

What are the key open questions for the current $b \rightarrow s$ measurements?

Marie-Hélène Schune IJCLab – CNRS Univ. Paris-Saclay

Apologies to my Belle-II colleagues for a talk strongly LHCb-biased

In general BR are $\mathcal{O}(10^{-7})$

 \rightarrow LHC large production is clearly a plus

 \rightarrow comes with the cost of a very challenging experimental environment

• $b \rightarrow s \mu \mu$ channels :

- clean experimental signature
- precise experimental results on a large number of BR and angular observables

• $b \rightarrow s$ ee channels :

- low p_T electrons in the harsh LHC context
- limited number of results (few LFU ratios, one very specific angular analysis)

there is no free lunch

Branching Ratios

Angular observables

LFU observables : R-ratios angular observables ratios

theoretical

cleanness

all LFV modes omitted even if they are very important to constraint NP models

nomalies workshop - April 2022

Why does it take so long ?

Usage of Run1-Run2 data ?

and then ?

Many more details in the other talks at this workshop

Crédits : Dr. Seuss / Editions du Nouvel Attila

What are the experimental challenges ?

Taking $B \to K^* \ell \ell$ as a proxy for explanations

For each event in ~ 100 tracks:

- find a K⁺ a π^- a pair of opposite charge leptons and compute M(K⁺ $\pi^- \ell^+ \ell^-$) + q²
 - \rightarrow crucial role of vertexing and tracking to reduce the number of tracks to be considered

ightarrow crucial role of

- hadron PID (RICH) otherwise you could mix B and B (K* is large)
- lepton PID do not want to confuse K* $\pi\pi$ with K* $\ell\ell$

Backgrounds :

- random combination of 4 tracks
- double semileptonic decays : $H_b \rightarrow H_c(\rightarrow K^* \ell^- \nu_\ell) \ell^+ \nu_\ell$
 - very large Branching Ratios
 - select mainly very-low momentum neutrinos (phase space corner)
- partially reconstructed backgrounds : $B \rightarrow K^*$ (n) $\pi \ell^+ \ell^-$, $B \rightarrow K^* \gamma \ell^+ \ell^- \dots$
 - badly known
 - try to reject them, try to measure them

$$\mathsf{B} \to \mathsf{K}\pi \,\pi)\ell^+ \,\ell^-$$

Dalitz distribution

 $B \rightarrow K^{\star} \pi \pi$

Dalitz distribution

arXiv:2110.09501

... and the additional complication of electrons

from Martino Borsato

widening of the mass ranges and thus of the level of backgrounds

- \rightarrow Experimental 'tricks'
 - compute q² using the B mass constraint

• different for the high-q² region

Yet yields extraction is possible (!)

Go for the BR measurement

- At the LHC b bbar cross section and f_{x} not precisely known
- efficiency : MC cannot be fully trusted (worse at LHC than at B-Factories) :
 - MC is corrected using data control modes for trigger efficiencies, PID efficiencies ...
- Measure it relative :

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} = \frac{1}{q_{\max}^2 - q_{\min}^2} \frac{N_{\mathrm{sig}}}{N_{K^{*0}J/\psi}} \frac{\varepsilon_{K^{*0}J/\psi}}{\varepsilon_{K^{*0}\mu^+\mu^-}} \times \mathcal{B}(B^0 \to K^{*0}J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)$$

reduction of the systematic uncertainties (more than a factor few * 10 !)

angular analyses :

• muon channel : 'easy' modelling (or background substraction)

- electron channel :
 - Double semileptonic : use of $b \rightarrow s e \mu proxy$
 - partially reconstructed backgrounds : B \rightarrow K^{*} (n) $\pi \ell^+ \ell^-$, B \rightarrow K^{*} $\gamma \ell^+ \ell^-$: guess and control !

More observables \rightarrow more handles to check the modelling

What are we doing with Run1+Run2 dataset?

What will we do with Run1+Run2 dataset?

Where do we stand for $b \rightarrow s \mu \mu$ channels and what could we do more ?

All BR(b \rightarrow sµµ) have a tendency to be low wrt SM prediction (but predictions uncertainties correlated)

A recent example : BR ($B_s \rightarrow \phi \mu \mu$)

the three B \rightarrow V $\mu\mu$ angular analyses consistently favour a negative shift in Δ Re(C₉)

Still a lot of theoretical work on-going to improve the precision of the predictions

See talks from Tuesday morning

example : <u>https://moriond.in2p3.fr/QCD/2022/TuesdayAfternoon/Gubernari.pdf</u>

Is most of the tension coming from BR observables ?

IPPP Durham - beyond the flavour anomalies workshop - April 2022

Branching ratios

What could we do more with the data we have at hand?

- Standard analyses :
 - more q² bins (coming with larger samples)
 - analyse the full Run1+Run2 datasets (not yet done for Kµµ, K^{*0}µµ, Λ µµ, ...)
 - extract all accessible observables (CP)

 Kµµ : analyse the full q2 spectrum at once (<u>https://arxiv.org/abs/1612.06764</u>) to measure the phase difference between the short and long distance amplitudes

- and ...
 - Full q² analysis also for $K^{*0}\mu\mu$ (but more challenging)
 - Unbinned angular fit over the full q² spectrum \rightarrow distinguish between NP and cc loops.

See talk from Rafael & Tom

Where do we stand for $b \rightarrow s$ ee channels and what could we do more ?

- Not a lot (yet) of experimental information :
- R ratios only K, K*⁰, pK, K*⁺, Ks
 - statistically (very) limited, not full data sample analysed yet
 - hadronic resonances (K $\pi\pi$, pK, ...) still not studied
- one angular analysis (K*ee) at $q^2 < .25$ focussing on the photon pole.

See talks from Rafael & Tom Yasmine & Gianluca

IPPP Durham - beyond the flavour anomalies workshop - April 2022

Full data sample

Explore the high-q² region (which is exp. different from the other q² bins) Angular analyses to be performed (eventually some constraints using the muon channels)

Cross-checks which could/should be done:

• R measurement where we know the answer (validate the MC corrections and efficiencies computations) ($D_s \rightarrow \phi(\rightarrow \ell \ell) \pi$), but also $B \rightarrow D\ell \nu$, $\ell = e/\mu$).

• Use the photon pole region (assumed to be SM-dominated)

• $\left[\frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} \gamma)}\right]$

• Angular analyses (difference between B_s and B_d)

different dependence on C'_7 and C_7 due to mixing

https://arxiv.org/abs/1502.05509

Electron channels

- BR : many analyses not (yet) performed (samples, q²..)
- angular : analyses not (yet) performed (q²..)
- statistics (still) scarce
- experimentally challenging, still learning !
- are we using in the best way the photon-pole region ?

Muon channels

- BR and angular : experimentally mature field
- switching to (very) complex analyses to better constraint theoretical nuisance parameters

LFU

- Many R ratios not yet measured
- ... and no angular analyses yet

and then ?

Belle-II starts to collect a significant amount of data

IPPP Durham - beyond the flavour anomalies wor

$b \rightarrow s\ell\ell$ channels seen !

See talk from Yasmine & Gianluca

Maximilian Welsch @Moriond QCD2022

\rightarrow interesting information in 2025 ?

LHC schedule

Run3 and Run4 :

Run2 L0 Electron threshold

NB : LHCb have conservatively assumed that the trigger efficiency will not change for $b \rightarrow s\ell\ell$

Life during Run3 and Run4 will probably be challenging ...

and a new detector for tracking !

.....but we have learnt a lot with the data of Run1 and Run2 !

Additional modes : example #1 B $\rightarrow K^* \tau \tau$

FCCee for precise measurements Belle data : 0.7 ab⁻¹ $\tau \rightarrow 1 \text{ prong (e, } \mu, \pi)$ arXiv:2110.03871 Efficiency ~ 1.2 10⁻⁵ arXiv:1705.11106 150 Events/(0.1 GeV) - Fit B⁰B⁰ Data ---- Signal [×(-10)] - - B*B --- Rare B Ulv Events / (0.02 GeV/c²) 120 BR(B⁰ \rightarrow K^{0*} $\tau\tau$) < 2 10⁻³ @ 90%₌ FCC-ee 100 100 80 Bs→DsDsK* 60 Bs→DsK* τν = Pull 20 0.5 1.5 E_{ECL} (GeV) 5.5 m_{B₀}, GeV/*c*² Improved analyses techniques 10¹³ Z⁰ and SM BR assumed and LHCb? See talk from Lakshan &

IPPP Durham - beyond the flavour anomalies workshop - April 2022

Hanae

Additional modes : example #2 B \rightarrow K^(*) vv

[PRL 127, 181802 (2021)]

More powerful analysis technique

Clean SM computation (no charm loop contributions)

Interesting to constraint NP (eg arXiv:2005.03734)

Compare
$$\frac{BR(B \to K^{(*)}\nu\nu)}{BR(B \to K^{(*)}\ell\ell)}$$

Summary

- A lot of hard work and a lot of interesting & intriguing results
- More data and more challenging analyses to come

See talk from Wolfgang & Michael

- During Run3 we will start playing (more seriously) with $b \rightarrow d\ell\ell$:
 - but more issues with loops (cc & uu)
 - would it be interesting to try to relate information from $\Lambda_b \rightarrow \Lambda$ (1520) $\ell\ell$ and $\Lambda_b \rightarrow N^*(p\pi) \ell\ell$?
 - Let's be crazy : does it make any sense to use B_c decays ?
 - forgetting about statistical issues $B_c \rightarrow D^{*+} \ell \ell$ may be a very clean way to access $b \rightarrow d\ell \ell$ for the PS $\rightarrow V\ell \ell$ case.

back-up slides

$B \rightarrow Kee case :$

arXiv:2103.11769

semileptonic backgrounds veto:

backgrounds (simulation) :

from https://indico.cern.ch/event/1055780/