Imperial College London

What are the future $b \rightarrow c l \nu$ measurements?

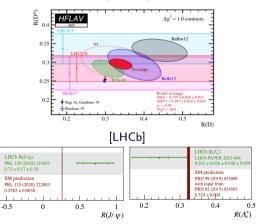
Beyond the flavour anomalies III, Durham

Abhijit Mathad, Mark Smith April 27, 2022

University of Zurich, Imperial College

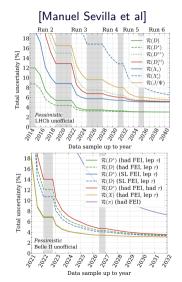
- Semileptonic $b \rightarrow c \ell \nu$ decays have provided a wealth of physics measurements from lepton flavour universality (LFU), CKM parameters, tests of QCD, charm hadron properties, etc.
- Tensions exist:
 - LFU violation at 3σ tension wrt SM \implies Hints of NP.
 - Inclusive/exclusive V_{cb} at 3σ tension \implies NP unlikely.
- A rich physics programme ongoing to address LFU.
- What to expect from this talk?
 - Future sensitivity on the various LFU ratio $R(X_c)$.
 - Future measurements, complimentary to $R(X_c)$, expected from LHCb, Belle II, CMS.
 - Discussion on challenges, current scenario and prospects for such measurements.

Tests of lepton flavour universality (I)


• Ratio of BFs involving different leptons are an excellent test of SM.

$$R(X_c) = \frac{BF(X_b \to X_c \ell \nu)}{BF(X_b \to X_c \ell' \nu)}$$

where $\ell, \ell' = e, \mu, \tau$.

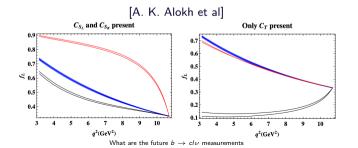

- Measure various $R(X_c)$ to a precision comparable to SM prediction.
- Overcome hurdles to achieve this:
 - Limited simulation sample size.
 - Knowledge of excited/double-charm bkgs.
 - Precision/knowledge of form factors (FF).
 - Hadronic τ normalisations?

[HFLAV]

Tests of lepton flavour universality (II)

- Current scenario:
 - Available measurements include: R(D^(*)) (B-factories and LHCb), R(J/ψ) and R(Λ_c).
 - Several ongoing measurements at LHCb of which $R(D^{(*)})$ is most advanced.
 - CMS to soon enter the arena.
- Future prospects:
 - Projections of the sensitivity of various R(X_c) for LHCb (top) and Belle-II (bottom) shown.
 - Future $R(X_c)$ include: $R(D^{**})$, $R(\Lambda_c^*)$, $R(D_s^{(*)})$.
 - Exploit light lepton ratios (NP in light leptons at per-mille level).

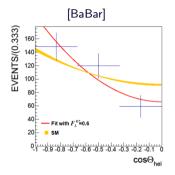
Complementary observables to probe new physics


- $R(X_c)$ are not the end of the story:
 - Some model dependence in integrated efficiencies / fit observables (q^2) .
 - They do not fully exploit the phase space of the decay.
- Fully exploit the data by considering complementary observables to probe NP.
 - Production polarisation of charm hadrons X_c.
 - Polarisation of the lepton.
 - Forward-backward asymmetry.
 - Triple product asymmetry.
 - CP violation in the decay.
 - Differential shapes.
- Let's discuss these observables in detail...

Production polarisation of charm hadron (I)

- An observable of interest is the production polarisation of the charm hadron (X_c) , with non-zero spin, produced from $X_b \to X_c \tau \nu$ decays.
- An example includes fraction of longitudinally (L) polarised D^* from $B^0 \to D^{*-} \tau^+ \nu$ decays

$$f_L^{D^*} = rac{\Gamma(D_L^*)}{\Gamma(D_L^*) + \Gamma(D_T^*)} pprox 45\%$$
 in SM .

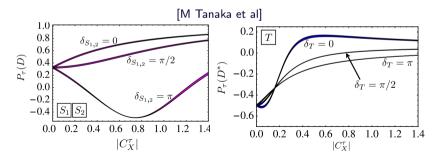

• NP scenarios can modify $f_L^{D^*}$, particularly scalar $(C_{S_{L/R}})$ and tensor (C_T) currents. Below blue band represents SM, with other coloured bands representing NP.

Production polarisation of charm hadron (II)

• Current scenario:

- First measurement by Belle in 2017 of $f_L^{D^*}$ using $B^0 \rightarrow D^{*-} \tau^+ \nu$ decays, exploiting various \overline{D}^0 decays and one-prong τ^- decays. Stands at 1.8 σ tension wrt SM.
- Ongoing LHCb analysis of $f_L^{D^*}$ with $B^0 \rightarrow D^{*-} (\rightarrow \overline{D}^0 \pi^-) \tau^+ \nu$ decays, using three-prong τ^- decays.

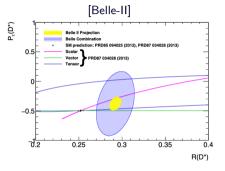
• Future prospects:


- Improve statistical precision on f_L^{D*} with Belle-II and LHCb Run III data (bkg. shape modelling becomes a limiting systematic).
- Extend to other modes? e.g. $\Lambda_b \to \Lambda_c \tau \nu$ and $B \to D^{**} \tau \nu$ decays.
- Explore light lepton channels e.g. difference of $f_L^{D^*}$ between electron and muon modes.

Polarisation of τ lepton (I)

- Leptons produced in the semileptonic $X_b \rightarrow X_c \tau \nu$ decays tend to be polarised.
- Measuring the τ lepton polarisation (P^{τ}) interesting to probe effects of NP.

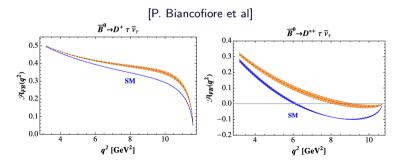
$$P^{\tau} = \frac{\Gamma^{\lambda_{\tau}=+1/2} - \Gamma^{\lambda_{\tau}=+1/2}}{\Gamma^{\lambda_{\tau}=+1/2} + \Gamma^{\lambda_{\tau}=+1/2}}$$


For example P^τ(D^(*)) in B
 → D^(*)τν
 decays show large sensitivity to scalar (S_{1,2}) and tensor (T) currents (δ_X are the weak phase of the complex C^τ_X).

Polarisation of τ lepton (II)

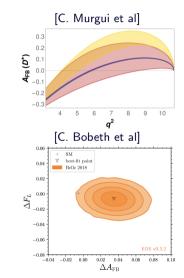
• Current scenario:

- First measurement by Belle in 2017 of $P^{\tau}(D^*)$ using $\overline{B} \to D^* \tau^- \overline{\nu}$ decays, exploiting one-prong hadronic τ^- decays.
- No other measurements exists.

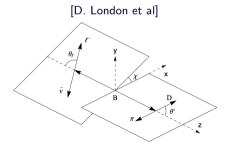


- Future prospects:
 - Improve precision on $P^{\tau}(D^*)$ with Belle-II data (the dominant systematic in prev. result from hadronic B background composition expected to improve also).
 - $P^{\tau}(D^*)$ measurement plans at LHCb with hadronic three-prong τ decays.
 - Comparison of in-direct estimates of $P^{l=e,\mu}$ with light leptons via differential decay measurements.

• A quantity of interest that can be inferred from differential decay rate measurement is forward-backward asymmetry


$$\langle A_{FB}^{ au}
angle = \int A_{FB}^{ au}(q^2) = rac{\int_0^1 rac{d\Gamma^{ au}}{dq^2 d\cos(heta_\ell)} d\cos(heta_\ell) - \int_{-1}^0 rac{d\Gamma^{ au}}{dq^2 d\cos(heta_\ell)} d\cos(heta_\ell)}{rac{d\Gamma^{ au}}{dq^2}}$$

• For example $A_{FB}^{\tau}(D^{(*)})$ in $\overline{B} \to D^{(*)}\tau\overline{\nu}$ decays is very sensitivity to NP contributions.


Forward-backward asymmetry (II)

- Current scenario:
 - Semitauonic: Differential decay rate measurement of $\overline{B} \rightarrow D^{(*)} \tau^- \overline{\nu}$ decays available by Belle and BaBar.
 - $A_{FB}^{\tau}(D^{(*)})$ prediction from $b \to c\tau\nu$ global fit is consistent with SM (top-left fig.).
 - Light leptons: Differential distb. for various b-hadron species available from B factories and LHCb.
 - Recent study of $\overline{B} \to D^* \ell^- \overline{\nu}$ decays by Belle shows 4σ tension wrt SM (bottom-left fig.).
- Future prospects:
 - Differential measurements involving different lepton species will improve the experimental precision on this observables significantly.

Triple product asymmetries (I)

- Amplitudes, with same strong phase but different weak phases, contributing to multi-body semileptonic decays can give rise to CP-violating angular asymmetries.
 - Non-zero asymmetry would be smoking gun signal for NP.
 - Interfering SM and NP amplitudes must have different Lorentz structures.
- Asymmetries of this type, for example, can measured by analysing the phase space of $\overline{B}^0 \to D^{*+}(\to D^0\pi^+)\tau^-\overline{\nu}$ (multi-pion τ decay can also be exploited).
 - Of interest is angle χ obtained from scalar triple product of final state momenta.

Triple product asymmetries (II)

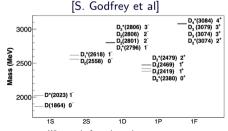
• Measuring a non-zero CP angular asymmetry \implies non-zero angular coefficient of $sin(\chi)$ terms, equal in magnitude for particle and anti-particle decays.

• Current scenario:

- Ongoing analysis at LHCb with semimuonic $\overline{B}^0 \rightarrow D^{*+} (\rightarrow D^0 \pi^+) \mu^- \overline{\nu}$ decays (Bkg. and other experimental effects can introduce a fake signal).
- Future prospects:
 - Other semimuonic channels e.g.

 $\Lambda_b \rightarrow \Lambda_c (\rightarrow pK_S) \mu^- \nu$ can be studied at LHCb. **Electron channels** can also be explored with LHCb Run III data.

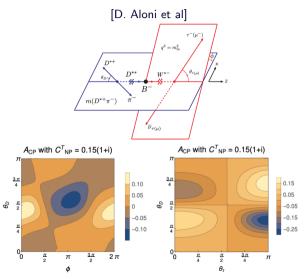
- For semitauonic channels, three-prong τ decays can be exploited at LHCb.
- Interest within Belle-2 to pursue this.


[D.	London	et	al]	
-----	--------	----	-----	--

Not suppressed	Coupling	Angular Function
$Im(A_{\perp}A_{0}^{*})$	$Im[(1 + g_L + g_R)(1 + g_L - g_R)^*]$	$-\sqrt{2} \sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$
$Im(A_{\parallel}A_{\perp}^{*})$	$Im[(1 + g_L - g_R)(1 + g_L + g_R)^*]$	$2 \sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$
$\text{Im}(A_{SP}A^*_{\perp,T})$	$\text{Im}(g_P g_T^*)$	$-8\sqrt{2}\sin\theta_{\ell}\sin 2\theta^{*}\sin\chi$
$\operatorname{Im}(\mathcal{A}_0 \mathcal{A}_{\parallel}^*)$	$Im[(1 + g_L - g_R)(1 + g_L + g_R)^*]$	$-2\sqrt{2}\sin\theta_{\ell}\sin2\theta^{*}\sin\chi$
Suppressed by $m_{\ell}/\sqrt{q^2}$	Coupling	Angular Function
$\text{Im}(A_0A^*_{\parallel,T})$	$\text{Im}[(1 + g_L - g_R)g_T^*]$	$8\sqrt{2}\sin\theta_{\ell}\sin 2\theta^{*}\sin\chi$
$Im(A_{\parallel}A_{0,T}^{*})$	$Im[(1 + g_L - g_R)g_T^*]$	$-8\sqrt{2}\sin\theta_{\ell}\sin 2\theta^{*}\sin\chi$
$\text{Im}(A_t A^*_{\perp,T})$	$Im[(1 + g_L - g_R)g_T^*]$	$-8\sqrt{2}\sin\theta_{\ell}\sin 2\theta^{*}\sin\chi$
$Im(A_{\perp}A_{SP}^{*})$	$Im[(1 + g_L + g_R)g_P^*]$	$-2\sqrt{2}\sin\theta_{\ell}\sin 2\theta^{*}\sin\chi$
Suppressed by m_{ℓ}^2/q^2	Coupling	Angular Function
$Im(A_{\parallel}A_{\perp}^{*})$	$Im[(1 + g_L - g_R)(1 + g_L + g_R)^*]$	$-2 \sin^2 \theta_{\ell} \sin^2 \theta^* \sin 2\chi$
$\operatorname{Im}(\mathcal{A}_t \mathcal{A}^*_{\perp})$	$Im[(1 + g_L + g_R)(1 + g_L - g_R)^*]$	$2\sqrt{2} \sin \theta_{\ell} \sin 2\theta^* \sin \chi$
$Im(A_{\perp}A_{0}^{*})$	$Im[(1 + g_L + g_R)(1 + g_L - g_R)^*]$	$\sqrt{2} \sin 2\theta_{\ell} \sin 2\theta^* \sin \chi$

Table 5. The CP-violating terms in the angular distribution, their corresponding NP couplings, and the angular functions to which they contribute.

NP induced CP violation in decay (I)


- In the presence of NP, semileptonic decays that proceed via several interfering resonance states could exhibit CP violation in the decay.
 - Non-zero CP asymmetry would be a smoking gun signal for NP. Help break the ambiguities arising in the constraining of the imaginary part of the WC.
 - Interfering resonances (with relative strong phase) must have different spins and the SM and NP currents (with relative weak phase) must have different lorentz structure.
- Asymmetries of this type, for example, can be exhibited in $\overline{B} \to D^{**} (\to D^{(*)} \pi) \tau \overline{\nu}$ decays.
 - Spectroscopy of *D*^{**} important as it affects not only kinematics but HQET expansion of form factors

What are the future b
ightarrow c l
u measurements

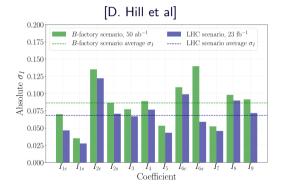
NP induced CP violation in decay (II)

- CP asymmetry is enhanced if measured as a function of phase space observable.
- Current scenario:
 - No measurement of CPV in decay exists.
 - (Not CPV) Belle and BaBar have studied D^{**} spectroscopy with light lepton $\overline{B} \to D^{**} l \overline{\nu}$ modes.
 - (Not CPV) Ongoing LHCb analysis probes differential rate and D^{**} spectroscopy with $B^- \rightarrow D^{*+}\pi^-\mu^-\overline{\nu}$ decays.
- Future prospects:
 - Both Belle-II and LHCb can study CPV $\overline{B} \rightarrow D^{**} \ell \overline{\nu}$ decays with all lepton species.
 - Explore other channels at LHCb e.g. $\Lambda_b \to \Lambda_c^* \ell^- \nu.$

What are the future b
ightarrow c l
u measurements

Full Angular analysis (I)

With enough data one can measure all the angular coefficients

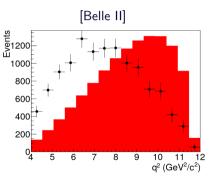

- q^2 dependent coefficients $J_i \rightarrow$ some integration
- Many coefficients requires much data
- Each angular term should be orthogonal \rightarrow straightforward to fit
 - For LHCb likely correlated due to resolution
- Requirements
 - Good understanding of experimental resolution
 - Complete understanding of angular distributions of backgrounds

 $\begin{bmatrix} \mathsf{D}. \text{ Hill et al} \end{bmatrix}$ $\frac{d^{4}\Gamma}{dq^{2} d(\cos\theta_{D}) d(\cos\theta_{L}) d\chi} \propto I_{1c} \cos^{2}\theta_{D} + I_{1s} \sin^{2}\theta_{D}$ $+ [I_{2c} \cos^{2}\theta_{D} + I_{2s} \sin^{2}\theta_{D}] \cos 2\theta_{L}$ $+ [I_{6c} \cos^{2}\theta_{D} + I_{6s} \sin^{2}\theta_{D}] \cos \theta_{L}$ $+ [I_{3} \cos 2\chi + I_{9} \sin 2\chi] \sin^{2}\theta_{L} \sin^{2}\theta_{D}$ $+ [I_{4} \cos \chi + I_{8} \sin \chi] \sin 2\theta_{L} \sin 2\theta_{D}$ $+ [I_{5} \cos \chi + I_{7} \sin \chi] \sin \theta_{L} \sin 2\theta_{D},$

Full Angular analysis (II)

With enough data one can measure all the angular coefficients

- q^2 dependent coefficients $J_i \rightarrow$ some integration
- Many coefficients requires much data
- Each angular term should be orthogonal \rightarrow straightforward to fit
 - For LHCb likely correlated due to resolution
- Requirements
 - Good understanding of experimental resolution
 - Complete understanding of angular distributions of backgrounds


Publish data

Can we publish our data sets?

• Unfold and efficiency correct distributions

Prospects

- Expected from Belle II
 - Publication of q^2 distribution by Belle disfavours 2HDM
 - Any chance of multi-dimensional distributions?
- Trickier from LHCb
 - So far fit differential distribution (i.e. q^2 or E^*_{μ}) to extract au signal
 - More backgrounds
 - Bigger influence of resolution do we unfold ourselves or provide a response matrix?

Direct parameter fits

We could fit directly for FF or NP WCs

- Direct link of data \rightarrow physics
- Assuming all relevant variables fitted should get most out of the data

Prospect:

- In LHCb's plans?
- Expected from Belle II?

Drawbacks:

- A single data set will not tell you everything choices must be made
- How to combine measurements or re-analyse with new theory inputs?
- A snapshot in time/predilections of the experimenter

Common challenges:

- Understanding detector resolution
- Understanding of backgrounds
 - $\bullet\,$ More angular fit variables $\rightarrow\,$ harder to validate all backgrounds
 - Particularly difficult for LHCb, in progress: [JHEP 06, 177 (2021)]

Questions:

- Are ratios of branching fractions still interesting?
 - If so, for how much longer? Is it the quickest way to get to 5σ ?
- Is there an appetite for directly fitting WC/FF?
- Can experiments provide data to theory directly?
 - Pertinent subject for CKM determinations
 - How do we unfold / forward fold?