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CFT
CFTs: QFTs with conformal symmetry - Poincare + Scaling + Spl. Conformal 
Transformations 

2D CFTs: CFTs in (1+1) dimensions. Special: Lie Algebra is infinite dimensional, 
torus partition function is modular invariant, 

                                                                                         …(1) 

 Why study 2D CFT? 

String theory is a 2D CFT! 

Relevant for studying 2D critical systems at the fixed point of RG flow. 

2D Holography:  - many elegant results like Cardy-Calbrese 
entanglement entropy, Brown-Henneaux-York stress trensor, etc.    

Representation Theory, Infinite dimensional Lie Algebras, Vertex operator 
algebras, theory of modular forms, etc.

AdS3/CFT2

𝒵(γτ, γτ) = 𝒵(τ, τ) ∀γ ∈ SL(2,ℤ)



RCFT
2D CFT with a finite number of primary fields (1) and with central charge  and 
conformal dimensions  

The torus partition function can be written as (by modular invariance), 

                                                                        …(2) 

  where  and the characters are, 

   

  with  and : Identity character. 

RCFT Data: , s and OPE coefficients. Unitarity:  

Examples: Free boson/fermion, Critical Ising model, WZW CFTs, etc.   
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Modular Forms
Consider holomorphic  such that,  

                                  

  and  is holomorphic at : weight  modular form. 

Example: Eisenstein series (modular form of weight ), 

                             

: Even dimensional -vector space of weight  modular forms. 
Basis = .  

Serre-Ramanujan derivative , 
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Modular Linear Differential Equation (MLDE)
s are weight  modular functions (meromorphic in  and at ). 

It is known (2) that the  characters of a RCFT are the linearly independent solutions 
of a single  order ODE in the moduli space of the torus, a modular linear 
differential equation (MLDE), 

The Wronskian  will be a weight  modular function. 

Wronskian index  (from Valence formula), 

   

  2S.D. Mathur, S. Mukhi and A. Sen, On the Classification of Rational Conformal Field Theories}, Phys. Lett. B 213 303 
(1988).
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MMS Classification
A given MLDE is classified by two parameters: . We can scan different values of 

 and seek Frobenius type of character-like solutions of the form (3). 

Integrality constraint:  since these Fourier coefficients are state degeneracies 
at a given level. 

Vacuum constraint:  should have  which means that the vacuum state is 
non-degenerate. 

Stability constraint:  (as these can be degenerate). Then, one needs to find 
the LCM of the denominators  of these rational coefficients which should 
stabilise for . Then, . 

The remaining solutions will then be called admissible character-like solutions.  

RCFT constraint: One then needs to compute Fusion coefficients for admissible 
character-like solutions and check if they are positive. 

These will then be the characters of genuine RCFTs.
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(2,0) MLDE: MMS Procedure
Let us consider the (2,0) MLDE and the corresponding valence formula: 

                                    

 Plug (3) and (5) in (9) to get a recursive relation, 

                           

Indicial equation (m=0 in (10)): 

                                                

  which means  and  

Putting  in (10): 

                                            

𝒟2χ + μ1,0 E4 χ = 0, 1 +
c
2

− 6h = 0

(m + α)2am −
1
6

m

∑
k=0

(m − k + α)E2,k am−k + μ1,0

m

∑
k=0

E4,k am−k = 0

α2 −
1
6

α + μ1,0 = 0

α1 =
1
6

− α0 μ1,0 = α1α0 = α0 ( 1
6 − α0)

m = 1

a(0)
1 =

24α0(60α0 − 11)
5 + 12α0

…(9)

…(10)

…(12)

…(11)



(2,0) MLDE: MMS Procedure (contd.)
(12) implies (with ): 

                                       

 Since , we have that  (using the Integer Root Theorem) which 
implies, . Also, as  we have .  

 Now we solve for integral  in (13), . 

 Next we compute s by using the recursive relation (10) upto very high orders of 
, say  and impose positivity and integrality of the Fourier coefficients 
s. 

Then we check for solutions obeying the stability constraint. 

For  MLDE, going upto  is sufficient enough to rule out non-character-
like solutions.
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(2,0) MLDE: Solutions
S. No RCFT

1 2 2/5 1 1/5

2 5 1 3 1/4

3 10 2 8 1/3

4 14 14/5 14 2/5

5 20 4 28 1/2

6 26 26/5 52 3/5

7 30 6 78 2/3

8 35 7 133 3/4

9 38 38/5 190 4/5

10 40 8 248 5/6

N c a(0)
1 h

ℳ(5,2)

(Â1)1

(Â2)1

(Ĝ2)1

(D̂4)1

(F̂4)1

(Ê6)1

(Ê7)1

E7 1
2

(Ê8)1

The  entry in the table fails to satisfy 
fusion rules and hence is not a RCFT (but is 
of considerable interest to mathematicians). 

The  entry is actually a -character RCFT 
which appears as a solution to  MLDE.

9th

10th 1
(2,0)



(3,0) MLDE
Next we move onto solving the  MLDE, 

                                      

The corresponding indicial  equation for (14) is, 

                              

The  equation is (with ), 

Also,  equation  and .  
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(3,0) MLDE contd.

Next substituting the expressions of  in (15) results in,   

       

The roots of the quadratic equation determine  and  in terms of  and . 

For rational roots: discriminant - square of a rational number but since the discriminant 
above , it needs to be a perfect square (say ) to be able to result in rational roots. 
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(3,0) MLDE: Results
S. No

0 35 0 1/2 1/16 1/2

1 840 318 12 1/3 5/3

2 1400 80 20 4/3 5/3

3 1400 728 20 1/3 8/3

4 1400 890 20 2/3 7/3

5 1960 1948 28 2/3 10/3

6 2520 3384 36 2/3 13/3

N ca(0)
1 h1

Now we look for integral solutions for 
 by solving (16) and (18) 

simultaneously with  (that is for
). 

Next we impose all the relevant constraints. 
This allowed us to classify all  RCFTs. 
We also did a classification of  RCFTs. 

Finally, we tabulate  novel admissible 
character-like solutions (  blue row is 
Critical Ising model)

(a(0)
1 , a(0)

2 , k)
0 < N ≤ 3920

0 < c ≤ 56

(3,0)
(3,2)

6
0th
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Wronskian Indices of some known RCFTs I
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                                                   …(20) 

                                      …(21)

l [ℳ(p, p′ )] = 0, l [Â1; k] = 0 and l [Ê8; 1] = 2

l [Â2; k] =
k(k2 − 4)(3k + 4)

96 , for even k
(k2 − 1)(k + 3)(3k − 5)

96 for odd k

l [Ĉ2; k] =
(k − 1)k(k + 1)(k + 2)

8

l [Ĝ2; k] =
k(k2 − 4)(3k + 4)

96 , for even k
(k2 − 1)(k + 3)(3k − 5)

96 for odd k



Wronskian Indices of some known RCFTs II
We observe a remarkable coincidence between the  values for the  and  
CFTs: for every level, their  values match. This means they are solutions to the same 
MLDE (for different sets of parameters in the MLDE). A special case of this is in  
MLDE solutions: both  and  are present. 

  

We find another remarkable coincidence between the  values for the  and  
CFTs, but for . We have checked the matching of the  values  analytically and 
the matching of the  values upto . We conjecture that the  values should match  
too. 

We also find that every WZW CFT at level one with two or more characters has 
vanishing Wronskian index.

(n, l) (Â2)k (Ĝ2)k
(n, l)

(2,0)
(Â2)1 (Ĝ2)1

(n, l) (B̂r)k (D̂r)k
r ≥ 5 n ∀ r

l r = 6 l ∀ r



Related works
There have been many works in this direction since original MMS (1988). Let me put a few references 
which are super close to our work: 

Sunil Mukhi and collaborators, 

arXiv:1510.04478 -  novel  RCFTs  

arXiv:1810.09472 - Quasi-character approach and  novel  admissible character-like solutions 

arXiv:2002.01949 - Quasi-character approach to  MLDEs 

Justin Kaidi and collaborators, 

arXiv:2107.13557 -  representation theoretic approach to studying  MLDEs with 
. This work came out in parallel to our work and has an overlap with our  

results.  

Jin-Beom Bae and collaborators, 

arXiv:2010.12392 - MMS approach to Fermionic  RCFTs  

arXiv:2108.01647 - Study of Fermionic  RCFTs. This work too came out in parallel to our work 
and has an overlap with our  results.

9 (2,2)

3 (2,4)

(3,l > 0)

PSL(2,ℤ) (n, l)
n ≤ 5 and l ≤ 5 (3,0)

(2,0)

(3,0)
(3,0)



Thank You for listening..


