Holomorphic Modular Boobstrap

Based on: arXiv:2108.01060 (JHEP 11(2021)195) and arXiv:2012.14939 (JHEP $04(2021) 294$)
in collaboration with Dr. Chethan N. Gowdigere and Jagannath Santara

$$
\begin{gathered}
\text { YTF'21 } \\
\text { Online Presentation }
\end{gathered}
$$

16 December 2021

CFT

- CFTs: QFTs with conformal symmetry - Poincare + Scaling + Spl. Conformal Transformations
- 2D CFTs: CFTs in (1+1) dimensions, Special: Lie Algebra is infinite dimensional, torus partition function is modular invariant,

$$
\begin{equation*}
\mathscr{Z}(\gamma \tau, \gamma \bar{\tau})=\mathscr{L}(\tau, \bar{\tau}) \quad \forall \gamma \in \operatorname{SL}(2, \mathbb{Z}) \tag{1}
\end{equation*}
$$

- Why study 2D CFT?
- String theory is a 2D CFT!
- Relevant for studying 2D critical systems at the fixed point of RG flow.
- 2D Holography: $A d S_{3} / C F T_{2}$ - many elegant results like Cardy-Calbrese entanglement entropy, Brown-Henneaux-York stress trensor, etc.
- Representation Theory, Infinite dimensional Lie Algebras, Vertex operator algebras, theory of modular forms, etc.
- 2D CFT with a finite number of primary fields (${ }^{1}$) and with central charge c and conformal dimensions $h_{i} \in \mathbb{Q} \forall i$.
- The torus partition function can be written as (by modular invariance),

$$
\begin{equation*}
\mathscr{X}(\tau, \bar{\tau})=\sum_{i, j=0}^{n-1} M_{i j} \chi_{i}(\tau) \chi_{j}(\bar{\tau}) \tag{2}
\end{equation*}
$$

where $\mathbb{Z}_{0}^{+} \ni m_{i j} \in M_{i j}$ and the characters are,

$$
\begin{equation*}
x_{0}(\tau)=\sum_{m=0}^{\infty} a_{m}^{(0)} q^{\alpha_{0}+m}, \quad x_{i}(\tau)=D \sum_{m=0}^{\infty} a_{m}^{(i)} q^{\alpha_{i}+m} \tag{3}
\end{equation*}
$$

with $q=e^{2 \pi i t}, \alpha_{i}=h_{i}-\frac{c}{24}\left(h_{0}=0\right)$ and $\chi_{0}(\tau)$: Identity character.

- RCFT Data: c, h_{i} s and OPE coefficients. Unitarity: $c>0, h_{i} \geq 0 \forall i$.
- Examples: Free boson/fermion, Critical Ising model, WZW CFTs, etc.

Modular Forms

- Consider holomorphic $f: \mathbb{H} \rightarrow \mathbb{C}$ such that,

$$
f(\gamma \tau)=f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \forall \gamma=\left(\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})
$$

and $f(\tau)$ is holomorphic at $i \infty \Rightarrow f(\tau)$: weight k modular form.

- Example: Eisenstein series (modutar form of weight $k>2$),

$$
\begin{equation*}
E_{k}(\tau)=\frac{1}{2} \sum_{\substack{p, q \in \mathbb{Z} \\ g \operatorname{cd}(p, q)=1}} \frac{1}{(p \tau+q)^{k}}=\sum_{m=0}^{\infty} E_{k, m} e^{2 \pi i c m} \tag{s}
\end{equation*}
$$

- $M_{k}(S L(2, \mathbb{Z}))$: Even dimensional \mathbb{C}-vector space of weight $k(>2)$ modular forms. Basis $=\left\{E_{4}^{\theta} E_{6}^{\phi} \mid 4 \theta+6 \phi=k\right\}$.
- Serre-Ramanujan derivakive $\mathscr{D}: M_{k}(S L(2, \mathbb{Z})) \rightarrow M_{k+2}(\operatorname{SL}(2, \mathbb{Z}))$,

$$
\begin{equation*}
\mathscr{D}:=\partial_{\tau}-\frac{i \pi k}{6} E_{2}(\tau) \tag{6}
\end{equation*}
$$

Modular Linear Differential Equation (MLDE)

- $\chi_{i}(\tau) s$ are weight 0 modular functions (meromorphic in \mathbb{H} and at $i \infty$).
- It is known (2) that the n characters of a RCFT are the linearly independent solutions of a single $n^{\text {th }}$ order ODE in the moduli space of the torus, a modular linear differential equation (MLDE),

$$
\mathscr{D}^{n} x_{i}+\sum_{r=0}^{n-1} \phi_{r}(\tau) \mathscr{D}^{r} x_{i}=0 \quad\left(\text { with } \phi_{r}=(-1)^{n-r} \frac{\mathscr{W}_{r}}{\mathscr{W}}\right)
$$

- The Wronskian \mathbb{W} will be a weight $n(n-1)$ modular function.
- Wronskian index l (from valence formula),

$$
\begin{equation*}
\left.\mathbb{Z}_{0}^{+} \ni l \text { (order of zeros of } \mathscr{W}\right)=\frac{n(n-1)}{2}+\frac{n c}{4}-6 \sum_{i=0}^{n-1} h_{i} \tag{8}
\end{equation*}
$$

${ }^{2}$ S.D. Mathur, S. Mukhi and A. Sen, On the Classification of Rational Conformal Field Theories\}, Phys. Lett. B 213303 (1988).

MMS Classificalion

- A given MLDE is classified by two parameters: (n, l). We can scan different values of (n, l) and seek Frobenius type of character-like solutions of the form (3).
- Integrality constraint: $a_{m}^{(0)} \in \mathbb{Z}_{0}^{+}$since these Fourier coefficients are state degeneracies at a given level.
- Vacuum constraint: $\chi_{0}(\tau)$ should have $a_{0}^{(0)}=1$ which means that the vacuum state is non-degenerate.
- Stability constraint: $a_{m}^{(i \neq 0)} \in \mathbb{Q}_{0}^{+}$(as these can be degenerate). Then, one needs to find the LC.M of the denominators ($=: D$) of these rational coefficients which should stabilise for $m \rightarrow \infty$. Then, $D a_{m}^{(i \neq 0)} \in \mathbb{Z}_{0}^{+}$.
- The remaining solutions will then be called admissible character-like solutions.
- RCFT constraint: One then needs to compute Fusion coefficients for admissible character-like solutions and check if they are positive.
- These will then be the characters of genuine RCFTs.

$(2,0)$ MLDE: MMS Procedure

- Let us consider the (2,0) MLDE and the corresponding valence formula:

$$
\begin{equation*}
\mathscr{D}^{2} \chi+\mu_{1,0} E_{4} \chi=0, \quad 1+\frac{c}{2}-6 h=0 \tag{9}
\end{equation*}
$$

- Plug (3) and (5) in (9) to get a recursive relation,

$$
\begin{equation*}
(m+\alpha)^{2} a_{m}-\frac{1}{6} \sum_{k=0}^{m}(m-k+\alpha) E_{2, k} a_{m-k}+\mu_{1,0} \sum_{k=0}^{m} E_{4, k} a_{m-k}=0 \tag{10}
\end{equation*}
$$

- Indicial equation ($m=0$ in (10)):

$$
\begin{equation*}
\alpha^{2}-\frac{1}{6} \alpha+\mu_{1,0}=0 \tag{11}
\end{equation*}
$$

which means $\alpha_{1}=\frac{1}{6}-\alpha_{0}$ and $\mu_{1,0}=\alpha_{1} \alpha_{0}=\alpha_{0}\left(\frac{1}{6}-\alpha_{0}\right)$

- Putting $m=1$ in (10):

$$
\begin{equation*}
a_{1}^{(0)}=\frac{24 \alpha_{0}\left(60 \alpha_{0}-11\right)}{5+12 \alpha_{0}} \tag{12}
\end{equation*}
$$

(2,0) MLDE: MMS Procedure (contd.)

- (12) implies (with $N:=-120 \alpha_{0}$):

$$
\begin{equation*}
N^{2}+22 N+N a_{1}^{(0)}-50 a_{1}^{(0)}=0 \quad \Rightarrow \quad a_{1}^{(0)}=\frac{N(N+22)}{50-N} \tag{13}
\end{equation*}
$$

- Since $a_{1}^{(0)} \in \mathbb{Z}_{0}^{+}$, we have that $N \in \mathbb{Z}$ (using the Integer Root Theorem) which implies, $5 c \in \mathbb{Z}$. Also, as $a_{1}^{(0)} \geq 0$ we have $c<10$.
- Now we solve for integral $a_{1}^{(0)}$ in (13), $\forall 1 \leq N<50$.
- Next we compute $a_{m}^{(0)}$ s by using the recursive relation (10) upto very high orders of m, say $m=2000$ and impose positivity and integrality of the Fourier coefficients $a_{m}^{(0)} s$.
- Then we check for solutions obeying the stability constraint.
- For $(2,0)$ ML.DE, going upto $m=4$ is sufficient enough to rute out non-characterlike solutions.

(2,0) MLDE: Solutions

S. No	N	c	$a_{1}^{(0)}$	h	$R C F T$
1	2	$2 / 6$	1	$1 / 6$	$M(5,2)$
2	6	1	3	$1 / 4$	$\left(\hat{\mathbf{A}}_{1}\right)_{1}$
3	10	2	8	$1 / 3$	$\left(\hat{\mathbf{A}}_{2}\right)_{1}$
4	14	$14 / 6$	14	$2 / 6$	$\left(\hat{\mathrm{G}}_{2}\right)_{1}$
6	20	4	28	$1 / 2$	$\left(\hat{\mathrm{D}}_{4}\right)_{1}$
6	26	$26 / 6$	62	$3 / 6$	$\left(\hat{\mathrm{E}}_{4}\right)_{1}$
7	30	6	78	$2 / 3$	$\left(\hat{\mathrm{E}}_{6}\right)_{1}$
8	36	7	133	$3 / 4$	$\left(\hat{\mathrm{E}}_{7}\right)_{1}$
9	38	$38 / 6$	190	$4 / 6$	$\mathrm{E}_{7 \frac{1}{2}}$
10	40	8	248	$6 / 6$	$\left(\hat{\mathrm{E}}_{8}\right)_{1}$

The $9^{\text {th }}$ entry in the table fails to satisfy fusion rules and hence is not a RCFT (but is of considerable interest to mathematicians).

- The $10^{\text {th }}$ entry is actually a 1 -character RCFT which appears as a solution to (2,0) MLDE.

(3,0) MLDE

- Next we move onto solving the $(3,0)$ MLDE,

$$
\begin{equation*}
\mathscr{D}^{3} \chi_{i}+\mu_{1,0} E_{4} \mathscr{D} \chi_{i}+\mu_{0,1} E_{6} \chi_{i}=0 \tag{14}
\end{equation*}
$$

- The corresponding indicial ($m=0$) equation for (14) is,

$$
\begin{equation*}
\alpha^{3}-\frac{\alpha^{2}}{2}+\left(\frac{\mu_{1,0}}{144}+\frac{1}{18}\right) \alpha+\frac{\mu_{0,1}}{1728}=0 \tag{15}
\end{equation*}
$$

- The ($m=2$) equation is (with $N:=-1680 \alpha_{0}$),

$$
\begin{align*}
& N^{4}+\left(\left(a_{1}^{(0)}\right)^{2}+93 a_{1}^{(0)}-2 a_{2}^{(0)}+955\right) N^{3} \\
& +\left(-2380\left(a_{1}^{(0)}\right)^{2}+28770 a_{1}^{(0)}+7700 a_{2}^{(0)}+167160\right) N^{2} \\
& +\left(1372000\left(a_{1}^{(0)}\right)^{2}+10760400 a_{1}^{(0)}-7330400 a_{2}^{(0)}-9800 a_{1}^{(0)} a_{2}^{(0)}\right) N \tag{16}\\
& +13720000 a_{1}^{(0)} a_{2}^{(0)}-329280000\left(a_{1}^{(0)}\right)^{2}=0
\end{align*}
$$

- Also, $(m=1)$ equation $\Rightarrow \mu_{1,0}=f\left(N, a_{1}^{(0)}\right)$ and $\mu_{0,1}=g\left(N, a_{1}^{(0)}\right)$.

$(3,0)$ MLDE conld.

- Next substituting the expressions of $\mu_{1,0}$ and $\mu_{0,1}$ in (15) results in,

$$
\begin{align*}
& (1680 \alpha+N)\left[\left(8749440 N-19756800 a_{1}^{(0)}\right) \alpha^{2}\right. \\
& +\left(-5208 N^{2}+11760 a_{1}^{(0)} N-4374720 N+9878400 a_{1}^{(0)}\right) \alpha \tag{17}\\
& \left.+N^{3}+14 a_{1}^{(0)} N^{2}+924 N^{2}-29400 a_{1}^{(0)} N+141120 N+9878400 a_{1}^{(0)}\right]=0
\end{align*}
$$

- The roots of the quadratic equation determine α_{1} and α_{2} in terms of N and $a_{1}^{(0)}$.
- For rational roots: discriminant - square of a rational number but since the discriminant above $\in \mathbb{Z}$, it needs to be a perfect square $\left(s a y k^{2}\right)$ to be able to result in rational rooks.

$$
\begin{align*}
& 3457440000\left(a_{1}^{(0)}\right)^{2}-1657376000 a_{1}^{(0)} N-8232000\left(a_{1}^{(0)}\right)^{2} N \\
& +55899200 N^{2}+3528000 a_{1}^{(0)} N^{2}+4900\left(a_{1}^{(0)}\right)^{2} N^{2} \tag{18}\\
& +52080 N^{3}-2100 a_{1}^{(0)} N^{3}-31 N^{4}=k^{2}
\end{align*}
$$

(3,0) MLDE: Results

S. No	N	$a_{1}^{(0)}$	c	h_{1}	h_{2}
0	36	0	$1 / 2$	$1 / 16$	$1 / 2$
1	840	318	12	$1 / 3$	$5 / 3$
2	1400	80	20	$4 / 3$	$5 / 3$
3	1400	728	20	$1 / 3$	$8 / 3$
4	1400	890	20	$2 / 3$	$7 / 3$
6	1960	1948	28	$2 / 3$	$10 / 3$
6	2620	3384	36	$2 / 3$	$13 / 3$

Now we look for integral solutions for $\left(a_{1}^{(0)}, a_{2}^{(0)}, k\right)$ by solving (16) and (18) simultaneously with $0<N \leq 3920$ (that is for $0<c \leq 56$) .

- Next we impose all the relevant constraints. This allowed us to classify all $(3,0)$ RCFTs. We also did a classification of $(3,2)$ RCFTs.

Finally, we tabulate 6 novel admissible character-like solutions ($0^{\text {th }}$ blue row is Critical Ising model)

Wronskian Indices of some known RCFTS I

- $l\left[\mathscr{M}\left(p, p^{\prime}\right)\right]=0, \quad l\left[\hat{\mathbf{A}}_{1} ; k\right]=0 \quad$ and $l\left[\hat{\mathrm{E}}_{8} ; 1\right]=2$
$l\left[\hat{\mathbf{A}}_{2} ; k\right]= \begin{cases}\frac{k\left(k^{2}-4\right)(3 k+4)}{96}, & \text { for even } k \\ \frac{\left(k^{2}-1\right)(k+3)(3 k-5)}{96} & \text { for odd } k\end{cases}$
- $l\left[\hat{\mathbf{C}}_{2} ; k\right]=\frac{(k-1) k(k+1)(k+2)}{8}$
$l\left[\hat{\mathbf{G}}_{2} ; k\right]= \begin{cases}\frac{k\left(k^{2}-4\right)(3 k+4)}{96}, & \text { for even } k \\ \frac{\left(k^{2}-1\right)(k+3)(3 k-5)}{96} & \text { for odd } k\end{cases}$

Wronskian Indices of some known RCFTs II

- We observe a remarkable coincidence between the (n, l) values for the $\left(\hat{\mathbf{A}}_{2}\right)_{k}$ and $\left(\hat{\mathbf{G}}_{2}\right)_{k}$ CFTs: for every level, their (n, l) values match. This means they are solutions to the same MLDE (for different sets of parameters in the MLDE). A special case of this is in $(2,0)$ MLDE solutions: both $\left(\hat{\mathbf{A}}_{2}\right)_{1}$ and $\left(\hat{\mathbf{G}}_{2}\right)_{1}$ are present.
- We find another remarkable coincidence between the (n, l) values for the $\left(\hat{\mathbf{B}}_{\mathbf{r}}\right)_{k}$ and $\left(\hat{\mathbf{D}}_{\mathbf{r}}\right)_{k}$ CFTs, but for $r \geq 5$. We have checked the matching of the n values $\forall r$ analytically and the matching of the l values upto $r=6$. We conjecture that the l values should match $\forall r$ too.
- We also find that every WZW CFT at level one with two or more characters has vanishing Wronskian index.

Related works

There have been many works in this direction since original MMS (1988). Let me put a few references which are super close to our work:

- Sunil Mukhi and collaborators,

```
- arXiv:1510,04478 - 9 novel (2,2) RCFTs
- arXiv:1810.09472 - Quasi-character approach and 3 novel (2,4) admissible character-like solutions
0 arXiv:2002.01949 - Quasi-character approach to (3,l>0) MLDEs
```

- Justin Kaidi and collaborators,
- arXiv:2107.13557 - PSL(2, Z) representakion theoretic approach to skudying (n, l) MLDEs with $n \leq 5$ and $l \leq 5$. This work came out in parallel to our work and has an overlap with our $(3,0)$ resulles.
- Jin-Beom Bae and collaborators,
- arXiv:2010.12392 - MMS approach to Fermionic $(2,0)$ RCFTs
- arXiv:2108.01647 - Study of Fermionic (3,0) RCFTs. This work too came out in parallel to our work and has an overlap with our $(3,0)$ results.

Thank You for listening.

