C(1)2333 = C(3)2333 (assumed C(3)33 = 0)

[Capdevila, Crivellin, SDG, Hofer, Matias]
I Avoids bounds from B→ K(∗)νν , Z decays, direct production in ττ

I Large NP contribution b→ sττ through CV9τ = −CV10τ
I Through radiative effects, NP contribution to CU9
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Hyp: link between charged-neutral anomalies in SMEFT in scenario 8: CV9 = −CV10, CU9
⇓Huge Bs → τ+τ− and B→ K(∗)τ+τ−

⇓off-shell photon penguin with Oττ9 generates LFU-NP in C9
Combining all leads to:

CU9∝ CSM10 log(Λ2/µ2b) R 12 (assuming
RD(∗)RSMD(∗)

> 1)

where R =
BexpBs→τ+τ−

BSMBs→τ+τ− and similarly for BB→K∗τ+τ− :
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Hypothesis: link between charged and neutral anomalies in SMEFT in scenario 8
⇓Huge Bs → τ+τ− and B→ K(∗)τ+τ−

⇓off-shell photon penguin with Oττ9 generates LFU-NP in C9

Furthermore if the link with RD(∗) exists it should fulfill:
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... also without RD connection
Also a more general link between CU9 and b→ sττ is possible...(without RD connection)

Mixing of Oττ9 into OU9

Cττ9 → CU9 (1)
IF assumed that LQs is the most plausible solution also Cττ10 is present

I Cττ9 = Cττ10 in case of S2 LQ
I Cττ9 = −Cττ10 in case of U1 or S1 + S3 LQs

In both cases same plots of CU9 versus BBs→ττ and BB→K∗ττ holds (but not RD(∗) )
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Anything else?
Once identified:

I CV9µ from Q5
I CU9 from (P′µ5 − Q5 = P′e5 )

∆ between CU9 from P′e5 and CNPU9 generated from τ -loops or other LFU NP sources:
quantitative upper bound on the existence (or not) of some marginalnon-perturbative contribution.

A raw estimate of it is the difference between:
I C U9 from global fit without the connection with RD,D∗
I CNPU9 from τ -loop with RD,D∗ link (at a scale of Λ = 2 TeV)

With present data this amount in scenario 8 to an upper bound of |∆| < 0.3
I Compatible with zero at 1σ
I The larger the Λ scale the smaller the contribution
I Other LFU-NP sources may contribute and further reduce ∆
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Disentangling scenarios
(Q� = �.� ± �.�) All LFUVDominant Hyp. Best �t PullSM p-value Best �t PullSM p-value

[CV�µ = �CV��µ, CU� ] [-�.��,-�.8�] �.� ��.8 % [-�.��,-�.86] �.� �6.� %
[CNP�µ , C�0µ = �C��0µ] [-�.��,+�.��] �.� ��.6 % [-�.��,+�.��] �.� ��.� %

(Q� = �.� ± �.�) All LFUVDominant Hyp. Best �t PullSM p-value Best �t PullSM p-value
[CV�µ = �CV��µ, CU� ] [-�.��,-�.8�] �.� �8.� % [-�.��,+�.��] �.� 66.� %

[CNP�µ , C�0µ = �C��0µ] [-�.��,+�.��] 6.� ��.� % [-�.�8,+�.��] �.� ��.8 %

(Q� = �.�� ± �.��) All LFUVDominant Hyp. Best �t PullSM p-value Best �t PullSM p-value
[CV�µ = �CV��µ, CU� ] [-�.��,-�.��] 8.� �� % [-�.��,-�.6�] �.� ��.� %

[CNP�µ , C�0µ = �C��0µ] [-�.��,+�.��] �.� ��.6 % [-�.��,+�.��] �.� ��.� %
(Q� = �.�� ± �.��) All LFUVDominant Hyp. Best �t PullSM p-value Best �t PullSM p-value
[CV�µ = �CV��µ, CU� ] [-�.��,-�.8�] �.� �8.� % [-�.��,-�.��] �.� 66.6 %

[CNP�µ , C�0µ = �C��0µ] [-�.8�,+�.�8] 6.6 ��.� % [-�.�6,+�.�6] �.� ��.� %

J. Matias (UAB) IPP conference, �6th April ���� ��/��
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Conclusions C9µ decision tree
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or in words...
I We pointed out that:

I the degeneracy among dominant scenarios (PullSM > 7σ) is due to the similarweight of WC entering RX observables.
I the breaking of this degeneracy requires a C9µ-dominated observable

I Understanding the structure of NP of CNP9µ = CV9µ + CU9 is crucial to disentanglethe two main scenarios:
I Hypothesis V→ (C9µ, C9′µ = −C10′µ)

I Scenario 8→ (CV9µ = −CV10µ, CU9 )

I Size of CV9µ can be determined (up to a small RHC) by Q5
I Size of CU9 can be determined (up to a small RHC) by P′e5 (or Q5 and P′µ5 )

I If the link between R(∗)DR(∗)D SM
and b→ s`` holds a large b→ sττ is generated.

I CU NP9 can be induced by τ -loops and connected with BBs→τ+τ− and BB→K∗τ+τ−

I Other NP sources of LFU are possible (Z′).
I The difference between CU9 and CU NP9 (if any) is all the possible space for amarginal extra hadronic contribution.
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Questions:
I What is the expected precision achievable for Q5 in the short and long-term?

I How large have to be Bs → ττ and B→ K∗ττ to be measurable at LHCb?What are the short term perspectives?
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