MODELS EXPLAINING $(g - 2)_{\mu}$

ANDREAS CRIVELLIN (PAUL SCHERRER INST.) JURE ZUPAN (U. OF CINCINNATI)

Beyond the flavor anomalies III, IPPP, Durham, Apr 26 2022

Flavour Anomalies

IF NEW PHYSICS...

• $(g - 2)_{\mu}$ showing 4.2σ deviation from the SM

• in SMEFT from dim6 operator

$$\mathcal{L} \supset -\frac{\sqrt{2}e\,v}{(4\pi\Lambda_{ij})^2}\,\bar{\ell}_{\mathrm{L}}^i\sigma^{\mu\nu}\ell_{\mathrm{R}}^jF_{\mu\nu} + \mathrm{h.c.} \;,$$

 $(g-2)_{\mu} \Rightarrow \Lambda_{22} \sim 15 \,\mathrm{TeV}$

Greljo, Stangl, Thomsen, 2103.13991

- note: any flavor violation needs to be highly suppressed $\mu \rightarrow e\gamma \Rightarrow \Lambda_{21} \gtrsim 3500 \text{ TeV}$
- a possible (natural) solution a symmetry

FOCUSING JUST ON $(g-2)_{\mu}$

5

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$$

- NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z' from $L_{\mu} - L_{\tau}$
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

- NP models of
- chirality flip of
 - NP need to example: Z
- chirality flip (NP fermion le
 - NP can be

• example: minimal models with DM

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

5

FOCUSING JUST ON $(g-2)_{\mu}$

5

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$$

- NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z' from $L_{\mu} - L_{\tau}$
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

5

Future Implications of a_{μ}

LIGHT NEW PHYSICS

$U(1)_X$ solutions

- a well studied scenario $U(1)_{L_{\mu}-L_{\tau}}$
 - forces the dimension-4 charged lepton Yukawa interactions to be diagonal
 - $L_{\mu} L_{\tau}$ gauge boson X_{μ} with mass $m \in [10,210]$ MeV solves $(g 2)_{\mu}$
- is $U(1)_{L_{\mu}-L_{\tau}}$ the only phenomenologically viable option?
- can alternative models be experimentally disentangled from $U(1)_{L_{\mu}-L_{\tau}}$?

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

EXPLORING $U(1)_X$ SOLUTIONS

Greljo, (Soreq,) Stangl, Thomsen, JZ, 2107.07518, 2203.13731

- assume minimal field content: $SM+3\nu_R$
- require anomaly free charge assignments
 - quark flavor universality
 - keeping max charge ratios ≤ 10 (integer charges) Allanach, Davighi, Melville, 1812.04602 \Rightarrow up to flavor permutations: 276 models (out of ~ 2 · 10⁷)
 - two categories of charge assignments (up to flavor permutations)

vector category : $X_{L_i} = X_{E_i}$ for all i = 1, 2, 3,255 solutions
(419 w/ flavor perm.)chiral category : the rest.255 solutions
(419 w/ flavor perm.)255 solutions
(419 w/ flavor perm.)

 in vector category 3 parameter families of solutions, with the lepton charges given by (up to flavor permutations)

VECTOR-LIKE $U(1)_X$ MODELS

• for
$$(g-2)_{\mu}$$
 need $g_V \gg g_A$

$$g_X = \left(\frac{\Delta a_{\mu}}{251 \times 10^{-11}}\right)^{1/2} \begin{cases} 4.5 \times 10^{-4} \left[q_V^2 - 2 \, q_A^2 \, r_{\mu}^2\right]^{-1/2}, & m_X \ll m_{\mu}, \\ 5.5 \times 10^{-4} r_{\mu}^{-1/2} \left[q_V^2 - 5 \, q_A^2\right]^{-1/2}, & m_X \gg m_{\mu}. \end{cases}$$

- if no kin. mix. $\Rightarrow X_{\mu}$ necessarily couples to neutrinos* \Rightarrow trident + ν osc. constraints
- if kin. mixing ⇒ couplings to electrons + Z mass constraints (EWPT)

* as long as EFT applies, i.e. dim 6 ops not cancelled by dim 8, see e.g., Darme et al, 2106.12582

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

• for
$$(g-2)_{\mu}$$
 need $g_V \gg g_A$

$$g_X = \left(\frac{\Delta a_{\mu}}{251 \times 10^{-11}}\right)^{1/2} \begin{cases} 4.5 \times 10^{-4} [q_V^2 - 2 q_A^2 r_{\mu}^2]^{-1/2}, & m_X \ll m_{\mu}, \\ 5.5 \times 10^{-4} r_{\mu}^{-1/2} [q_V^2 - 5 q_A^2]^{-1/2}, & m_X \gg m_{\mu}. \end{cases}$$

- if no kin. mix. $\Rightarrow X_{\mu}$ necessarily couples to neutrinos* \Rightarrow trident + ν osc. constraints
- if kin. mixing ⇒ couplings to electrons + Z mass constraints (EWPT)

* as long as EFT applies, i.e. dim 6 ops not cancelled by dim 8, see e.g., Darme et al, 2106.12582

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

10

X_{μ} mass bound

- X_{μ} that explains $(g-2)_{\mu}$ has mass in the range
 - from BBN: $m_X \gtrsim 10 \,\mathrm{MeV}$
 - from ν trident + T param.: $m_X \lesssim 4 \text{ GeV}$

VECTORLIKE MODELS

vector-like models parametrized as

 $x_f \propto \sin(\alpha) (L_e - L_\mu) + \cos(\alpha) (B/3 - L_\mu) + R(L_\mu - L_\tau).$

- a global fit to data
 - models "close" to $L_{\mu} L_{\tau}$ viable
 - viable deformations mostly in the direction of $B 2L_e L_\tau$ admixture

• minimizes constr. from ν osc.

Z, 2203.13731

viable deformations mostly in the direction of *B* - 2*L_e* - *L_τ* admixture
 minimizes constr. from *ν* osc.

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

12

viable deformations mostly in the direction of B – 2L_e – L_τ admixture
 minimizes constr. from ν osc.

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

12

UPSHOT

 adding COHERENT constr. ⇒ only 7 phenom. viable models

•
$$L_{\mu} - L_{\tau}$$
 + deformations

- all allow / facilitate muoquark solutions to $b \rightarrow s\mu^+\mu^-$
- parameter space will be completely covered by upcoming searches:
 - NA62, Atlas, Belle-II NA64µ, M3

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

 $L_{\mu} - L_{\tau}, \, \mu/\tau$ -loop effective kinetic mixing

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

HEAVY NEW PHYSICS

A guide towards New Physics

Leptoquarks in a_u

Chirally enhanced effects via top-loops •

- m_t/m_μ enhanced effect $h \to \mu\mu$ m_t^2/m_Z^2 enhanced effect in $Z \to \mu\mu$

Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

 $a_{\mu} vs Z \rightarrow \mu \mu$

Chirally enhanced effects via top-loops

E. Leskow, A.C., G. D'Ambrosio, D. Müller 1612.06858 A.C, C. Greub, D. Müller, F.Saturnino, 2010.06593

$Z \rightarrow \mu \mu$ at future colliders

$a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure \rightarrow direct correlation

A.C., D. Mueller, F. Saturnino, 2008.02643

$h \rightarrow \mu \mu$ at future colliders

CONCLUSIONS

- two types of models that explain $(g 2)_{\mu}$
- light NP example: 10 MeV 4 GeV gauged $U(1)_X$
 - viable models are perturbations around $L_{\mu} L_{\tau}$
- heavy NP example:
 - leptoquark for $(g 2)_{\mu}$, more structure for other LFUV

BACKUP SLIDES

COMBINED NP EXPLANATIONS

- all anomalies or a subset?
- $R_{K^{(*)}}$ and $R_{D^{(*)}}$
 - vector leptoquark $U_1 \sim (3,1,2/3)$

Cornella et al., 2103.16558 + many refs.

- UV realization: 4321 model?
- 2 scalar leptoquarks $S_3 \sim (\bar{3}, 3, 1/3), S_1 \sim (\bar{3}, 1, 1/3)$

• UV realization: composite Higgs? Crivellin, Muller, Ota, 1703.09226 +many refs.

- $R_{K^{(*)}}$ and $(g-2)_{\mu}$
 - 2 scalar leptoquarks $S_3 \sim (\bar{3}, 3, 1/3), S_1 \sim (\bar{3}, 1, 1/3)$ Greljo et al, 2103.13991
 - from simplified DM models in the loop Arcadi, Calibbi, Fedele, Mescia, 2104.03228
- $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

23

A. Crivellin & J. Zupan Models ... $(g - 2)_{\mu}$

24