Thoughts on combining the experimental data

Patrick Owen, Nicola Serra

Including content from

Isidori, Lancierini, Owen, Serra, arXiv:2104.05631

Isidori, Lancierini, Mathad, Owen, Serra, Coutinho, arXiv:2110.09882

27/04/22

Some general considerations

- Statistical correlations between measurements, if large, will be given in the paper.
- Systematic correlations are instead often implicit.
 - e.g. b—> $s\mu\mu$ branching fraction.

q^2 range (GeV ² / c^4)	central value	stat	syst
$1.1 < q^2 < 6.0$	24.2	0.7	1.2
$15.0 < q^2 < 22.0$	12.1	0.4	0.6

- Less obvious is the correlation across papers. E.g. $B_{s^0} > \varphi \mu \mu$.
- What to do if one is given an 68% CL, but nothing else?
 - Full FC scans now included in CDS material.

Questions the data can answer

- Two questions to ask of the data:
 - What are values of Wilson Coefficients? and do they deviate from the SM?
 - What is the global statistical significance of the new physics hypothesis?
- 1st question involves disentangling hadronic effects from new physics, requires theoretical calculations, models, amplitude fits etc.
 - While very important, this is not the focus of this talk.
- Instead we focus on the second question, and construct a highly general alternative hypothesis to produce a conservative answer.
 - We use C₉ as a SM nuisance parameter.
 - A case for making the hypothesis general (look-elsewhere-effect).
 - Inclusion of so-called non-exclusive R ratios (connection to Yasmine and Gianluca's talk).

A case for generality

- Want to provide significance which can stand up to the skeptical.
- Original idea: Only combine observables for which there is wide consensus on the SM prediction.
 - Concretely: Combine B(B_s⁰ $->\mu\mu$) and LFU ratios and fit for C_{9,10} μ_{-}
- However, such a fit smuggles in information about the rest of the system:
 - No new physics in electrons (understandably justified from BF measurements).
 - No right-handed currents or scalar new physics (also reasonable).
- As we argued in [1], constraining the observables and alternative hypothesis in way leads to an overestimation of the significance via the look-elsewhere effect.
 - Only combining the observables that deviate.
 - Fitting with a restricted set of operators.

[1] Isidori, Lancierini, Owen, Serra, arXiv:2104.05631 4

The look elsewhere effect

- The look elsewhere effect (LEE) occurs when the alternative hypothesis test implicitly uses the central values of the data.
 - Example is testing the presence of a resonance of the mass seen in data.
- In our case, floating only left-handed LFUV Wilson Coefficients ignores alternate universes where we saw deviations in K*µµ and/or different values for R_K and R_{K*}.

Common talking points on the LEE

- 1. The LEE only occurs in mass peak searches. The look-elsewhere effect originates from the 1950s, known as the *problem of multiple comparisons,* and can effect any situation whereby the data is implicitly used twice. Also known as the post-hoc analysis.
- 2. The question can always be bigger, meaning that the LEE is subjective. The main purpose of the LEE is to take you back to a hypothesis test which is a-piori, it does not always need to be bigger. (Otherwise it would be impossible to claim anything).
- **3.** The LEE has a smaller effect for large significances. A trial factor of 10 will dilute a significance of 3.0σ to 2.2σ whereas a 5.0σ will only move to 4.4σ. This is simply due to the non-linear relationship between a Gaussian significance and the p-value.

Approach in arXiv:2104.05631

• Write down all operators to which LHCb measurements were sensitive to.

 $\mathcal{O}_{9}^{\ell} = (\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{10}^{\ell} = (\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ $\mathcal{O}_{9}^{\ell\prime} = (\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{10}^{\ell\prime} = (\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$ $\mathcal{O}_{\hat{S}}^{\ell} = (\bar{s}_{L}b_{R})(\bar{\ell}_{R}\ell_{L}), \qquad \mathcal{O}_{\hat{S}}^{\ell\prime} = (\bar{s}_{R}b_{L})(\bar{\ell}_{L}\ell_{R}).$

- Use amplitudes and form factors from Flavio[1] to translate observables into WC space.
- Include C7^(*) with a-priori constraint from $b \rightarrow s\gamma$ B-factory results (0.2 σ impact).
- Consider one scalar contributes to B_s—>μμ (only one independent contribution assuming Λ_{NP}>VEV) [Alonso, 2014].
- Assume no scalars in Kee.
- Assume that WC are real.
- End up with 9 WC to which the measurements are sensitive.
 - 4 muonic WC: C₉, C₁₀, C₉',C₁₀'
 - 4 LFUV WC: ΔC_9 , ΔC_{10} , ΔC_9 ', ΔC_{10} ' [Difference in muonic/electronic WC]
 - 1 scalar contribution in muons: C_s-C_s'

Approach in arXiv:2104.05631

- Observables included: R_K , R_{K^*} , $B_s > \mu\mu$ and $B^0 > K^{*0}\mu\mu$ angular analysis.
- Generate toys based from SM predictions and experimental uncertainties.
 - R_K and R_{K^*} uses full likelihood but assumed to be independent.
 - K*µµ observables generated/fit with full experimental correlations.
- For each toy calculate test statistic.

$$\Delta \chi^2 = -2 \log \frac{\mathcal{L}(X | \Delta \hat{C}_9^U, C_i^{\text{SM}})}{\mathcal{L}(X | \hat{C}_i)}$$

- Compare distribution of SM toys to one seen in data. Integrate to get significance.
- Why use toys and not Wilk's theorem?
 - Can get flat directions in WC space.

• E.g. $B_s \rightarrow \mu \mu$ and C_{10} vs C_s .

Importance of non-exclusive LFU ratios

- Several LFU ratios contain decays with broad, overlapping resonances whose hadronic structure is unknown.
- Most prominent example: R_{pK}

$$R_{pK} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}$$

- If R_{pK} deviates significantly from unity then its NP. However, translating that into into WC space is tricky for such a large mass range.
 - Experimental/theoretical progress would help in this particular case.
- However, the LFU ratio is likely to stay inclusive, as it maximises the precision.
 - Can we include these measurements already in a combination?

Inclusion of non-exclusive LFU ratios

Isidori et al, <u>arXiv:2110.09882</u>

 Neglecting lepton masses (q² >> ml²), no interference between left and right handed lepton currents. [Hiller, Schmaltz, 2014]

$$\frac{d\Gamma^\ell_X}{dq^2} = \frac{d\Gamma^\ell_{X,L}}{dq^2} + \frac{d\Gamma^\ell_{X,R}}{dq^2}$$

$$\begin{split} C_L^\ell &= C_9^\ell - C_{10}^\ell \,, \qquad C_L^{\ell\prime} = C_9^{\ell\prime} - C_{10}^{\ell\prime} \\ C_R^\ell &= C_9^\ell + C_{10}^\ell \,, \qquad C_R^{\ell\prime} = C_9^{\ell\prime} + C_{10}^{\ell\prime} \end{split}$$

$$\left.\frac{d\Gamma_{X,R}^\ell}{dq^2} = \left.\frac{d\Gamma_{X,L}^\ell}{dq^2}\right|_{\{C_L^\ell \to C_R^\ell, \ C_L^{\ell\prime} \to C_R^{\ell\prime}\}}$$

Get general formula, applicable to any LFU ratio, but only used for non-exclusive modes.

$$R_X = rac{\left\{ \left(C_L^{\mu}
ight)^2 + \left(C_L'^{\mu}
ight)^2 + \left\langle \eta_X^0
ight
angle C_L^{\mu} C_L'^{\mu} + C_7 \cdot \left(\left\langle \eta_X^{77}
ight
angle C_7 + \left\langle \eta_X^{79}
ight
angle C_L^{\mu} + \left\langle \eta_X'^{79}
ight
angle C_L'^{\mu}
ight)
ight\} + (L o R)}{\left\{ \left(C_L^e
ight)^2 + \left(C_L'^e
ight)^2 + \left\langle \eta_X^0
ight
angle C_L^{ee} C_L'^e + C_7 \cdot \left(\left\langle \eta_X^{77}
ight
angle C_7 + \left\langle \eta_X^{79}
ight
angle C_L^e + \left\langle \eta_X'^{79}
ight
angle C_L'^e
ight)
ight\} + (L o R)}
ight.$$

$$\begin{split} F_X^\ell &= \int_{q_{\min}^2}^{q_{\max}^2} f_X^\ell(q^2) dq^2 \\ \left< \eta_X^{i,\ell} \right> &= \frac{1}{F_X^\ell} \int_{q_{\min}^2}^{q_{\max}^2} f_X^\ell(q^2) \eta_X^i(q^2) dq^2 \end{split}$$

The η parameters encode hadronic information

Parameter	Limits		
	default	4q-ops	
$\left<\eta_X^0\right>$	[-2,2]		
$\left<\eta_X^{79}\right>$	[-12, 12]	[-20, 20]	
$\left< \eta_X^{79\prime} \right>$	[-4, 4]	[-10, 10]	
$\left<\eta_{pK}^{77}\right>$	[0, 120]	[0, 160]	
$\left< \eta_{K\pi,K\pi\pi}^{77} \right>$	$[0,\!60]$	[0, 100]	

Impact on the significance

- Inclusion of R_{pK} slightly decreases significance.
- Why?
 - Not perfectly aligned with other R ratios.
 - Quite consistent with SM.
 - Lots of hadronic uncertainty.

- Non-exclusive ratios can have a large impact here.
- Fixing the hadronic parameters has reasonably small impact on significance ($<0.5\sigma$).

Linearising the expression w.r.t. $\Delta(C_i)$ and neglecting interference with suppressed amplitudes (e.g. C_i).

$$R_X - 1 \approx \frac{\operatorname{Re}\left(2\frac{\Delta C_L}{C_L^{\mathrm{SM}}} + \left\langle\eta_X^0\right\rangle\frac{\Delta C_L'}{C_L^{\mathrm{SM}}}\right)}{1 + \left\langle\eta_X^{77}\right\rangle \left|\frac{C_7^{\mathrm{SM}}}{C_L^{\mathrm{SM}}}\right|^2 + \operatorname{Re}\left[\left\langle\eta_X^{79}\right\rangle\frac{C_7^{\mathrm{SM}}}{C_L^{\mathrm{SM}}}\right]}$$

Isidori, Lancierini, Mathad, Owen,

Discussion points

- Inclusion of upper limits on B_q —>ee and b—>stt
- How to treat C₉?
 - Currently included as SM nuisance parameter.
 - Comments to make it q²/helicity dependent.
- Finally, a more general one...

Discussion points

- Inclusion of upper limits on B_q —>ee and b—>stt
- How to treat C₉?
 - Currently included as SM nuisance parameter.
 - Comments to make it q²/helicity dependent.
- Finally, a more general one...

