Prospects from the general purpose detectors at the LHC

Beyond the Flavour Anomalies III Yuta Takahashi (Univ. of Zürich) On behalf of the CMS Collaboration

Reference: <u>https://cms-results-search.web.cern.ch/</u>

University of Zurich^{UZH}

Role of the Energy-Frontier experiment

Directly probe new physics at high-q²

Hopefully, we can **produce** new physics via mass on-shell ($q^2 > m_{NP}^2$) and reveal its properties

But even if it is not i.e. mass off-shell ($q^2 < m_{NP}^2$), we can provide **significant** constraint on possible new physics scenario

 \rightarrow test new physics with much better s/b !

Today's talk

- potentially explain B-physics anomalies

Conclusion & discussions

Highlight relevant high-q² searches of new physics that can

• Describe our B-physics programs as well as its future prospects

Note: only focus on CMS results but similar results also obtained by <u>ATLAS</u>

Leptoquark searches

- Large cross-section
- Model-independent

Single prod.

cross-section $\propto \lambda^2$ (model dependent)

General strategy:

- Fit the distribution with signal templates with various mass

• Require final state particles and use ΣE_T as final discriminant

assumption and do hypothesis testing

1500

• Many final states examined (e, μ , τ , ν) x (u/d/c/s-jet, b, t)

		CMS Prelimin	nary				
LQ(eq)	$LQ(ej)LQ(ej), BR(LQ \rightarrow ej) = 1, j = u, d$	1811.01197					
	$LQ(ej)LQ(ej) + LQ(ej)LQ(v_ej), LQ, j = u, d$	1811.01197					
	$eLQ(ej), BR(LQ \rightarrow ej) = 1, \lambda = 1, j = u, d$	1509.03	750				
	$LQ(et)LQ(et), BR(LQ \rightarrow et) = 1$	2202.08676					
$LQ(\mu q)$	$LQ(\mu c)LQ(\mu c), BR(LQ \rightarrow \mu c) = 1$	1808.05082					
	$LQ(\mu c)LQ(\mu c) + LQ(\mu c)LQ(\nu_{\mu}s), BR(LQ \rightarrow \mu c, \nu_{\mu}s) = 0.5, 0.5$	1808.05082					
	$\mu LQ(\mu j), BR(LQ \rightarrow \mu j) = 1, j = u, d$	1509.03	750	0.3-0.66			
	$LQ(\mu t)LQ(\mu t), BR(LQ \rightarrow \mu t) = 1, \lambda = 1$	1809.05	558				
	$LQ(\mu t)LQ(\mu t), BR(LQ \rightarrow \mu t) = 1$	2202.08676					
LQ(au q)	$LQ(\tau b)LQ(\tau b), BR(LQ \rightarrow \tau b) = 1$	1811.01	197		0.3–1.02	2	
	$\tau LQ(\tau b), BR(LQ \rightarrow \tau b) = 1, \lambda = 1$	1806.03472		0.2–0.74			
	$LQ(\tau t)LQ(v_{\tau}b) + v_{\tau}LQ(\tau t)$, Equal LQ coupling to τt , $v_{\tau}b$, $\lambda = 2.5$		2012.04178		0.5–1.02	2	
	$LQ(\tau b)LQ(v_{\tau}t) + \tau LQ(v_{\tau}t)$, Equal LQ coupling to τb , $v_{\tau}t$, $\lambda = 2.5$		2012.04178				
	$LQ(\tau t)LQ(\tau t), BR(LQ \rightarrow \tau t) = 1$	2202.08676				0.2-	
LQ(uq)	$LQ(v_{e(\mu)}j)LQ(v_{e(\mu)}j), BR(LQ \rightarrow v_{e(\mu)}j) = 1, j = u, d, s, c$		1909.03460			0.8	
	$LQ(v_{\tau}b)LQ(v_{\tau}b), LQ \rightarrow v_{\tau}b) = 1$		1909.03460				
	$LQ(v_{\tau}t)LQ(v_{\tau}t), LQ \rightarrow v_{\tau}t) = 1$		1909.03460			0.5	
	$LQ(v_eu)LQ(v_eu) + v_eLQ(v_eu), BR(LQ \rightarrow v_eu) = 1, \lambda = 1$				2107.13021		
	Scalar Vector(k=0) Vector	لے۔ 00 0. ector(k=1)	.25 0.5	50 0.	75 1.0 Ma)0 355	
Se	Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).						

- No indications of new physics (yet)

https://twiki.cern.ch/ twiki/bin/view/ <u>CMSPublic/</u> SummaryPlotsEXO13Te <u>V#Leptoquark_summar</u> y_plot

• Less gain expected in the future (sensitivity only scales by squared root of Integrated luminosity)

Search for non-resonant signals

 10^{-1} 10^{−2} ⊧ 10^{-3} 200 100 60

anomalies if the B-physics anomalies are real

Note1: no b-tag category also saw excess (LQ signal with exclusive bτ coupling would be small)

Note2: ATLAS didn't see corresponding excess at 1TeV

Dedicated search for non-resonant ττ signals

Standard method of using $\tau\tau$ invariant mass distribution m($\tau\tau$) won't work so well

Idea: look at angular correlations between two taus, $\Delta \eta(\tau, \tau)$

EXO-19-016

I. Neutelings

N

• We almost completed Run-2 analysis

- We observed "some excess" that is compatible with m(ττ) method
- Publish soon!

Future Prospect

It is this type of off-shell analyses that can strongly constrain new physics models explaining B-physics anomalies

Other ideas under discussions (examine tau polarization for those events that showed excess, detect interference pattern between off-shell $\tau\tau$ resonance and Standard model DY Z $\rightarrow \tau\tau$). More ideals/inputs welcome!

D. Faroughy

Vector-like lepton search

- Leptoquark won't be stand-alone (cf: $W_LW_L \rightarrow W_LW_L$ scattering violates unitarity \rightarrow necessitate Higgs boson)
- Some model (e.g. 4321) predicts new families of Vector-Like Lepton that couples to LQ

V. Mikuni

~3σ excess!

Intriguing result that can also support B-physics anomalies \rightarrow We are looking at other ττ final states

<u>B2G-21-004</u>

LFU test at high-pr

New physics that created "anomalies" in Bphysics experiment can create LFU violation at high-q² too \rightarrow complementary input!

N(ee) v.s. N($\mu\mu$) as a function of m(ll)

Binning in m(ll) will enhance sensitivity to new physics at high energy scale

Forward-backward asymmetry (ee v.s. μμ)

Forward: $cos\theta > 0$, Backward: $cos\theta < 0$

Q: What about $\mu\mu$ v.s. $\tau\tau$? With more data?

21

Flavoured Z' search

We put **minimum** assumptions:

- Z' exists and explain $b \rightarrow s\mu\mu$ anomaly
- Z' only couples to μ and τ s (e.g. L μ L τ model)

Event selection:

- $m(4\mu) \sim m_Z$
- Choose 2 muons, ${\color{black}\bullet}$ that, most probably come from Z'

Similar analysis with **μμττ** final state on-going!

B-physics program at CMS

- Unlike LHCb, we operate our detector at **high** instantaneous luminosity and a lot of trigger bandwidths have been allocated to high-p_T physics programs (e.g. Higgs, BSM searches)
- We do B-physics with the final state that has low rate enough to fit the overall trigger budget $\rightarrow \mu\mu$ final states (~100Hz out of 1kHz total budget)

13 21

- $-Br(B_{s^0} \rightarrow \mu\mu) = (3.66 \pm 0.14) \times 10^{-9}$

Future prospects of the $B_{s/d} \rightarrow \mu\mu$ decay CMS-PAS-FTR-18-013

- We are also developing a new trigger for Run-3

\mathcal{L} (fb $^{-1}$)	N(
300	205
3000	204

Updating with full Run-2 statistics (coming soon) — achieved improvement beyond luminosity scale

P5' analysis in $B^{0} \rightarrow K^{*0}\mu\mu$ decay

 $K^{*0} \rightarrow$ vector (3 polarisation states) Allows to access $C_7^{(i)}$, $C_9^{(i)}$, $C_{10}^{(i)}$, $C_{S,P}^{(i)}$

- **Run-1 result**
- Due to limited
- statistics, P1 and P5'
- are extracted among
- 8 parameters

- Triggered by displaced µµ
- ID of kaon and pion according to which • combination results in a K* mass closer to PDG (892 MeV)

<u>PLB 781 (2018) 517—541</u>

- - - dominated)

Plan to extract full set of 8 angular parameters

- on the data control region
- trigger performance

$R(J/\psi)$ analysis

Decay rate measurement of Bc $\rightarrow J/\psi \tau v$

- We can do a good job, • because CMS collected many events with J/ψ (by utilizing $J/\psi \rightarrow \mu\mu$ decay)
- Huge statistics lacksquare

Exploiting both leptonic and hadronic tau decays \rightarrow Challenging: τ lepton has low-momentum (< 10 GeV) \rightarrow it's very difficult to identify

V. Mikuni (ML postdoc @ Berkeley)

C. Galloni

Expect world-best sensitivity (targeting summer conference this year)

Extending our B-physics programs beyond µµ final state²¹

• In 2018, we've collected **10 billion** BB events by aggressively triggering on events that have single displaced muon

Tag-side: trigger biased

Probe-side: trigger unbiased

- We are performing **many** B-physics measurements together with newly developed low-p_T electron [<u>CMS-DP-2019-043</u>] and tau [<u>CMS-DP-2020-039</u>] reco. that are applicable down to a few GeV
- For Run-3, we are in preparation for even more ambitious triggers!

Conclusion

- B-physics anomalies have been providing us many clues:
 e.g. which new physics to be searched for? Which phase space to look at?
- Many efforts have been spent both in high-q2 and low-q2 physics
- Some of them seem to support B-physics anomalies but future updates with Run-3 and HL-LHC data will be crucial
- Since 2018, CMS has been extending B-physics effort by allocating more trigger bandwidth.
 We plan to further expand this effort in Run-3
- General-purpose detector will keep providing competitive input to the resolution of flavour anomalies

Discussions

During the course of "ττ excess" search, we found 3σ excess (local) at 100 GeV (ATLAS has no corresponding measurement; they only look at > 200 GeV)

Any connection w.r.t B-physics anomalies? If this is real, what signatures we should additionally look at?

Apart from this ...

any uncovered topics/signatures?

Missing information on HEP data?

