Close-out: the Legacy of Flavour Anomalies

"... remarks on what the anomalies might mean for the longer term future of the field"

Admir Greljo

28.04.2022, Beyond the Flavour Anomalies III

Flavour anomalies? $b \rightarrow s\ell\ell \quad b \rightarrow c\tau\nu \quad (g-2)_{\mu}$

 $b \rightarrow cud_i$ See talk by Ferlewicz & Gubernari & Lenz

Flavour anomalies? $b \rightarrow s\ell\ell \quad b \rightarrow c\tau\nu \quad (g-2)_{\mu}$

I) An experimental glitch

- a dried smoked herring, which is turned red by the smoke.
- 2 something, esp. a clue, that is or is intended to be misleading or distracting : the book is fast-paced, exciting, and full of red herrings. [ORIGIN: so named from the practice of using the scent of red herring in training hounds.]

II) A clue to address the known open questions?

Flavour puzzle, Higgs mass, Charge quantisation, ...

III) A discovery of a next big puzzle?

Scenario I

1 a dried smoked herring, which is turned red by the smoke.

2 something, esp. a clue, that is or is intended to be misleading or distracting : the book is fast-paced, exciting, and full of red herrings. [ORIGIN: so named from the practice of using the scent of red herring in training hounds.]

> (*) Very personal and selective. Not a review! Apologies for missing citations.

$1) \ \textit{Flavour Symmetries in the IR}$

• The exact and approximate accidental symmetries carefully revisited

Consistency game

Explain the anomalies while passing other tests of accidental symmetries

1) Flavour Symmetries in the IR

- MFV doesn't work well for B anomalies!
- Other flavour symmetries and their breaking patterns to be explored
- The winner in the quark sector: $U(2)^3$!
- Several options in the leptonic sector...

• $U(2)^3$ suggested Talk by Isidori before the anomalies Talk by Marzocca

1) Flavour Symmetries in the IR

- MFV doesn't work well for B anomalies!
- Other flavour symmetries and their breaking patterns to be explored
- The winner in the quark sector: $U(2)^3$!
- Several options in the leptonic sector...

• $U(2)^3$ suggested Talk by Isidori before the anomalies Talk by Marzocca

Charting the space of SMEFT with flavour symmetries

Faroughy, Isidori, Wilsch, Yamamoto; 2005.05366 AG, Thomsen, Palavric; 2203.09561

SMEFT $\mathcal{O}(1)$ terms		Lepton sector							
$(ext{dim-6},\Delta B=0)$		MFV_L	$\mathrm{U}(3)_V$	$\mathrm{U}(2)^2 \times \mathrm{U}(1)^2$	$U(2)^{2}$	$\mathrm{U}(2)_V$	$U(1)^{6}$	$U(1)^{3}$	No symm.
Quark sector	MFV_Q	47	54	65	71	80	87	111	339
	$\mathrm{U}(2)^2 \times \mathrm{U}(3)_d$	82	93	105	115	128	132	168	450
	$\mathrm{U}(2)^3 \times \mathrm{U}(1)_{b_\mathrm{R}}$	96	107	121	128	144	150	186	480
	$U(2)^{3}$	110	123	135	147	162	164	206	512
	No symm.	1273	1334	1347	1407	1470	1425	1611	2499

(*) Terms relevant for the high- p_T physics: Top, Higgs & electroweak

Impact: The LHC EFT WG asked for the flavour structure compatible with B anomalies

Bordone, Cornella, Fuentes-Martin, Isidori; 1712.01368

Far apart at short distances!

Universality of gauge interactions: Only **a low-energy property**?

Multi-scale flavour

• Series of hierarchical SSBs \implies Flavour hierarchies

Multi-scale flavour

• Series of hierarchical SSBs \implies Flavour hierarchies

Flavour as a topological defect

 • 5D warped compactification → Flavour + Higgs

Fuentes-Martin et al; 2203.01952

Bordone, Cornella, Fuentes-Martin, Isidori; 1712.01368

11

Stochastic gravitational wave radiation with the characteristic **three-peaked** signature.

$\sqrt{m_t m_b}$:	$\sqrt{m_s m_c}$:	$\sqrt{m_u m_d}$
1 :	10^{-2}	:	10^{-4}
f_{LISA}^{-1} :		:	f_{ET}^{-1} .

Allanach, Gripaios, Tooby-Smith; 2104.14555

- Classification of anomaly-free semisimple algebras containing the SM
- Novel 'GUTs' beyond the universal PS, SU(5) or SO(10)
- A prime example is $G = PS_1 \times PS_2 \times PS_3$ Bordone et al; 1712.01368

(Partial) Unification

 $G = SU(4) \times Sp(6) \times Sp(6)$

 $G = SU(12) \times SU(2) \times SU(2)$

Electroweak flavour unification

Davighi, Tooby-Smith; 2201.07245

Fresh ideas to be carefully explored irrespective of B anomalies!

Color flavour unification

Davighi, AG, Thomsen; 2202.05275

Lepton non-universal U(1) See talk by Zupan

- The prime example: $U(1)_{L_{\mu}-L_{ au}}$ Altmannshofer et all, 1403.1269, 1406.2332
- Classification of anomaly-free U(1) extensions Allanach, Davighi, Melville; 1812.04602
- Selection rules for leptoquarks and deriving accidental $U(1)^3$ AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

Lepton non-universal U(1) See talk by Zupan

- The prime example: $U(1)_{L_{\mu}-L_{\tau}}$ Altmannshofer et all, 1403.1269, 1406.2332
- Classification of anomaly-free U(1) extensions Allanach, Davighi, Melville; 1812.04602
- Selection rules for leptoquarks and deriving accidental $U(1)^3$ ${
 m AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518}$

3) **TeV-scale Leptoquarks**

3) **TeV-scale Leptoquarks**

Two flourishing model-building directions at the TeV-scale

Quark-Lepton Unification

• Variations of the original Pati-Salam idea $SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$

> e.g. Di Luzio, AG, Nardecchia; 1708.08450 AG, Stefanek; 1802.04274

The Composite Higgs

• If Higgs was a π , LQ would be a K, ...

e.g. Marzocca; 1803.10972 Gripaios, Nardecchia, Renner; 1412.1791

Fuentes-Martin, Stangl; 2004.11376

4) Flavour Physics in High- p_T Tails

4) Flavour Physics in High- p_T Tails

<u>Example</u>: Rare $c \rightarrow u\ell^+\ell^-$ decays

- Tiny SM rates: $BR(D^0 \rightarrow \mu^+ \mu^-) \sim \mathcal{O}(10^{-13})$ short-distance contribution negligible (efficient GIM suppression), long-distance dominated
- Already strong experimental upper limits: $BR(D^0 \rightarrow \mu^+\mu^-) \leq 6 \times 10^{-9}$ LHCb, 1305.5059
- Null test of the SM sensitive to New Physics

Scenario II

(*) Very personal and selective. Not a review! Apologies for missing citations.

New mass scale?

• IF $b \to s\ell^+\ell^-$ anomalies are genuine new physics effect \implies Major Revolution in HEP

Di Luzio, Nardecchia; 1706.01868

Observational evidence!

Stronger than the EW naturalness! Neutrino oscillations, Dark Matter, Baryon asymmetry, Inflation, etc could be a physics of a very high (or different) energy scale

• A bright long-term future for collider physics!

Low- p_T roadmap

- I. $b \rightarrow s\ell\ell$: Only μ ? LH or vectorial? Universal contribution? Mat
- 2. $b \to c\tau\nu$: Yes or No? Pardinas and Jung; Mathad and Smith; Bernlocher If yes, $\Lambda \leq 10$ TeV, $U(2)_{\ell}$ preferred, $g_{\tau} \gg g_{\mu}$. Eg $LQ \to \tau b$.
- 3. $(g-2)_{\mu}$: Yes or No? Leptonic $U(1)^3$. Chislett and Hagelstein
- 4. $b \to s\nu\nu \& b \to s\tau\tau$: Tilquin and Mohan $SU(2)_L$ prediction. If large $\gg 10\%$, $U(2)_\ell$ again.
- 5. $b \to d\ell \ell(\nu \nu)$: Test $U(2)_q$, also in $s \to d\nu \nu$ Altmannshofer and McCann
- 6. LFV in b decays: Leptonic flavour, e.g. $U(2)_{\ell}$ vs $U(1)^3$
- 7. cLFV $(e_i \rightarrow e_j)$, τ LFU, $\Delta F = 2$, EDMs, EWPO: Z and W pole physics, ...

Matias, Nabeebaccus, Reboud, Schune, Coutinho, Hadavizadeh, Inguglia, Amhis, Owen, Serra

The high- p_T targets

• $b \rightarrow s\ell\ell$:Tree-level

• Loop-level mediators \gtrsim 0.1 TeV and \lesssim few TeV

High- p_T LHC

Leptoquark searches

- Resonances and tails in:
 - $\tau \tau(b)$, Faroughy, AG, Kamenik; 1609.07138 - $\tau \nu(b)$, AG, Camalich, Ruiz-Alvarez; 1811.07920 Marzocca, Min, Son; 2008.07541 (coupling) ELQ ~ (coupling) e~ (coupling)2 - $\mu\mu(b)$, AG, Marzocca; 1704.09015 Afik et al; 1805.11402, 1912.00425 J think it is there... 138 fb⁻¹ (13 TeV) 38 fb⁻¹/1 95% CL Exc led: CMS 95% CL Excluded: CMS Observe Observed 68% expected 68% expe Preliminary Preliminary ---- Expected 95% expected ---- Expected 95% exp g റ Mass VLQ BM 1 VLQ BM 2 @Greljo 2017 Novel mechanism Resonant LQ production 95% CL preferred region 95% CL preferred region 3 2 2 3 m_U (TeV) m_u (TeV) CMS PAS HIG-21-001 Buonocore, Haisch, Nason, Tramontano, Zanderighi; 2005.06475 Haisch, Polesello; 2012.11474 AG, Selimovic; 2012.02092

Long-term future

FCC-hh versus MuC

< Minimalistic Z' model

Minimalistic LQ model >

5

FCC-hh versus MuC

Minimalistic EFT >

Obituary II:

<u>Obituary I:</u>

Died tragically due to overlooked systematics. Contributed to the development of new consistency tests at low- and high- p_T , revisited the flavour structure of the SMEFT, and ignited novel model-building ideas about non-universal gauge extensions, multi-scale flavour, accidental symmetries, etc.

A noble death only to give birth to a new physics beyond the Standard Model close to the electroweak scale. In their short lifetime, they manage to shake the world of particle physics. Their death marks the beginning of a new era. They secured the well-being of collider physics in the century to come.